
SIAM J. CONTROL
Volume 12, No. 1, February 1974

CONTROLLABILITY OF NONLINEAR SYSTEMS
ON COMPACT MANIFOLDS*

C. LOBRYt

Abstract. It is proved that a nonlinear conservative control system on a compact manifold is
controllable if (and only if in the analytical case) a certain condition expressed in terms of the "Taylor
expansion of the system" at each point is satisfied.

1. Introduction. This paper is a self-contained version of a result in the
author’s thesis [8]. The general background for this work is developed in papers
[3], [6], [10] and [12], and applications to optimal control problems are proposed
in [2], [33, [63, [73, [103 and [123.

Denote by N the set of natural numbers, [ the set of real numbers and by N /

the set of positive real numbers.
We define a dynamical polysystem (abbreviated DP) as a collection ofcomplete

vector fields on a smooth, connected, paracompact manifold of dimension n.
We denote this collection by (X) and by

(x, t) --,

the dynamical system generated by Xi. The orbit of a point x under the action of
the DP is the collection of all the points of the form
with ij I, tj [, p N. We denote this orbit by (Xi)ilx. The positive orbit of a
point x is defined in the same way as the orbit, but we are restricted to positive
t; we denote

+(X )ieiX Xt XI Xil(x), ij I, tj +, p e }.

DEFINITION. A DP is controllable if for every point x in the manifold M, the
positive orbit of x is the whole manifold.

For general results on orbits, positive orbits and controllability, one can see
the references listed above. In a recent paper, V. Jurdjevic [4] proved necessary
and sufficient conditions for controllability ofan analytical, right invariant dynami-
cal polysystem defined on a compact I,ie group. He asked to what extent this result
is true for a general compact manifold. The proposition and example of the present
paper are partial answers.

2. Definitions and preliminary results. Consider the smallest family of
vector fields on M containing the DP (Xi)il closed under the Jacobi bracket
operation. At each point of M, the values of the elements of this family are vectors
in the tangent space to M which generate a certain linear subspace we define the
rank at a given point of the DP as the dimension of this subspace. The following
is proven in [6] as a slight generalization of Chow’s result [1] and R. Hermann’s
ideas [3].
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THEOREM 1. if(and only if in the analytical case) the rank of the DP is equal
to n (n is the dimension ofmanifold M) at every point ofM, thenfor every point x in
M, the orbit (Xi)i1x ofx is the whole manifold M.

The following theorem is proven in [8] (see also [5] for a shorter proof and
other related topics) and by H. Sussmann and V. Jurdjevic (see [11]) for the
analytical case.

THEOREM 2. If(and only if in the analytical case) the rank ofthe DP is equal to
n at every point of the manifold M, then for every point x in M, the interior points
of the positive orbit +(X )i1x are dense in the positive orbit.

Now, let M be a compact Riemannian manifold; a conservative vector field is
a vector field for which the natural measure in M is invariant under the action of
the dynamical system associated to it. The well-known theorem below is the main
trick in the proof of Proposition 1.

THEOREM (PoincarO). The Poisson stable points of a dynamical system generated
by a conservative vector field are dense.

Recall that a point is Poisson stable if and only if for every neighborhood
of x and every positive T, there exist t and t2, greater than T, such that Xt(x)
and X_,(x) are in #.

We say that the DP(X)t is conservative if every X is a conservative vector
field on M.

3. A controllability result.
PROPOSITION 1. Let (xi)i be a conservative DP on a compact Riemannian

manifold M ofdimension n. If (and only if in the analytical case) the rank of (xi)i
is n at every point of m, the DP is controllable.

Proof. The "only if" in the analytical case is a trivial consequence of the fact
that the positive orbit is included in the orbit and of Theorem 1. Let us prove now
the "if." Let x and y be two points in M. We have to prove that there exist some

il, i2, ij,... ip and l, t2, tj, ..., tp in + such that

ily

Theorem 2 is true if we replace (Xi)-x by (Xi)ix (with obvious notation); choose
a point . in the interior of (X)ty which is not empty by Theorem 2. Let / be an
open neighborhood of contained in (X)y. By Theorem there exist i and
not necessarily positive, such that

i Xy X,4o xf . ).

Suppose for simplicity (the general case goes by induction exactly in the same
way) that

where T is positive and T 2 is negative. Let p xi’(x)’then the set
71

is an open neighborhood of p, and it has a nonempty intersection with (Xi)x
(using, again, Theorem 2); thus it contains a point z which is Poisson stable for
Xi2. Let be a neighborhood of z contained in p f-) (X)tx by the definition of
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Poisson stable, there exists a real number t, greater than Iqr2l, such that the point
X2(x) belongs to . Then the following hold.

(i) The number + 2 is positive.
(ii) The point i2X,+2(z) belongs to .

The point y is in the positive orbit of any point in (X)i,i(Y), hence it belongs to

yi’ + yi2
,il,.t+ r2(Z),

thus the proposition is proved.

4. Final comments.
Example. On the sphere S2, consider the DP generated by the two vector

fields X and X2 whose trajectories are "meridian" and "longitude" defined for
two different axes (see Fig. 1). These two vector fields are analytic one of them is
conservative. From Theorem 1, we see that the DP has rank 2 at every point because

FIG.

its orbits from every point are the whole S2, as one sees easily on the picture.
Conversely, one can see that the positive orbit from the north pole is certainly
included in the north hemisphere.

Remark 1. This example shows that the assumption on the conservativeness
of the system is unremovable (we need at least that two vector fields of the family
are conservative and satisfy the rank assumption). On the other hand, by a slight
modification of the proofs in I6] (see also [7]), one can see that the rank assumption
is generic, i.e., the set of conservative DP for which the rank assumption is
satisfied is an open dense subset of the set of conservative DP for a reasonable
topology.

Remark 2. The proof of the proposition of this paper also works for right
invariant vector fields on a compact Lie group as soon as we remark that .trajec-
tories of such vector fields are certainly Poisson stable.

Acknowledgment. The result in this paper was suggested to me by Prof. L. W.
Markus; the proof is inspired by his paper [9]. I also thank him for many helpful
encouragements.
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REGULATION AND INTERNAL STABILIZATION

IN LINEAR MULTIVARIABLE SYSTEMS*

W. M. WONHAM? AND J. B. PEARSON:

Abstract. For the multivariable control system described by

Ax + Bu, y= Cx, z Dx,

constructive necessary and sufficient conditions are given for the existence of state feedback u Fx
such that (i) Ker F Ker C (observability constraint), (ii) D exp [t(A + BF)] 0 as (output
regulation), and (iii) any unstable modes of A + BF are either uncontrollable or unobservable at y
(internal stability). It is assumed that Ker C is A-invariant, or equivalently that an observer or dynamic
compensator is utilized. A common application is treated, and sensitivity is considered for a simple
example.

1. Introduction. In this paper we continue the discussion in [1] on output
regulation for the system

(1) :(t)-- Ax(t) + Bu(t),

y(t)- Cx(t),
(2)

z(t)- Dx(t).

We refer to [1] for notation and a general description of the problem. As in
we regard y(. as the observed variable and z(. as the variable to be regulated.
We assume that either a dynamic observer as in [1], or a dynamic compensator
as in [2], is utilized; equivalently, writing dV" Ker C, we have Aff

For regulation of z(. ), it is required to find a feedback map F :f- ’ such
that

(3) f/(A + BF) Ker D.

To respect the observability constraint, F must satisfy the condition

(4) Ker F = ’.

Necessary and sufficient conditions for the existence of F subject to (3) and (4)
were given in

In this paper we impose the additional requirement that F stabilize all the
unstable modes of A which are both controllable and observable. Precisely,
regard Y’/dV as the state space of the system (1), (2) made observable by reduction
modf’. The controllable, observable subspace is then ((AN)+ V)/V. We
require that the map induced on ((AN) + V)/f by the closed loop system
map A + BF be stable. Equivalently, any observable, unstable modes of A / BF
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must be uncontrollable;that is,

f+(A + BE)+ V
1"3 <A> + 4/’__ 0.

It is natural to call a system in which F has been chosen to satisfy (5) internally
stable. In this way we are led to formulate the following.

REGULATOR PROBLEM WITH INTERNAL STABILIZATION (RPIS). Given the maps
A :f , B :i , D :Y , and a subspace Y c 35 with AU ,A/, .find
F: f l such that

(6)

(7)

and

Ker F =
f+(A + BF) (<A> + l/)

f+(A + BF) Ker D.

Here it is easily checked that (7) is equivalent to (5).
The "restricted regulator problem" (RRP) was defined in [1] and is identical

to RPIS except that the internal stability requirement (7) is dropped. We remark
that RRP may be solvable when RPIS is not:that is, internal stability need not
be compatible with output regulation, as shown by examples in [1] and [2].

In 2 we provide a first set of necessary and sufficient conditions that RPIS
be solvable. While not constructive, theyare exploited to show that in this problem,
dynamic compensation in the sense of [1] is redundant. In 3 we give constructive
necessary and sufficient conditions in the case sls 0, and in 4 extend them to
the general case. An application is discussed in 5. Finally, in 6 we indicate
how to deal with the sensitivity problem which may arise when the map A is
subject to small perturbations.

2. Solution of RPIS: general considerations.
THEOREM 1. RPIS is solvable if and only if there exists a subspace /" f

such that

(9)

(0)

(11)

and

(12)

U Ker D n A-1(’/ "3
I- ),

f+(A) N v + A(# N V) ,
V N (<A> + 4/) V,

f+(A) <A’> +
We observe that conditions (9), (10) and (12) are equivalent to solvability

of RRP, as shown by Theorem of [1]; only condition (11) is new. The proof
follows exactly the same lines as in the theorem cited, and so need only be sketched.

Proof. Suppose RP!Sis solvable and put f+(A + BF). Since AV" c
and Ker F V’,-we have by Lemma 2 of [1],

f+(A + BF) N / f+(A) N

Then (9)--(11) follow immediately from (6)-(8), and (12) follows from the general
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identity [1, Lemma 4],

(13) (A) + f+(A)= (A) + f+(A + BF).

Conversely, if (9) and (10) are true, there exists Fo:f ’ such that
Ker Fo dV" and (A + BFo)U . Write Ao A + BFo. By (12) and (13),

(14) f+(Ao)

Now

(15) f+(Ao) VI dV +(A) 91 U c //.

Just as in the proof of Theorem of [1], (14) and (15) imply the existence of
F1:2’
has all the properties required.

While Theorem does not indicate how to find a suitable if one exists,
it is well suited to showing that if RPIS is not solvable, then no solution can be
obtained by broadening the assumptions to include the possibility of state space
extension, that is, dynamic compensation. We may interpret this result as a
deterministic "separation theorem" which asserts that, after insertion of a dynamic
observer, no further dynamic signal processing is required to achieve the stated
design objectives, if these objectives can be achieved at all.

To be precise, introduce extended spaces and maps exactly as in 1, 3].
In the notation used there, we now define the "extended regulator-problem with
internal stabilization" (ERPIS) as that of finding suitable fa (that is, d(fa)) and
then Fe :re Oe, such that

Ker Fe

and

fe+ A --k B Fe N <A e> -k- ,IV’)

(Ae + BeFe) Ker D (

THEOREM 2. ERPIS is solvable only if RPIS is solvable.
Proof. If ERPIS is solvable, Theorem implies the existence of fe

such that

(16)

(7)

(18)

(19)

e c (Ker D f.) f/ A-1( -- , + ’a),

,e+(Ae) M / + Ae( N ) Ve,

Here we have used the facts (cf. [1, 3]) that e V, Ker D Ker D
and (AeNe) (A)

Let P :re - fe be the projection on f along f, and define Pe. It is
enough to show that / has the properties (9)-(12), and this requires only the

It should, however, be borne in mind that in the present problem formulation, no explicit account
is taken of the sensitivity of the synthesis to parameter perturbations; and if this is done, additional
dynamic elements may sometimes be used to advantage ( 6).



8 W. M. WONHAM AND J. B. PEARSON

application of P to both sides of the relations (16)-(19). By definition of P and
Ae, PAe AeP and Ae]Sf A. Using these facts and rewriting (16) as

e c KerD @ a, Ae’e c e +’-
there follows

c KerD, Ac +,
which is equivalent to (9). Next, the obvious relation

(20) (Ae) +(A) a,
together with (19), establishes (12). To verify (11) from (18) we use the following
general result for a map P and subspaces , [3, Proposition A.5]:

(21) P(M ) (PM) (P)

if and only if

(22) (M+) KerP=M KerP+ KerP.

With Ker P ,, M U and <A> + f, + , (22) follows at once,
and then (21) applied to (18) yields (ll). It remains to check (10) from (17). By
(20),

*(A) +(A) ,
and so

(23)

(24)

provided

(25)

As for (25), let

f+(A) f’l Y c P/

Also, by (21), (22) we shall have

P(e f ) V f ,
( + ) N , g N , + v N ,.

with Ve e and n e A/. Then

v x,, ne7,, +
and by (18), Ve A/’. Therefore x e A/ f’l 5f, 0, that is,

( + ) 0,

proving (25). Then (24) is true, and (17) yields

(26) PAe( f"l .IV’)= A("U f-I A/’).

Finally, (10) results from (23) and (26).

3. Constructive solution of RPIS when U 0. We first recall from [3]
and [4] certain properties of (A, B)-invariant subspaces, that is, subspaces c

such that Ac + . Let_F(V)be the set of maps F:- ’ such that
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(A + BF)C . Then _F(C)4: if and only if is (A,B)-invariant. We
denote by C* the largest (in the sense of inclusion) (A,B)-invariant subspace

c Ker D,

C* sup {//" Ker D [’1 A- 1(// + )}
and by N* the largest controllability subspace [4] contained in Ker D. Then
N* c * and _FffU*) E(N*). If F e_F(U*) and AF A + BF, let AF be the
map induced in f/N* by Av. Then the restriction $vI(C*/N*) is independent
of the choice of F e _F(C*).

Let A- - and AN N -. The subspace N decomposes -- relative
to A if there exists a subspace 5e such that ASe 5e and N 5 -. A con-
structive necessary and-sufficient condition that N decompose - is given in the
Appendix; it amounts to the well-known fact that decomposability is equivalent
to the existence of a solution to a simple linear matrix equation.

THEOREM 3. Let O. Then RPIS is solvable if and only if
(27) +(A) (A[) + *,
and in W/N*, with F _F(U*), the subspace

(/* N f+(AF) N (A} +
decomposes the subspace

(* N +(A) + *)/*

relative to the map induced by Ay in
It is clear that this solvability criterion is constructive, as //*, N* are com-

putabl by simple algorithms [4 an (arbitrary) F E _F(/*) is readily constructed
[4] and decomposability is verifiable by a transformation of basis and rank checks
(Appendix).

Proof. (If). Let F _F(V*). By (27) and Lemma 4 of

f+(AF) (A + /*.

As the subspace on the right is Ay-invariant, we have

(28) ,T+(AF) (A[5 I’-I f+(AF) + * I"1 f+(Av),

Also, by the assumption of decomposability, there exists a subspace
such that

(29)

(30)

and

AF#
N* f" /* (-1 +(AF)

* N +(Av) + N* U* N (A) N +(Av) + N*
(31)

N* N* N---’"
We remark that with fixed, (29)-(31) hold for all F F_(U*). By (31),

(32) * N 5+(Av) * N (A) N f+(AF) + ,
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and by (28) and (32),

(33)

Clearly,

(34)

Also, by (31),

f+(Av) (A[) + U* f’)f+(Av) (A[) + U.

so that

(35) # ) (A’) .*.

Finally, let AF denote the map induced by A in f/*, and choose F _F(f*)
such that

r(Avl*)

Then N* decomposes t relative to Av; that is, there exists (depending
on F) such that

(36) A
and

(37)

From (33)-(37), we conclude that

/ f’l <A[> 0,

+(A)

and it follows by Theorem that RPIS is solvable.
(Only if). If RPIS is solvable, Theorem supplies a subspace U such that

and

(38) f+(A)
Since U fq (A[) 0 we have U f’l * 0, so that * = * . From this
it is clear that F _F(U) f) _F(*) can be chosen such that AvI* is stable. By
(38) and Lemma 4 of [1] we have

Since all the subspaces here are Av-invariant there follows

5+(Av) = <A> f] f+(Av)( / f’l 5+(Av)

= <A> f-I f+(Av) + (* f’l f+(Av) = 5+(Av),
and therefore

/* f-) f+(Av) c (A> f’l f+(AF) /" ["l 5J’+(AF).
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Intersecting both sides with * and using U* = U, we obtain

* f) f+(Av)= (A) f] +(AF) f"l q/* U I’) +(AF)
(39)

5 -, say.

Let P’W W/* be the canonical projection. By the stability of AvI*,
we have

(Sg @ -) f’l Ker P (5 @ -) f) *

=0

5e f) Ker P - f3 Ker P,
and therefore

(40) (pc) (p-) p(3 CI 3-) O.

By (39) and (40) we have, finally,

P[(* Iq 5f+(Av)] P[(A5 f"l f+(Av) f"l //*] if3 P[// I"l +(Av)],

a decomposition of the type required.
Remark. The foregoing proof of sufficiency made no essential use of the fact

that * is actually the supremal element of the family of subspaces_
{/-Y" c Ker D f-I A-1( + )}.

The sole reason for stating Theorem 3 in terms of * is that this element of
is readily computable algorithmically, and so the obtained conditions are con-
structive. It is clear from the proof that the conclusion of Theorem 3 is valid
provided the stated conditions hold for some element e_, with * replaced
by the largest controllability subspace (c.s.) c .

4. Constructive solution of RPIS for arbitraryV’. It is not difficult to extend
Theorem 3 to the general case. Suppose first that RPIS is solvable with the map F.
Since Ker F = U, we have by Lemma 2 of [11] that

(41) f+(A) f] U f+(A + BF) f’l U

is (A + BF)-invariant. Let

be the canonical projection, and let bars designate the maps induced in 5f. As
Ker F = Ker P, F" q/exists uniquely such that FP F, and it is easily seen
that P Ker F Ker . Similarly, by (8) and (41), " --. exists uniquely such
that DP D, and P Ker D Ker/. Finally, define B "q/ by B PB.

Now A + BF ., +/ff so (by [5, Lemma 2]),

Pf +(A + BF) +( + BF).



12 W. M. WONHAM AND J. B. PEARSON

Also

(42)

(43)

(44)

Automatically

[f+(A + BF) + (A[5 + A/] f’l Ker P

g*(A) V

f+(A + BF) n Ker P + ((A5 + g’) n Ker P.

With these observations, we may project both sides of (6)-(8) to obtain

Ker F A/,

+( + BF) ((A5 + AT)c
+( + BF) Ker .
+($) N 17 ,

or equivalently,

(45) A/" c f-(A).

We have shown that if RPIS is solvable, so is the reduced problem (42)-(44)
in f, and (45) is true as well. Conversely, suppose

(46) f + (A) gl A/" Ker D,

and that F"f --, exists such that (42)-(44) are true. Define F FP. By reversing
the steps which led to (42)-(44), one can routinely verify that (6)-(8) are true,
i.e., that RPIS is solvable. We therefore have the following.

LEMMA 1. RPIS is solvable if and only if the reduced problem (42)--(44) is
solvable under assumption (46).

Next we show that in (43) we may set V" 0.
LEMMA 2. If (42)--(46) are true, then

(47) r+(. + BE) (A) .
Conversely, if (46) and (47) hold, so does (43).

Proof. By (43),

,+( + BF) fl (<A> + AT) f I"1 f+(fi, + BF)

A7 N +($) by (42)

--0.

Conversely, the left side of (43) can be written

+( + BF) I") [<A> I"1 +($ + BF) + <A> I"1 -($ + BF) + N7 ["1 r-(fi.)]

+ (, + BF)fl <.#>
=0.

By Lemmas and 2, the solvability of RPIS is equivalent to solvability of the
reduced problem (42), (44), (4?) under assumption (46). Our next result implies
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that condition (42) is redundant. For simplicity of notation, we temporarily drop
bars.

LEMMA 3. Let Fo : be such that

f+(A + BFo) CI <AN> O.

There exists Fx : ll such that

(48) Ker F = f-(A),

(49) f+(A + BF)= f+(A + BFo).

Proof. In this proof, primes are used as indices. The lemma will be proved
in three steps. First, let P+ :<AN> <AN> be the projection on <AN> 13 f+(A)
along <A]N> f3 f-(A), and write A + AI[<A]> VI Y’+(A)],B + P+B. Since

<A> f-) +(A) P+<A>
we have that (A+,B +) is controllable, so there exists F+ :Y’+(A) ’ such that
A + + B+F + is stable. Choose 5f- such that

<A> f’l f-(A) 0) 5- f-(A),

and then such that 5e 5e- and (A> 5e 5f. Now define F’o’f
according to

F)I[<A[> fq 3+(A)]-- F +,
F)I[<A> (3 f-(A) 53 O.

Write A’o A + BF’o and F Fo F. It is then clear that

(50) Ker F f-(A),

f+(A)) f-) <A’> 0,

+(A’o + BF) <A[> O.

As the second step, we claim there exists an F’x’f such that

Ker F’ (A[>,

f+(A’o + BF’,)= f+(A’o + BF’) (= f+(A + BFo)).

F’II<A> O,

F’If+(A) + BF’)-- Fglf+(A) + BUg),

and let F’II- be defined arbitrarily on some complement - of f+(A’o + BF))
+ (A) (= f+(A) + (A))in 5f. Write

A A’o + BF, A’a A’o + BF’x.
Since f +(A) is A-invariant, and

A’If+(A’) A[f+(A),
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there follows by Lemma 2 of[l],

f+(A’x) f-I 35+(A’) f+(Ao),"

so that

(53)

Similarly, we have

35 + A) 35 + A’

35+(A’) f’l (A) 35+(A’o) 0 (A) O.

By Lemma 4 of 1], there results

(54) <A[> ( 35+(A’g) <A[> ( 35+(A’),

and (52) follows at once from (53) and (54).
As the last step, we prove the existence of F’ "35 ’ such that

(55)

(56)

Ker F’; 35-(A)+ (A),

35+(A’o + BF’)= 35+(A’o + BF’).

A bar will denote a subspace or induced map in 35 35/(AJ). Let P’35 --, 35
be the canonical projection. We have +(fi.) ( 2-(ft.), and by (51), F’ F]P
for some F’ "35 --, ’. Define F1 F1P, where

Then

so that

Fail-(A) 0.

P Ker f Uer F (" (A),

35-(A) c Ker F1 + (AN) Ker

and (55) is true. Also if x e 35+(A’o + BF’) then Px e 2+(fi.), so

therefore

Fx FIPX F’IPX F’lX;

(A’o + BF’)If+(A’o + BF’)= (A’o + BF’)]35+(A’o + BF’I),

and there follows

(57) 35 + A’o + BF’ 35+(A’o + BF’
Similarly,

and so

(A’o + BF’)I<A> (A’o +

35+(A’o + BF) f-I (A) 35+(Ao + BF’) 0 (A) O.
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This means

(58)

,Y+(A’o + BF’)’ +(Ao + BF)

C +(A’o + BF;)
, f + (A’o + BF’a),

and (56) follows by (57) and (58).
It remains only to define

F F{) + F’.
Then (48) follows by (50) and (55); statement (49) follows by (52) and (56).

It is now easy to prove our main result. For this we revert to the notation
introduced at the beginning of this section.

THEOREM 4. In the general case dV" # O, RPIS is solvable if and only if (i)

(59) f+(A) f"l A/" c Ker D,

and (ii),
in the factor space f/[f+(A) ffl 4/’], the reduced problem is solvable,

that is, there exists Fo " such that

(60)

and

16)

.g+( + BFo)c Ker B

+( + BFo) gl <A) O.

Of course, the reduced problem (ii) is formally identical to that of Theorem 3.

Proof. (If). Suppose the reduced problem (RP) defined by (60) and (61) is
solvable. Lemma 3 applied to RP yields a map F’f --, ’ such that

Ker F f-(A),

and F satisfies (44) and (47). Since f-(A) W we are assured that (42) is true
as well. As already noted, Lemmas and 2 now imply that RPIS is solvable.

(Only if). The necessity of (59)is immediate from (9)and (10); the necessity
of (60) and (61) follows by Lemmas and 2.

5. Application" regulation in the presence of step disturbances. As a simple
application of Theorem 3, consider the system

fm A1X1 2_ A3x2 + Bau,

2 -’-0,

Z OlX + O2x2.

We assume that y x and (A, B) is controllable. The equations represent a
controllable plant subjected to step disturbances which enter both dynamically
and directly at the regulated output, a situation common in industrial process
control.

In basis-flee terms, our assumptions amount to the following"

(62) 4/’= 0,

(63) Im A c (A>.
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Also, as AUc M,
AF A + BF. Then

We now have our next theorem.
THEOREM 5. Subject to the assumptitons (62) and (63) RPIS is solvable if and

only if
(64) (A[) + Ker D N A-I f.

Proof. (If). Exploiting the remark after the proof of Theorem 3, let

(65) 7 Ker D n A-M.
From (64) it is clear, first, that

+(A) = (A) + .
there exists an F6_F(/) such that AF[/ 0, where

SO

Ker AF ’+(AF)

C N f+(Av) N <A[> C N <A[>.

According to Theorem 4.3 of [4], the supremal c.s. in is given by

The second condition of Theorem 3 (with U, o in place of U*, 2*) will thus be
satisfied if (7 n (A[))/( n 7) decomposes /( n 7) relative to the map
induced by Av in 7/( n /7). Since AFIt7 0 this is trivial, and the result follows.

(Only if). Let f f/(A[), and now use bars for subspaces and induced
maps in f. By (63), A 0. Suppose RPIS is solvable by the map F. Since AF A
for all F, and since Y’+(AF)N (AN)= 0, we know that f+(AF)= Ker AF.
Now Ker AF A-I for any F, so

f+(AF) Ker D N A-1.

By Lemma 3 of [1], there results

and therefore

f+(A) = (A) + Ker D N A-,

f (A) + f+(A)

(A[5 + Ker D N A-

6. Dynamic compensation and sensitivity. Even if RPIS is solved, it need not
be true that output regulation is maintained if internal parameters deviate slightly
from their nominal values. However, it is often possible to achieve insensitivity
by application of the theory to a suitably augmented version of the original
problem. We illustrate the method by a trivial example, deferring a general
treatment to a future article. Consider

2c ax + u, "2 0,

y-’-(X1,X2)’ Z-- X X2,
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where x1, x2 are scalars. RPIS is solvable with u fix1 .qt_ f2x2 where

f, +a<0, f2= -(a+fl).

If a changes to a + e, with (f, f2) fixed, the condition f + a + e < 0 for internal
stability is preserved for small e, but

z(oe) -(a + e + fx)- ex2(0+),
so output regulation fails.

Heuristically, replace ex by a new variable x3 with 23 0. That is, x3 should
satisfy the unstable differential equation induced in f/(A);since only
is assumed to change, this equation does not depend on . Now consider RPIS
for the augmented system

2 ax + X3 / U,

22 23 O,

y (Xl, X2)" Z Xl 9(;2"

Here the pair (C, A) is observable; an observer for w Xl x3 is given by

(66) k= -w+(a+ 1)yl +u.

Also, RPIS is solvable; one solution is u f’x, with

fl=-l-a, f2=l, f3= -1;

this can be implemented as

(67) u -(2 + a)yl + Y2 + w.

Returning to the original perturbed system,

21 --(a + e)x + u,

utilize (66) and (67) to find the transfer function

(s)/2(s)- --s(s / )/[(s / 1)2

With 22(s) x2(0+)/s, clearly z(t) --, 0 as --, oe for all sufficiently small
To summarize, parametric insensitivity is achieved by additional integrators,

associated with an observer for suitably chosen fictitious external disturbances.

Appendix" on decomposability relatiye to a given subspaee. 2 We assume
that subspaces N’,-c are given, with A-c - and AN N ,Y-. By
restricting A to , we can and do assume that -Let J :’ --. be the natural injection, e the identity on N, and A1 AIN.
It is a standard fact that decomposes 2( relative to A if and only if there exists
a map Q:Y" ---, such that

(A.1) QJ 1,

(A.2) QA AQ.

While no originality is claimed for the following discussion, it seems not to be explicit in most

textbooks on linear algebra.
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Indeed, if (A.1) and (A.2) hold, set 5 Ker Q. Then if x e f, x JQx + (1
-JQ)x; since Q(1 JQ)x 0, we have x e ? + 5, so that + 5 f. Also,
xefqS implies x= lax=QJx=0, hence N=0. Finally, Qx=O
implies QAx AQx 0,soA . Conversely if @ f withA ,
let Q be the natural projection on N along .

Now let N f, where is an arbitrary complement of N in f.
In a compatible basis, A and J have matrices

(A.3) A j

A2
By (A.3), the relations (A.1) and (A.2) are equivalent to

and

(A.4) AQ2 QzA2 A3 O.

Thus to check whether decomposes f, it is enough to verify whether the linear
matrix equation (A.4) has a solution Qz, a computational problem which in
principle is straightforward.

Of greater theoretical interest is the following result, which can be inferred
from [6, p. 199, Theorem 13] together with [7, p. 97, Ex. 6].

PROPOSITION. decomposes f if and only if the elementary divisors of AI,
together with those of the induced map A in f/, give all the elementary divisors

of A.
In (A.3), A is the matrix ofAI and A2 that of A. The proposition thus solves

the existence problem for (A.4). As a well-known special case, (A.4) has a solution
(which is even unique) if the spectra of A and A2 are disjoint.

Aeowledgment. It is a pleasure to acknowledge stimulating discussions
with E. J. Davison and S-H Wang, and with our graduate students, O. A. Sebakhy
and T. L. Bratton.

REFERENCES

[1] W. M. WONHAM, Track&g and regulation & linear multivar&ble systems, this Journal, 11 (1973),
pp. 424-437.

I2] S. P. BHATTACHARYYA AND J. I. PEARSON, Error systems and the servomechanismproblem, Princeton
Conference on Information and Systems Sciences, Princeton Univ., March, 1971.

[3] A. S. MORSE AND W. M. WONHAM, Decoupling and pole assignment by dynamic compensation,
this Journal, 8 (1970), pp. 317-337.

[4] --, Decoupling and pole assignment in linear multivariable systems: a geometric approach,
this Journal, 8 (1970), pp. 1-18.

[5] S. P. BHATTACHARYYA, J. I. PEARSON AND W. M. WONHAM, On zeroing the output of a linear
system, Information and Control, 20 (1972), pp. 135-142.

[6] F. R. GANTMACHER, The Theory of Matrices, vol. l, Chelsea, New York, 1959.
[7] N. JACOBSON, Lectures in Abstract Algebra, vol. 2: Linear Algebra, Van Nostrand, Princeton, N.J.,

1953.



SIAM J. CONTROL

Vol. 12, No. 1, February 1974

FINDING THE POINT OF A POLYHEDRON CLOSEST TO THE
ORIGIN*

B. F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

Abstract. An algorithm is given for finding the point of a convex polyhedron in an n-dimensional
Euclidean space which is closest to the origin. It is assumed that the convex polyhedron is defined as

the convex hull of a given finite set of points. This problem arises when one wishes to determine the
direction of steepest descent for certain minimax problems.

1. Let a finite set ofpoints H {zi}= be given in an n-dimensional Euclidean
space E,. We denote by L the convex hull of the points zi"

Obviously, L is a bounded closed convex set. We shall denote by z* the point of
L which is closest to the origin

(z*, z*) min (z, z).
eL

Our goal is to describe a new method of successive approximations for find-
ing the point z*.. It is not difficult to show that the point z* exists and is unique. Moreover,
the following inequality holds for any z e L (see, e.g., [1])"

(1) (z, z*) __> (z*, z*).

We set

Since

6(z) (z, z) rain (z, z).
i[l:s]

(2) (v, z) _>_ min (zi, z)
ie[l:s]

for any v, z e L, we have 6(z) >= 0 if z L.
The following lemma also follows immediately from (1) and (2).
LEMMa 1. The inequality

(3) []z z*[I -< min {x/-, [[z[[}
holds for any z L.

COROLLARY 1. If a sequence of points /)k L, k 0, 1, 2,..., is such that

((Uk) O, then
k--*

/)k Z*.
k--

Originally published in Vestnik Leningrad Univ., 19 (1971), pp. 38-45. Submitted December 30,
1969. This translation into English has been prepared by K. Makowski.
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COROLLARY 2. If a sequence of points /)k ff L, k 0, 1, 2,..., is such that
O, thenVk+ <= [IV and if there exists a subsequence {Vkj} for which 6(Vkj

j-o
V Z*.

k-

The following theorem holds.
THEOREM 1. For a point 5 L to be the point ofL closest to the origin, it is neces-

sary and sufficient that 6(5) O.
Proof The sufficiency follows from (3). The necessity. Let 5 z*. Then, first,

6(z*) >= O. On the other hand, we have by virtue of (1), (zi, z*) >_ (z*, z*) for any
e I1 :s], because z H c L. Hence, miniE:](zi, z*) >__ (z*, z*) or, which is the

same, 6(z*) <__ O. Therefore, 6(z*) 0. The theorem has been proved.
3. We denote by E the set of vectors A of the form

We set

(4)
z(A) oizi

i=1

A(A) max (zi, z(A)) min (zi, z(A)).
{ilai O} i[ :s]

We denote by i’ i’(A) a subscript at which the maximum in the right-hand side
of (4) is attained (if there are several such subscripts, then we take any one of
them). Thus, % > 0 and (zi,, z(A)) max/il,,> o (zi, z(A)).

LEMMA 2. The inequalities 0i,A(A) =< 6(v) <_ A(A) holdfor any vector v z(A),
AGE.

Proof We note that

(v, v) oi(zi, z(A)) <= max (zi, z(A)).
i= {ilai O}

Hence, the inequality 6(v) < A(A) follows. We denote by zi,,, i" i"(A), the point
of the set H for which

In this case

(zi,,, z(A)) min (zi, z(A)).
i[ :s]

We set {1, s} G ’", where

A(A) (zi, zi,,

i",i for =/= t,

i 0 for i’,

, + %, for i".

Obviously,

(6) z(A)-- z(A) At- (Zi,(Zi,,- Zi,

Since z(A) L, we have by virtue of (2)

(7) (z(A), z(A)) >= min (z, z(A)).
i[l:s]
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Taking into account (7), (6), and (5), we obtain 3(z(A)) _>_ oi,A(A). The lemma has
been proved.

THEOREM 2. For a point v z(A), A e E, to be the point of L closest to the
origin, it is necessary and sufficient that A(A) 0.

The proof follows in an obvious way from Lemma 2 and Theorem 1.

4. We shall now describe the method of successive approximations for find-
ing the point z*. We choose a vector Ao e E in an arbitrary way, and we set

Vo z(Ao). Assume that the kth approximation vk L’vk z(A), A
-(), )) -," has already been found. We describe the construction of

Uk+
First of all, we find vectors zi and zig of H such that

(zi,, vk) max

(zi,, v) min (zi, z(A)).
ie[ :s]

In this case,

(8) A de----- A(A) (zi Zig, v).

We consider the interval

(9) bk(t) v + tOi (Zig O<t<l.

Let t with 0 __< t =< 1 bedetermined by the relation

(v(tk), v(t)) min (v(t), v(t)).
O_<t<l

Zi,, k/l
k

!
/

FIG.

We set vk+l v(t) (see Fig. 1). It is not difficult to verify that Vk+ z(A+ 1),
where

Ak+l (O(lk+ 1) k+ 1))(
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) for/ i,i,

(zlk+ 1) al,kk) tkIk,) for i= i,,

Ik) tkl! for/

For the sake of simplicity, we shall subsequently make use of the following
notation" k , Zk’ Zi, k

Continuing the process described, we obtain the sequence of points k L,
k 0, 1, 2, ..., with

(10)

LEMMA 3. The following limit relation holds"

(11) lira Ak 0.
k

Proo First, we note that by virtue of (8) and (9),
2 )2(12) (Vk(t), Vk(t)) (k, k)- 2tkAk (klk Zk

Assume that the assertion ofthe lemma is false. Then there exists a subsequence
(k for which Ak e 0. By virtue of (12) we have, for all 0, 1] and
uniformly with respect to k,

(k(t), k(t)) (k, k)- 2re td2,

where d max,p:l [ -p 0. Hence, it follows that the following in-
equality holds for to min (e/d, 1 (obviously, 0 to 1)"

Taking into account that, by definition, (Vk , Vk ) (Vk(to), k(to)), we obtain

uniformly with respect to k.
The number of such reductions in the monotonically nonincreasing sequence

(k, k) is infinite, which contradicts the fact that all the (Vk, Vk) are nonnegative.
The lemma has been proved.

LEMMA 4. The limit relation

(13) lim A 0
k--*

holds.
Proof Assume the contrary" limk_ Ak A’ > 0. Then we have

(14) Ak > A’/2

for numbers k _> ko sufficiently large. Taking into account (11), we conclude that

(15)
k-.’ 0.

We also note that, by virtue of(12) and (14),

(16) vk/ < vk
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for k => k0. We denote by tk the point at which (Vk(t), Vk(t)) attains its global mini-
mum. Obviously (see (12)),

Ak[k 2’ z
By virtue of (14) and (15), [k-_, . Hence, it follows that for numbers k => k

=> ko sufficiently large, the minimum of (Vk(t), Vk(t)) on the interval 0 =< < is
attained for tk 1. Therefore, for these k,

(17) Vk+ Vk + ’(k- Z’).

However, the sequence of points Vkl, Vkl +1, Vkl +2, "’", which are connected by
relation (17), can contain only a finite number of mutually distinct elements,
which contradicts (16). The lemma has been proved.

THEOREM 3. The sequence {Vk} constructed above converges to the point z*.
The proof follows from Lemmas 4 and 2 and from Corollary 2 to Lemma

in an obvious way.
Remark. If it turns out that, for some k, Ak 0, i.e., that Vk Z*, then Vk+

Z* for all j 1, 2, This fact follows from (12).
5. We note certain peculiarities of the method of successive approximations

described in the preceding section. We introduce the hyperplane

6 {zl(z, z*) (z*, z*)}.
TnZORZM 4. If z* :/: O, i.e., if the origin does not belong to L, then, beginning

with some number, vl, G.
Proof We note that, by virtue of Theorem 1,

min (zi, z*) (z*, z*).
i[l:s]

We set

/1 {z,t-/l,,z*)= z*,*)} t =/-/\/-/ {z,/-/I,,z*) > I*,z*)}.
If H2 is an empty set, then vk G for all k 0, 1, 2, Therefore, we henceforth
assume that H2 is a nonempty set. We introduce the notation

r min (zi, z*) (z*, z*) > O.
zi-tt2

Since v z* we have

max I(zi, v)- (zi, z*)l < r/4
i[l:s]

for numbers k => ko sufficiently large. It is not difficult to show that the following
relations hold for the same numbers k > k0

(zi, v) <= (z*, z*) + z/4

(z, v) >__ (z*, z*) + if ziGH2

This remark is due to M. S. Al’tmark.
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Hence, it follows that

(18) min (zi, Vk) min (zi,
i[l:s] ziHx

Further, if a point z H2 enters the representation of vk, k >= ko, with a nonzero
coefficient, then

(19) Ak _>- r/2,

where

(20) vk+x < vll,

Let

Z <%+ Z <%.
{ilziH a} {ilziH2}

By virtue of the definitions of H1 and r,

z*)= e d
{ilzieHz} {ilzieH2}

Since the left-hand side of this inequality tends to zero as k ,
0E k)

k
{ilziH2}

We choose a large kl k0 such that the following inequality holds for k k"

(21) Z Ik) <
{ilziH2} 2d2’

where d max,n.zz z- zj > 0. We denote by t the point at which
(v(t), v(t)) attains its global minimum. If z H2 enters the representation of v,
k => k, with a nonzero coefficient, then we obtain by virtue of (19) and (21)

Hence, it follows that

(22)

m q7
>

0Ik)) d2
>_ 1.2 2 (Z{ilzielt2}Ok k- Zk

v+ v + ,(- z0.

We assume that points z H2 enter the representations of all vectors

(23) Vkl Vkx + 1, l)kl + 2,

with nonzero coefficients. By virtue of (22), sequence (23) contains only a finite
number of mutually distinct elements. However, this contradicts (20). Therefore,
there exists a point v, >= kl, which has the following representation"

vk L -{k)z_" 0{) > 0 Z 4’ 1Oi i,

By virtue of (18), all the vk with k >= k have similar representations. In particu-
lar, we have by definition of H for k => k, that (vk, z*) (z*, z*), i.e., v 6 G.
The theorem has been proved.
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THEOREM 5. The limit relation

lim A 0
ko

holds.
Proof. If z* 0, then the assertion of the theorem follows from the definition

of Ak and from the fact that /)kll
k_

0. Therefore, we assume that z* 0. By
virtue of Theorem 4, we have for k >__ k,

Ak_--< max (zi, vk) min (zi, vk).
{ilzieH1} {ilzieH}

According to the definition of H,, the right-hand side of this inequality tends to
zero as k co. Therefore, A T0 also, since A => 0. The theorem has been
proved,

k-

6. We set

k--" Ak/ Vkl 2 k 0 1 2...

If l)k O, then we set by definition A .
THEOREM 6. For the origin to belong to the set L, it is necessary and sufficient

that the following inequality hold for all k 0, 1, 2,...

(24) Ak _>-- 1.

Proo The necessity. We have z* 0. Taking into account that vk L, we
obtain on the basis of Lemmas 1 and 2

Ak 6(Vk) > 1Ak IlVkll2 liVkll2
The sufficiency. Assume that z*# 0. Then [k <= Ak/llz* 2. By virtue of

Theorem 5, we obtain Ak 0, which contradicts (24). The theorem has been
proved.

Thus, if z* 0, then tlVkl k’ 0 and, for all k 0, 1, 2, ..., the inequality
Ak > 1 holds. If z* 0, then Ilvkll > [Iz*ll and Ak 0.

If the inequality A < 1 holds for some k, then, by virtue of Theorem 6, the
origin does not belong to the set L. Moreover, it is not difficult to prove that, in
this case, the hyperplane (Vk, Z) (Vk, k) 0 strictly separates the origin from L.

7. We remind the reader that U Z(Ak) Ak e E. We set I {ilk) > 0} and
introduce the set

Bk= (z= zi + iIk i(Z-- Z)l(--’)}
iio

Here, io is an arbitrary subscript of Ik. We denote by k the vector of Bk with the
smallest norm" k[I minzB z We note that the point keBk is unique,
although its representation in the form

Zio + i(zi- Zio)
ielk
iio

may not be unique.
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It is not difficult to show that the numbers (l constitute the solution of the
following linear system"

(25) Zio -It- Z Oi(Zi- Z/o)’ Zj- Zio O, j e I, j o.
ielk
:/:

THEOREM 7. There exists an infinite subsequence of vectors {kj} such that
Vkj~ Z* for all

Proof We shall assume that z* - 0 (if z* 0, then the proof is only simplified).
First, we separate a subsequence {Vk} such that

(i) i’(kJ) , [l’s], in this case,
j-o

,z* z;l)kJ J""

(ii) Vk G (see Theorem 4).
We set I* {ilz’ > 0}. Obviously, we have for kj sufficiently large

(26) I* Ik.
Henceforth, we consider only such kj. We denote by L* the convex hull of the
points zi, e I*. Obviously, z*e L*. We denote by Lkj the convex hull of the
points zi, lk. By virtue of (ii), (26), and of the definition of the set Bk we have

L* c Lk c Bk G.

Further, z* minz z _-< minznk z. Since z* eL*, z* Bk. Therefore,
[z* min:Bk. I[zll.

Taking into account that the point of Bk with the smallest norm is unique,
we obtain k Z*. The theorem has been proved.

On the basis of this theorem, one can assert that finding z* reduces to solving
a finite number of systems of linear equations of form (25). We note that it is
purposeful to solve these systems only for the k for which either IlVk or Ak is
sufficiently small.

Regarding other methods of finding the point of a polyhedron which is closest
to the origin, see [2]-[4].
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EXISTENCE AND LOWER CLOSURE THEOREMS
FOR ABSTRACT CONTROL PROBLEMS*

LEONARD D. BERKOVITZ"

Abstract. A general control problem that includes, among others, the distributed control problem
and the optimal control problem for systems governed by ordinary differential equations is considered.
Two lower closure theorems and an existence theorem with hypotheses corresponding to those of
the lower closure theorems are proved. The first lower closure theorem was first proved by Cesari.
The present proof is different and simpler. The second lower closure theorem dispenses with Cesari’s
property (Q), but requires a generalized Lipschitz condition to hold.

1. Introduction. In [7] L. Cesari formulated a general control problem and
proved lower closure theorems and existence theorems for this problem. Cesari’s
earlier results [4] on the existence of optimal controls in distributed control
problems are special cases of these theorems, as are certain semicontinuity and
existence theorems of Morrey [15] and Fichera [10]. Existence theorems for
many other control problems and problems in the calculus of variations can
also be obtained as special cases of these theorems. For details see 9 of 7].

In 5 of this paper we shall present a different and simpler proof of Cesari’s
results. Although our results will be slightly more general than Cesari’s in one
small point, the principal contribution of this work is in the simplification of the
proof. Our method is also applicable to problems in which Cesari’s property
(Q) is not assumed. In 6 we prove a lower closure theorem in which property
(Q) is replaced by a generalized Lipschitz condition. The usual convexity assump-
tions, of course, are retained. The methods and results presented in this paper were
developed in [1] and [2] for control problems governed by systems of ordinary
differential equations.

2. Notation and formulation of problem. We shall use single letters to denote
vectors, we shall use subscripts to distinguish vectors, and we shall use superscripts
to denote components of vectors. The letter will denote a vector (t v)
in real Euclidean space R, v __> 1, the letter x will denote a vector (x 1, x") in
real Euclidean space R", n >= 1, and the letter w a vector in R", m _>_ 1. The Euclidean
norm of a vector x will be denoted by ]x]. The inner product of two vectors x
and x2 will be written as (x, x2). Thus ix] (x, x)1/2.

Letf "(t, x, w) f(t, x, w)bea real-valued function defined on R
and let f: (t, x, w) f(t, x, w) be a vector-valued function defined on R
with range in Rr. Let G be a bounded region of the t-space R, and let X be a region
of the x-space R". Let ? denote the Cartesian product G x , where G denotes
the closure of G and . denotes the closure of X. Let be a mapping that assigns to
each point (t, x) in a subset fl(t, x) of the w-space
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As usual, let Lv,(G), Pi >- 1, denote the Banach space of real-valued measurable
functions z defined on G such that G Izlvi dt < oe, and let

z ]zi] p’ d Pi > 1
Pi

Let and denote the following Banach spaces:

-[ Lq,(G), fi Lv,(G) qi, P >= 1.
i=1 i=1

The norm of an element z (z 1, ..., zn) in is given by

Z Z 2
Pi

i=1

A similar formula gives the norm of an element y (yl, ---, y) in J.
Let be a Banach space and let the norm of an element b in be denoted

by [[b][. Let M be a mapping from to and let N be a mapping from to .
Thus the image under N ofan element b in - is an element Nb y (y, ..., y)
in , where each yg is in Lq(G). Similarly the image under M of an element b
in is an element Mb z (zX, zn) in e, where each z is in Lv(G). Note
that N and M need not be linear.

Let /g denote the set of all measurable functions u defined on G with range
in Rm. Thus if u #, then u (u , ..., u’), u real-valued and measurable in G.

To motivate the formulation of the abstract optimal control problem to be
given below we recall the formulation of the optimal control problem for systems
governed by ordinary differential equations and the formulation of the optimal
control problem for distributed parameter systems.

Let be a scalar (v 1) and let G= (a, b). One of the important optimal
control problems for systems governed by ordinary differential equations can be
stated somewhat imprecisely as follows. Minimize

f(t, qb(t), u(t)) dt

subject to qb’(t) f(t, b(t), u(t)) and u(t) f(t, b(t)). For the problem to make sense,
the functions b must be absolutely continuous. Since v 1, the functions b that
are under consideration can be considered to be elements of the Sobolev space
HI(G). Let HI(G). For any set 2,, let [2,0] denote the k-fold Cartesian
product of 2, with itself. Since the functions b’ are in [L(G)], the differentiation
operator, which we henceforth write as N, is a mapping from - into [LI(G)n.
The function b, in addition to being an element of, is also an element of [L (G)].
Let M denote the mapping that imbeds HI(G)in [L(G)]; thus (Md)(t) b(t),
with b in H(G) and Mb e [LI(G)n. The control problem can now be stated.
Minimize

f(t, (Mb)(t), u(t)) dt

subject to (N4))(t) f(t, (Mb)(t), u(t)) and u(t) f(t, (Mqb)(t)).
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The use of Sobolev spaces to formulate the optimal control problem for
systems governed by ordinary differential equations may seem somewhat preten-
tious. For distributed parameter systems (v > 1), however, Sobolev spaces must
be introduced. As we shall see, the Sobolev space formulation of the ordinary
control problem carries over to the distributed parameter systems.

Let a (ai,, ..., ai,) denote a generic multi-index and let I1 . Let
iD ll/3x’" X

One of the optimal control problems for distributed parameter systems is the
following. Minimize

f(t, (D)(t), (t), u(t)) dt

subject to

(D)(t) f(t, (Db)(t), b(t), u(t))

and u(t) ff2(t, b(t)), where a ranges over multi-indices with la[ s and fl ranges
over multi-indices with I/1 < s. From experience with partial differential equations
and multidimensional variational problems without side conditions (e.g., mini-
mize G f(t, (t), (Vdp)(t)) dt we know that to establish a reasonably general exis-
tence theorem we must take the functions q to be elements of an appropriate
Sobolev space. Since the highest order derivative appearing is s, we take b to be in
Hp(G) for some p _> 1. Let o H(G). We can write N D. The differential
operator D maps b into Dtb, an element of [Lp(G)], for appropriate 7. The
function b itself also belongs to [Lp(G)]". Therefore, we may define a mapping M
from to [Lp(G)]+" as follows" m’q (DaqS, b). In this notation the optimal
control problem for distributed parameter systems becomes" Minimize

f(t, (Mck)(t), u(t)) dt

subject to (Ndp)(t) f(t, (Mdp)(t), u(t)) and u(t) O(t, (Mck)(t)). Formally, the
distributed parameter problem now has the same format- as the problem in which
the state is governed by a system of ordinary differential equations.

The motivation for the following definition and problem formulation should
now be clear.

DEFINITION 2.1. An element b in is said to be an admissible trajectory if
there is a function u in /{ such that the following hold:

(i) (t, (Mdp)(t)) a.e. in G,

(2.1)
(ii) (Ndp)(t) f(t, (Mq)(t), u(t)) a.e. in G,

(iii) u(t) (t, (Mck)(t)) a.e. in G,

(iv) the mapping - f(t, (Mck)(t), u(t)) is in LI(G).

The function u is said to be an admissible control and the pair (b, u) is said to be an
admissible pair. The set of all admissible pairs will be denoted by

The optimal control problem is to minimize the functional

(2.2) J(4), u) fG f(t, (Mck)(t), u(t)) dt
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in a given class 0 c_ of admissible pairs. That is, we are to find a (4*, u*) in
S’o such that J(qS*, u*) __< J(b, u) for all (b, u) in Se’o. Such a pair (4*, u*) is called
an optimal pair. The element b* is called an optimal trajectory; the element u* is
called an optimal control.

We have already shown how a distributed control problem and a control
problem governed by ordinary differential equations can be obtained as special
cases of the general problem just formulated. To obtain the classical multi-
dimensional variational problem we take - HI(G), N V, f-- w, and take
M to be the identity map that assigns to b in HI(G) the same function considered
as an element in ILl(G)]". For other problems covered by the general formulation,
the reader is again referred to 9 of [7].

3. Outline of proof of existence. The proof of the existence of an optimal pair
in a class o - proceeds in general as follows.

Let

(3.1) /t inf {J(b, u):(b, u) o}.
If k + , there is nothing to prove. If # < , then there exists a minimizing
sequence such that J(bk, uk) /. Conditions are then placed on the problem to
ensure that/ > -. Additional conditions are placed on the problem to ensure
that the sequence of trajectories {qSk} is conditionally compact in some sense.
From experience in less abstract problems we know that conditional weak com-
pactness of the minimizing sequence will suffice.

Having guaranteed the weak compactness of {bk} we select a subsequence,
again labeled {qSk}, that converges weakly to an element qS* in . Any boundary
conditions or other conditions on the trajectories 4 that are used to define the
subclass s0 must be such that if bk

--, b* weakly, then b* must satisfy these
conditions.

At this point a "lower closure" theorem is used. This theorem states that,
under appropriate hypotheses, if b’ b weakly in .’, then there is a u* in /{

such that (4*, u*) is admissible and

(3.2) J(4*, u*) <= lim inf J(k, Uk)"

Ifwe can also show that (4)*, u*) o, then J(b*, u*) => #. On the other hand for the
minimizing sequence, and hence for the subsequence with weakly convergent
trajectories, we have

lim inf J(dpk, Uk) lira J(d?k, Uk) #.

Combining this with (3.2) and J(qS*, u*) > # gives J(b*, u*) =/. Hence (qS*, u*)
is an optimal pair.

The difficult step in the existence proof is the proof of the lower closure
theorem. The next three sections will be devoted to two lower closure theorems.
We shall return to the existence question in 7.

4. Assumptions. In this section we discuss a set of assumptions that will
be in force for all of our theorems. For ease of reference we shall label this set,
Assumption A.
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One of the statements in A requires the introduction of a function Q + that
assigns to each point in G x . a subset Q+(t,x) of Rr+ as follows"

Q+(t,x) {(q, )’r/>=f(t,x,w), f(t,x,w), wef(t,x)},
where r/is a scalar and is an r-vector.

Assumption A. (i) If bk} is a sequence of elements in - that converges weakly
to an element b in , then Nq5 Nb weakly in and Mbk Mq5 strongly in
e. (ii) For each (t, x) in the set

{(t, x, w):(t, x) e , w e f(t, x)}
is closed. (iii) For each (t, x) in the set Q + (t, x) is closed and convex. (iv) There
exists a real-valued function in LI(G) such that if(t) __> 0 on G, and a constant
r-vector b such that

f(t,x, w) (b,f(t,x, w)) >= -O(t)
for all (t, x, w) in 9.

Assumption A(i) is fulfilled in many important problems. In the control
problem governed by ordinary differential equations, v 1 and G [a,b].
Admissible trajectories are in the Sobolev space HI(), which we take to be -in the present case. The weak convergence of a sequence {bk} in HI( implies the
convergence in [LI(()] of {bk} {Mbk} and the weak convergence in [L(r)]"
of the sequence {Nbk} {b,}. The weak convergence in L of the {b,} implies
the equiabsolute continuity of the {bk}. Since v 1 and [a, b], we even have
the stronger result that the sequence bk} is uniformly convergent (i.e., converges in
C[a, hi). Conversely, a uniformly convergent sequence {bk} that is equiabsolutely
continuous converges weakly in - HI().

In distributed control problems (v > 1), the functions .b are in a Sobolev
space Hp(G) or in the Cartesian product of Sobolev spaces Hs)’,(G) (see [5], [7]).
It is a standard result [16, Thin. 3.4.4, p. 75] that if b, --* b weakly in Hp(G), then
b,-, q5 strongly in H,-(G), provided the boundary of G is sufficiently regular.
Thus, since N is a differential operator of order s and M is defined by the relation

mb (Daub, b) with Jill < s, Assumption is fulfilled, provided we assume that
the boundary of G is sufficiently regular.

Assumption A(ii) is equivalent to the assumption that f is upper semi-
continuous on in the sense of Kuratowski [13, pp. 32-34]. Assumption A(iii)
was introduced by Cesari in [3].

In [7] Cesari assumes that for every point t’ in G there is a neighborhood
N(t’) of t’, a nonnegative function in La(N(t’)) and a vector b such that the in-
equality in Assumption A(iv) holds for all in N(t’), all x in ., and w e f(t, x).
Note that and b depend on the neighborhood. It is easy to see that as a con-
sequence of the compactness of G it suffices to consider Assumption A(iv) as
stated here.

5. First lower closure theorem. One of the assumptions in the first lower
closure theorem involves a slight generalization of Cesari’s property (Q). Criteria
for property (Q) and a discussion of the relationship of property (Q) to various
growth conditions and other assumptions used in the calculus of variations and
in optimal control theory are given by Cesari in 6 of [8].
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Let 6 > 0, let (to, Xo) and let Nx(to, Xo, 6) denote the set of points (to, x)
in such that Ix Xo[ < 6. Let

Q+(Nx(to,Xo, 6)) [A{Q+(to,X):(to,X)6 Nx(to,Xo, 6)}.
For a set A let cl co A denote the closure of the convex hull of A. The mapping Q +

is said to satisfy the weak Cesari property (Q*) at (to, x0) if

Q +(to, Xo) f) cl co Q +(Nx(to, Xo, 6)).
6>0

It is readily verified that if property (Q) holds at a point then so does property
(Q*). Note that if the sets Q +(t, x) are independent of x, then the weak property
(Q*) holds.

THEOREM 1. Let Assumption A bald. Let thefunction fo be lower semicontinuous
and let thefunctionfbe continuous. Let the mapping Q+ satisfy property (Q*)at all
points of with the possible exception ofa set ofpoints whose t-coordinates lie in a
set ofmeasure zero in G. Let {(, u)} be a sequence ofadmissible pairs such that the
sequences of trajectories {q} converges weakly in to an element c. Let
lim infJ(4), u)< + oo. Then there exists a function u in g such that (ok, u) is
admissible and

(5.1) J(qS, u) =< lira inf J(4), u).

This theorem, with the assumption that property (Q) holds instead of (Q*),
is due to Cesari [5], [7].

Remark. Theorem remains true if we replace the assumptions on fo and

f by the following weaker assumption.
Assumption B. For each in G, the function F (fo, f) is a continuous func-

tion of (x, w) on R"+m, and for each (x, w) in R"+m the function F is measurable
with respect to in G.

At the appropriate place in the proof of Theorem 1, we shall indicate the
modifications that must be made to accommodate the weakened hypotheses.

Our proof of Theorem is different from Cesari’s and will exploit Mazur’s
theorem which states that a strongly closed convex set in a Banach space is weakly
closed. Thus, our proof essentially exploits the Hahn-Banach theorem. In the
proof we shall select subsequences of various sequences. Unless stated otherwise,
we shall relabel the subsequence with the labeling of the original sequence.

Let {q} and 4) be as in the hypotheses of the theorem. Let

Yk Nk, y Nck,

z M, z Mq.

For the value of y at we write y(t) thus y(t) (Nck)(t). Similar notation will
hold for y, z and z.

We break the proof up into several steps.
Step 1. Let

(5.2) 7 lim inf J(qt,, ut,).

Then 7 is finite.
Since by hypothesis < + oo, we need only show that , > oo.



ABSTRACT CONTROL PROBLEMS 33

From Assumption A(iv) and (2.1) (ii) we get that for a.e. in G,

f(t, Zk(t), Uk(t)) >= b(t) + (b, f(t, zk(t), uk(t)))

(t) + (b, y(t)).

From A(i) and the hypothesis that q5k b weakly, we get that Yk converges weakly
to y Ntk in . Hence IlYkll is bounded, say by a constant B > 0. From this and
from the inequality

(b, yk(t)) dt <= CllY

where C is an appropriate constant, it follows that the integrals f(b, Yk(t))dt
are bounded. Integration of (5.3) now shows that the sequence J(k, gig) is bounded
below. Hence 3’ > -o.

Before presenting the rest of the proof we outline the idea of the proof. Since

Yk Y weakly in , there is a sequence {Oj} of convex combinations of the Yk
that converges strongly to y in . Hence there is a subsequence of the {Oj} that
converges a.e. to y. We then use the same convex combinations of the functions
t--f(t, Yk(t),uk(t)) as were used to define the Oj to define a sequence {2j}. We
then show that the function 2- lim inf2j is integrable and that f2dt <= 7.
Property (Q*) enables us to also show that for a.e. in G, (2(0, y(t)) Q + (t, z(t)).
Thus there is a function v’G--. R" such that y(t)= f(t,z(t),v(t)) and 2(0
>= f(t,z(t), v(t)). We then use the McShane-Warfield extension of Filippov’s
lemma to show that we can replace v by a measurable function u. Thus, (th, u) is
admissible and 2(0 _-> f(t, z(t), u(t)). Integration of the last inequality and the
previously established relation a2 dt _< 7 then give the theorem.

Step 2. There exists a real-valued function 2 that is integrable on G such that

(5.4) f 2 dt <_ 7

and such that (2(t), y(t)) e Q + (t, z(t)) a.e. in G.
We first select a subsequence {(Ok, Uk)} such that

(5.5) lim J(dPk, Uk) 7"

For this subsequence we still have bk 4 weakly in -. Therefore, {Zk} {M4)k}
converges strongly in . From the definition of in 2, it follows that the se-
quences of components {zik},i 1, ..., n, converge in Lpi(G to zi= (Mdp)i.
Hence there is a subsequence of {(qk, Uk)} such that Zk(t z(t)a.e, in G. We now
select this subsequence.

Since we still have q5 q5 weakly in , we have that Yk Y weakly in
Therefore, from Mazur’s theorem (e.g., [11, Cor., Thm. 2.9.3, p. 36]) we obtain the
following statement. For each integer j there exists an integer n;, a set of integers
i= 1,..., k, where k k(j) depends on j, and a set of numbers i;,"", kj
satisfying

k

(5.6) eij-->0, i- 1,..-,k, ij-- 1,
i=1
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such that nj+ > nj + k(j) and

(5.7) Y ijY,j+i
i=1

Let

i=1

From (2.1) (ii) we have that for a.e. in G,

(5.s) O(t) ,j(, z,+(t), u,+(t)).
i=1

In terms of Oj, (5.7) says that O - y in the norm topology of ?/. From the
definition of in 2, it follows that each component , 1, r, of Oj con-
verges to yi in Lp,(G). Hence there exists a subsequence {Oj} such that

(5.9) gj(t) -. y(t) a.e. in G.

We note for future reference that since G is bounded, this subsequence also con-
verges to y in

We now suppose that (5.8) is the subsequence for which (5.9) holds. Cor-
responding to (5.8) we define a sequence {2j} as follows"

(5.10) )oj(t) oijf(t, z,j+i(t), u,+i(t)),
i=1

where for each j the numbers cij, the indices nj+.i and the functions z,+i and

u,+i are as in (5.8).
Define

(5.11) 2(t) lim inf 2j(t).

From (5.8), (5.10), Assumption A(iv) and (5.6) we get

(t) (b, (t)), aij(f(t,z,+i(t), u,j+i(t)) (b,f(t,z,+i(t), u,+i(t))})
i=1

i=1

Hence we may apply Fatou’s lemma and (5.9) and (5.11) to obtain

(5.12)

and

f; (2 (b, y))dt

(5.13) 2(t) >_ -O(t) + (b, y(t)) a.e.
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We noted in the sentence after (5.9) that Oj y in ILl(G)]". From this observation
and from (5.12) we therefore get

(5.14) f 2 dt <__ lim inf f 2 dt.

But from (5.10), (5.5) and (5.6) we get

lim inf 2jdt lim inf i f(t,z,j+i(t),u,j+i(t))dt
i=1

lira inf ijJ(qS,j+i u,.+i) 7.
i=1

If we combine this result with (5.14)and note (5.13) which shows that 2 is bounded
from below by an integrable function, we see that 2 is integrable and that (5.4)
holds. Note that 2 must be finite almost everywhere in G.

We next show that (2(t), y(t)) Q + (t, z(t)). Let G denote the set of points in G
at which 2(t) is finite, O(t) --, y(t), zk(t - z(t), and at which property (Q*) holds.
Then meas G1 meas G. For each integer k define a set Ek as follows:

E {t G:u(t)f(t,z(t))}. Then by (2.1)(iii), meas E 0. Let E denote the
union of the sets Ek and let G 2 denote the points in G that are not in E. Let
G’ G1 G2. Clearly, meas G’ meas G.

Let be a point in G’. There exists a subsequence {2j(t)}, which depends on t,
such that 2j(t) --, 2(t). For the corresponding subsequence Oj(t) we have, by (5.9),
Oj(t) y(t). Since zk(t) ---, z(t) it follows that for each 6 > 0 there exists an integer
k0 depending on 6 such that if k > ko then [z(t) z(t)[ < 6. Hence for k > k0,
(t, z(t)) Nx(t, z(t),6). Therefore, for j sufficiently large,

where y,s+i(t f(t, z,j+i(t), u,j+i(t)) and y,+i(t) f(t, z,+,(t), u,+i(t)). There-
fore, by (5.8), (5.10) and (5.6),

(2i(t), ,j(t)) e co Q + (Nx(t, z(t), c5)),

where co A denotes the convex hull of A. Since 2j(t)-- 2(t) and @j(t) y(t), we
have

(2(t), y(t)) e el co Q + (Nx(t, z(t), c5)).

Since 6 > 0 is arbitrary, (2(t), y(t)) is in cl co Q+(Nx(t, z(t), 3)) for every 6 > 0,
and hence in the intersection of these sets. Therefore, by property (Q*), we get that
(2(t), y(t)) Q +(t, z(t)). Since was an arbitrary point in G’, the proof of Step 2 is
complete.

Step 3. There exists a measurable function u (ul,’", um) defined on G
such that for almost all in G :(i) y(t) f(t, z(t), u(t)); (ii) u(t) (t, z(t)); (iii)
2(t) >__ f(t, z(t), u(t)).

The existence of a function v satisfying the conclusion of Step 3 is a restate-
ment of (2(t), y(t)) Q+(t,z(t)). We show that there is a measurable function u
withthisproperty. Let T {t:(2(t),y(t))eQ+(t,z(t))},letZ R x R" x Rm x R
and let D {(t, x, w, q):(t, x, w) @, rl > f(t, x, w)}. The functions y and 2 are
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measurable. Clearly, T is measurable and Z is Hausdorff. Since by Assumption
A(ii), is closed, and since f0 is lower semicontinuous, the set D is closed and
hence can be written as the union of a countable number of compact sets. Let

:t--, (t, z(t), y(t),2(t)); thus is a measurable map from T to Z. Let
F :(t, x, w, rl) (t, x, f(t, x, w), rl). Then F is a continuous map from D to Z and
(T) = F(D). Thus, the hypotheses of the McShane-Warfield extension of

Filippov’s lemma (see [14]) are satisfied. Hence there exists a measurable mapping
p: T D, such that p:t (:(t), x(t), u(t), rl(t)) and such that F((t)) (I)(t). Hence,

(z(t), x(t), f(’r(t), x(t), u(t)), r/(t)) (t, z(t), y(t), 2(0)

for all in T. From this, Step 3 follows.
If we replace the continuity assumptions on F by Assumption B, then by a

well-known theorem ([19, Thm. 18.2, p. 142] or 18]) there exists for each e > 0
an open set E = G such that meas(E) < e and such that F is continuous on

(G-E) R" Rm. We proceed as above to obtain a measurbale u on
T- (E f’l T). Since e is arbitrary we obtain the desired result. For details see
[123 or [173.

Step 4. Completion of proof.
We first show that (b, u) is admissible, where u is the function obtained in

Step 3.
Statements (i) and (ii) of Step 3 assert that (b, u) satisfies (2.1)(ii) and (iii). For

almost all in G, z(t) lim z(t) lim (Mck)(t). Since G X is closed and
since tbr each k, (t, z(t)) for almost all in G, it follows that (t, z(t))
--(t,(Mc)(t)) , a.e. in (;. Thus (qS, u) satisfies (i) of (2.1). Since z and u are
measurable and fo is either lower semicontinuous or satisfies Assumption B, it
follows that the function yo defined by y(t)- f(t,z(t),u(t))is measurable.
From (iii) of Step 3 we see that yO is bounded above by an integrable function.
From Assumption A(iv) we have

y(t) >__ -(t) + (b, f(t, z(t), u(t))),

and so yO is bounded below by an integrable function. Hence yO is integrable and
(2.1)(iv) holds. Thus (q, u) is admissible.

From (iii) of Step 3, (5.4) and (5.2), we obtain (5.1) and thereby complete the
proof of Theorem 1.

6. Second lower closure theorem. Let p, 1,..., n, be as in the third
paragraph of 2. Let p min {pi’i 1, ..., n}. Since G is bounded, all com-
ponents of functions z Mb, where q5 is an element of , are in Lp. Moreover
any sequence {zk} that converges strongly in converges in Lp. If p > .1, let q be
defined by the relationship 1/p / 1/q ifp 1, let q + .

We next list a set of hypotheses about the data of the problem that will be in
effect for Theorem 2.

Assumption C. (i) The function F (f0, f) is continuous. (ii) The sets (t, x)
are independent of x" i.e., for a given in G, (t, x) (t, x’) for all x and x’ in X.
(iii) There exist a nondecreasing function p defined on 0, ) and a nonnegative
function H defined on G R such that the following hold. (a) lima_ o p(6) 0.
(b) There exists a 6o > 0 such that for 6 > 6o, p(6) < 6. (c) For all (t, x, w) and
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(t, x’, w) in ,
(6.1) IF(t, x, w) F(t, x’,

where K is a nonnegative constant.
Note that if F is uniformly continuous on 9, which occurs if is compact,

then (6.1) holds with H and p the modulus of continuity, suitably defined
for large values of 6. If F is Lipschitz in x, then (6.1) holds with p(6) 6, p and
H equal to the Lipschitz constant.

In the linear plant with quadratic criterion problem, we have

and

f(t, x, w)-- A(t)x + B(t)w

f(t,x, w)= (x, Q(t)x) + (x,P(t)w) + (w,R(t)w),

where the matrix functions A and B have entries in L2(G and the matrix functions
Q, P, R have entries that are bounded and measurable. The matrices Q(t) and
R(t) are also symmetric. It is easily verified that (6.1) holds in this problem.

THEOREM 2. Let Assumptions A and C hold. Let {((])k, Uk)} be a sequence of
admissible pairs such that the sequence of trajectories {tk converges weakly in
to an element dp. Let lim inf J(k, Ilk) < z). Let there exist a constant A such that
for all k

(6.2) Hkiiq < A,

where H(t) H(t, u(t)) and ]... ]lq denotes the Lq-norm, <= q <= o. Then there
exists a jimction u in such that (4), u) is admissible and (5.1) holds.

The special case in which v 1 and the control system is governed by or-
dinary differential equations was treated by us in [2]. In [2] we also gave an example
wherein Theorem 2 was applicable, while Theorem was not.

Note that if F is Lipschitz in x, or if is compact, then (6.2) always holds. In
the linear plant quadratic criterion problem, if all of the controls u lie in a ball in
[Lz(G)m, then (6.2) holds. Under suitable hypotheses on the matrices P, Q, R,
this will be true whenever {(q5k, uk)} is a minimizing sequence. One such set of
hypotheses is that P and Q are positive semidefinite on G and that R is continuous
and positive definite on G.

The proof of Theorem 2 proceeds just as the proof of Theorem does up to
and including the definition of 2j in (5.10). The argument in Step 2 following (5.10)
is different from that of Step 2 in Theorem 1. The reader is cautioned to keep in
mind the order in which various subsequences are chosen.

Define functions a and co corresponding to j and 2 as follows"

a2(t) ijf(t, z(t), u,j+ i(t)),
(6.3)

i=1

co;(t) if(t, z(t), u,j+ i(t)).
i=1

The functions a and co; are measurable. Let fs(t)= f(t,z(t),u(t)) and fs(t)
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f(t, z(t), u(t)). Then using (6.3), (5.8) and (6.1) we may write

[aj Jil dt < ij If.+i f.+,l dt
i=1

(6.4) --< i= % /(Iz,+(t) z(t)l)

{H,+i(t + Klz,+i(t z(t)lv-l} dt.

We next show that there exist subsequences such that

(6.5) aj(t) Oj(t) - O, toj(t) 2j(t) - 0 a.e.

We henceforth take the functions in (5.8), (5.10), and (6.3) to be the functions in
these subsequences.

< A for all k, it follows from H61der’s in-Let>0begiven. Since Hk q=

equality when q < and from the definition of I" when q , that there
exists an rl > 0 and <e such that for every measurable subset G’= G with
meas G’ < rl,

(6.6) , H dt < .
Since zk(t) z(t) almost everywhere in G, it follows from Egoroff’s theorem

that there is a measurable set G = G with meas G < rl such that z - .k uni-
formly on G2 G G. Since p(6) 0 as 6 0, it follows that for k sufficiently
large and all in Gz,

(6.7) /(Iz(t)- z(t)l) < e:,

where e is as in the preceding paragraph.
Let G3 {t’te G,[z(t) z(t)l -<_ 60} and let G {t’te G,[z(t) z(t)[

> 6o}, where 6o is as in Assumption C(iii)(b). Then by Assumption C(iii),

(6.8)
/(Iz,(t) z(t)l) =</(o) for e G3,

/(Iz,(t) z(t)l) < Iz(t) z(t)l forte G4.

Since G is the union of the sets G2, G3, G4 and these sets are pairwise disjoint, it
follows from (6.6)-(6.8), and the convergence of zk to z in Lv that for j sufficiently
large,

H.+ i(t)l(Iz.+ i(t) z(t)[) dt

(6.9)
<=e f H.+idt + p(CSo) fa H.j+idt + f;
-<-e{llH.+l}gmeas G) 1/p + fl(o)} +

H,+ ilz,j+ Z] dt

<= e[A(1 + (meas G) 1/p) + ]2(0)
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It also follows that for j sufficiently large,

f (Iz.+ zl"- dtZI)IZnj+

<= efG ’Zn+i-z[p-ldt+ "(6)fG ’Znj+i-zlP-ldt

(6.10) + f [z,/i zl p dt

__< {#’-1 meas (G) + p(6o)6)-1} + z,+ z p)P

<= e[ep- meas (a) + p(6o)6- + 1],

where we recall that meas (G3) < r/ < e.
Combining (6.9) and (6.10) with (6.4) we get that forj sufficiently large aj ,

is in La(G) and that a2 ffj --* 0 in L(G). We apply similar arguments to o9
and obtain the existence of subsequences for which (6.5) holds.

We now define a function 2 by (5.11) as in the proof of Theorem 1. The same
argument that was used in the proof of Theorem shows that 2 is integrable, that
(5.4) holds, and that 2 is finite almost everywhere.

We now show that (2(t), y(t)) Q /(t, z(t)) for a.e.t. Let the set G’ be as in the
proof of Theorem 1. Let G" denote the set of points in G’ at which (6.5) holds.
Clearly, meas G" meas G.

Let be an arbitrary point in G". Since ,2(t) --* y(t), it follows from (6.5) that
a2(t) y(t). From the definition of 2 it follows that there is a subsequence {2j(t)}
which will in general depend on such that 22(t) 2(t). By virtue of (6.5),

2(0. For the corresponding subsequence {aj(t)} we still have a2(t) y(t). From
the definition of G", it follows that for all j and i,

bln.+ i(t) (t, Zn.+ i(t)) (t, z(t)),
the last equality being a consequence of Assumption C(ii). Hence,

(f(t, z(t), u,+ i(t)), f(t, z(t), u,+ i(t))) Q + (t, z(t)).
Since Q +(t, z(t)) is convex, the points (oj(t), aj(t)) belong to Q+ (t, z(t)). Since

Q + (t, z(t)) is closed and (oj(t), aj(t)) - (2(t), y(t)), we get that (2(0, y(t)) Q + (t, z(t)).
Since was an arbitrary point of G", it follows that (2(t), y(t)) Q + (t, z(t)) a.e.

From this point onward, the proof of Theorem 2 is the same as the proof of
Theorem 1.

We note that if we have z z in Lo, then the argument to establish the
existence of subsequences for which (6.5) holds can be simplified as follows.

If z z in L, then since p is nondecreasing we can continue the chain of
inequalities in (6.4) and get

laj bl dt <- Oij]A Znj+i Z ){A + g meas(G)l Znj+i Z Po-1}.
i=1

Thus aj is in L(G). Since ]]z,+i zll 0 and/(6) 0 as 6 0 we get
that a- --, 0 in LI(G). A similar argument shows that o9.i- 2.i is in LI(G
and that o- 2 0 in LI(G). Hence there exist subsequences such that (6.5)
holds.
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7. The existence theorem. From the discussion in 3, it is apparent that in order
to formulate an existence theorem, hypotheses must be made to ensure that a
lower closure theorem holds, that minimizing sequences are conditionally weakly
compact, and that if b/c b weakly in , where {(b/c, u/c)} ’o, then (4, u) is in

o as well as in .
The specification of a subclass t’o involves conditions in addition to (2.1),

such as boundary conditions. Because of the variety of conditions used to define
subclasses /’o and the variety of special problems and classes of problems, it is
not feasible to formulate one set of hypotheses that will guarantee that (b, u) is
always in /o. It is also not advisable to formulate a different theorem for each
individual subclass ’o Instead, the notion of a closed subclass /o is used and the
general existence theorem is stated in terms of this notion, which will be defined
presently. The verification in a particular problem that ’o is a closed subclass is
to be carried out when the general theorem is applied to that problem.

DEFINITION. A sequence of admissible pairs {(4/c,u/c)} is said to be weakly
lower closed in with respect to J, or simply weakly lower closed, whenever the
following holds. If b/c b weakly in , then there exists a measurable function
u:G --, R" such that (b, u) is admissible and

(7.1) lim inf J(qk, blk) J(dp, u),
ko

where J is defined by (2.2).
Theorems and 2 give sufficient conditions for a sequence to be weakly

lower closed with respect to J.
DEFINITION. A subclass ’o of admissible pairs is said to be closed whenever

the following holds. If {(4/c, u/c)} is a sequence of admissible pairs in ’o that is
weakly lower closed and b/c - b weakly in , then for at least one u such that
(, u) is admissible and (7.1) holds it is also true that (b, u) e ’o.

In control problems governed by systems of ordinary differential equations,
the subclasses o are often determined by imposing conditions on the trajectories
such as the following. The graphs of all trajectories are required to lie in a certain
compact set. All trajectories are required to have at least one point in a preassigned
compact set. The endpoints of all trajectories are required to lie in a given com-
pact set. As noted in the discussion following Assumption A, the weak convergence
in of (D/c} in this case implies the uniform convergence of the (D/C in a, b]. Thus if

’o is defined by any of the conditions listed above, then ’o will be a closed sub-
class.

For different special classes of problems, different Banach spaces are
appropriate. Therefore, in stating the general existence theorem it is not possible
to impose a usable condition that will ensure conditional weak compactness of
minimizing sequences. Specific conditions will be left to specific applications.
We will, however, discuss briefly two important special problems after the state-
ment of the theorem.

If0 is a subclass of admissible pairs (b, u), then ’or will designate the set
of trajectories 4 such that (4, u) e 0 for some u.

We now state our general existence theorem.
THEOREM 3. Let o be a closed subclass of admissible pairs such that o

is weakly sequentially compact in . Let any minimizing sequence in o with weakly
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convergent trajectories be weakly lower closed with respect to J. Then J attains its
minimum on /o.

Proof. The proof of Theorem 3 proceeds as outlined in 3. Note that for a
minimizing sequence, the number p defined in (3.1) is equal to 7 defined in (5.2),
so that p is finite.

Theorem 3 is a "do it yourselftheorem" in the sense that we have not specified
conditions for g0 to be a closed subclass or for OT to be weakly sequentially
compact. As already noted, the present problem is too general for this to be done
in a sensible manner. These conditions must therefore be supplied when problems
that are more specialized are attacked. Theorems and 2, however, do give usable
and verifiable sufficient conditions for minimizing sequences with weakly con-
vergent trajectories to be weakly lower closed. These theorems constitute the
principal contribution of this paper.

We now discuss criteria for weak sequential compactness ofooT in problems
governed by systems of ordinary differential equations and in distributed param-
eter systems.

First consider control problems governed by systems of ordinary differential
equations. Here v and the appropriate space - is H(C) H([a, b]), where
we take each equivalence class of functions in H(G) to be represented by its

absolutely continuous member. As usually stated, existence theorems for such
problems involve a "growth condition" that ensures the conditional compact-
ness in C(a, b]) of any minimizing sequence of trajectories {bk}. Actually, the
growth conditions imply the equiabsolute continuity of the sequence of integrals
{E Ck’k dt}. Since v 1, this implies that the sequence {4k} is conditionally compact
in C(Ia, b]). The equiabsolute continuity of the integrals J’E 4, dt, however, also
implies the conditional weak compactness in H]([a,b]) of the sequence {4k}.
In [6] Cesari introduced the following condition guaranteeing the equiabsolute
continuity of the sequence {k}. It is assumed thatf 0. For every e > 0 there
exists a nonnegative integrable function ff on [a, b] such that If(t, x, w)l =< q(t)
+ f(t, x, w) for all (t, x, w) in @. For generalizations and further discussions of this
condition see [6] and [9].

In distributed control problems it is appropriate to consider functions 4
in H(G) or functions whose components 4 are in H,,(G), i= 1,-..,j. Thus

H*)’,(G). If all p > the conditional weak compactnessH;{G)or l-I{=,
in - of {bk} is ensured merely by requiring that the sequence Ckll} be bounded.
(Recall that [[. denotes the norm in .) If for some index we have Pi 1, then
to ensure conditional weak compactness we need to assume that the various
integrals

D bkd, 0__<11 _-<s, Ec 6

are equiabsolutely continuous. For those indices such that Pi > 1, the bounded-
ness of the sequence of norms {] 4 i} is required, where []i denotes the norm in

SiHpi(G). For further details see 5] and 7
Throughout this paper we have assumed that the sets Q+(t, x) are convex.

If the sets Q+(t, x) are not convex, one can replace the original problem with a
"relaxed problem" in which the vectors (Nck)(t) lie in co Q+(t, x). The relaxed
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problem is cast as a new control problem in which the set that plays the role of
Q+(t, x) is convex. An existence theorem for the relaxed problem is then easily
obtained. For details see [6] and [7].
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A GENERALIZATION OF CHOW’S THEOREM AND THE
BANG-BANG THEOREM TO NONLINEAR CONTROL PROBLEMS*

ARTHUR J. KRENERt

Abstract. The main results of this paper are two-fold. The first, Theorem 1, is a generalization ofthe
work of Chow and others concerning the set of locally accessible points of a nonlinear control system. It
is shown that under quite general conditions, this set lies on a surface in state space and has a nonempty
interior in the relative topology of that surface.

The second result, Theorem 3, generalizes the bang-bang theorem to nonlinear control systems
using higher order control variations as developed by Kelley and others. As a corollary we obtain
Halkin’s bang-bang theorem for a linear piecewise analytic control system.

1. Introduction. Consider the control system

(1) 2 f(x(t), u(t)), x(O) x, u(t) f,

where x (x, ..., x,) are coordinates of the state space, M is a paracompact
0n-dimensional manifold, u (u, ., u) is the control, x= (x, x,) is

the initial state, f
_
[ is the set of admissible controls, and f is an n-vector-valued

function. We assume that x so that the first coordinate of f is identically 1;
also we assume that f is C with respect to x2, -.’, x,, Ul, ..., u and piecewise
C with respect to X l. We require that u(t) be a piecewise C-function of x.
The requirement of C differentiability is not essential, it is only to avoid counting
the degree of differentiability required in any argument. The tangent space to M
at x is denoted by M,. A control u(t) defines a vector field, f.(x) f(x, u(x)) on M
and given two controls u(t), v(t), we can define a new vector field by means of the
Lie bracket,

(2) [.f,,f](x) (x)f(x) x(X)f(x),
where (cf/x)(x) is an n x n matrix of partial derivatives at x.

A slight problem arises since f,,f are only piecewise C-functions of x,
but at those values of x we can consider (2) as either undefined or as double-
valued by taking left and right limits. Since the difficulties that arise because of this
can be dealt with by simple but lengthy arguments, we shall ignore them.

2. Integrability and semi-integrability. The set, V(M), of all C-vector
fields on M is a module over the ring, C(M), of all C-real-valued functions with
domain M, with addition and multiplication defined pointwise. With the definition
of the bracket (2), V(M) becomes a Lie algebra of infinite dimension over the field,
JR. Suppose H is a submodule of V(M). We define H {f(x):f H}. Let U be
an open subset of M and L a submanifold of U. L is an integral manifold of H in
U if L is connected and H L for all x L (L is the tangent space to L at x).
An integral manifold ofH in U is always contained in a maximal integral manifold
of H in U. H is integrable on U if there exists a partition of U by maximal integral
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manifolds of H in U. For H to be integrable on U a necessary condition is that H
restricted to U be a subalgebra of V(U). If, in addition, H satisfies one ofthe follow-
ing then H is integrable on U;

(i) Frobenius. The dimension of H is constant for all x U.
(ii) Hermann [9]. H is locally finitely generated, that is, for all x U, there

exists a neighborhood V
_
U of x such that H restricted to V is the C(V) span of a

finite number of vector fields of H. (Lobry [14] has a slightly weaker form of this
condition.)

(iii) Nagano [16]. M is a real analytic manifold and H is a subalgebra of the
Lie algebra of real analytic vector fields on U.

If H is a submodule but not a subalgebra, then there exists a smallest sub-
algebra containing H, which we denote by DH. We can construct DH as follows.
We define DH H and DkH D- 1H + [H, D- 1HI. For example, DIH is
the submodule of all linear combinations of vector fields of H and Lie brackets of
vector fields of H with coefficients from C(M). DH is the union of this ascending
sequence of submodules.

Suppose U is an open neighborhood of x (Xl, x,). Then we split U
into two open halves,

U + {x U’x > Xl} and U- {x U’x < Xl}.
The control system (1) is locally semi-integrable if for all x M, there exists an
open neighborhood U of x and submodules H +, H- of V(M) such that

(i) Hx+ span {f(x,u)’ufl}
_
M for all x U +,

H- span {f(x, u)’u fl}
_
m for all x U-.

(ii) DH + and DH- are integrable on U with maximal integrable manifolds
L / and L- in U containing x.

Suppose u(t) is an admissible control and 7.(s)x is the family of integral curves
of the vector field f,(x), that is, 7u(0)x x and (d/ds)7,(s)x f,(7,(s)x). We define
the set sc(x, U) of all points accessible from x in U as
and 7,(r)x e U for all r e [0, s] and the set Cg(x, U) of all points controllable to x
in U as {7,(s)x’s <= O, u(t)efl, and 7,(r)x e U for all r e Is, 0]}.

If (1) is locally semi-integrable in U, then it is easily shown that sC(x, U)
___
L +

and Cg(x, U)
_

L-.
We now raise the question whether sC’(x, U) is "thick" in L+, i.e., whether

(x, U) has any interior as a subset of L +. The answer is affirmative as the
following generalization of the work of Chow [2], Lobry [14], and Sussmann and
Jurdjevic [19] shows.

THEOREM 1. Assume (1) is a locally semi-integrable control system and x,
U, L + and L- are as above. Then the L +-interior of sY(x, U) and the L--interior

of Cg(x, U) are nonempty.

Proof. In theorems ofthis type we shall only prove one assertion since the proof
of the other is identical. We construct inductively a sequence of maps qj" V
--, sC’(x, U) L + defined on a sequence of open sets VJ NJ such that the
image N qj(VJ) is a submanifold of dimension j. We continue until j equals the
dimension of L +.

Choose any control, say ul(t) (ul(t),..., u],(t)), and let fl(x) be the vector
field .fl(X)-.f(x, ul(x1)). Let 6 > 0 such that the integral curve sl -, 71(sl)x



GENERALIZATION OF CHOW’S THEOREM 45

of fl is C for S e (0, ti). Let V --(0, i) and q21(S1)---71(S)X. Since the first
coordinate of f is identically 1, the image N qg(V 1) is a one-dimensional
submanifold of L +.

Suppose we have constructed N- q2j_ I(Vj- 1) and j =< dimension of
L +. Choose x e N- and a control u such that f(x)= f(x, u(xl)) N-, the
tangent space to N- at x. This can always be done, for if not, then for all x e N-and for all u efL f(x) Nx . This implies that Hx Nx for all x e N- , and
the set of vector fields on N- t, V(N- 1), is an algebra’, therefore DH restricted to
Nj- is contained in V(N- ). But this implies thatj _< dimension ofL + dimen-
sion DHx <- dimension of N- j 1.

By passing to a smaller V- and N- we can assume that f(x) N- for all
x e N- and also for some 6 > 0, the integral curve of f starting at x satisfies

7(sflx e U for all x e N- and 0 < s < 6. We define (Sl, "", sfl 7(s)q_
(S1, Sj_ 1) vJ-- Vj- x (0, ) and N (V)

_
(x, U). The Jacobian

(qJcs)(s, ..., s_ , 0) is nonsingular for every (s, ..., s_ 1) e V- and hence
for sufficiently small 0" V --, N is a diffeomorphism. Q.E.D.

Example 1. Suppose M 2 and consider the control system 2 1,
22 u. g(x), lul =< 1, where g(x) is a C-(or pwC)-function satisfying g(x1)

0 if X -<_ 0 and g(xx) > 0 if x > 0. The system is locally semi-integrable for
example, if x (0, 0), then we take U M, H + DH + V(M), L + M,

d/(XO, U) x1, x2)’x 0, Ix21 g(x,) dx

H- DH- h(x) e C(M

L- {(x1, O)’x } and (x, U) {(x,, O)’X 0}.

The system 21 1, 22 U" g(X2) is not locally semi-integrable.
Example 2. Suppose M []2 and 21 1, 22 NX2, ]U] 1. The submodule

H {(hi(x), xzhz(x)):hi(x)eC(m)} is an integrable subalgebra and carries the
system everywhere; that is, for each x e M, Hx span {f(x,u):[x] <= 1}. It
partitions M into 3 integral manifolds:

and

g1= {(x1,x2)’x2 . L2 {(x1,x2)’x2 O}

L3= {(X1,X2)’X2 < 0}.

Suppose x=(0,1)6L1. Then U=M,H+ =DH+ =H- =DH- =H,L+

L- L 1, (x, U) {(xl Xz)’xl => 0, e-X’ =< x2 =< ex’} and Cg(x, U) {(x l,

Xz)’xl =< 0, ex’ =< x 2 =< e-X’}. If x (0, 0) L2, then U M, H+ DH +

H- =DH- H, L + L- L2, sC’(x,U)= {(xl,0)’x =>0} and C(x,U)
{(X1,0)’X 0}.
Example 3. Suppose M [R3 and 21 1, 2 2 U, 2 3 UX1, lU] 1. Let

fl(x),f_ l(x) be the vector fields corresponding to the constant controls u

_
1.
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Let H be the submodule which is the C(M) span off1 and f_ 1. There is one linearly
independent bracket

0

EL,f-,](x) 0

2

so DH is spanned by fl, f- and If1, f- 1]. The integrable manifold ofDH through
any point x is m. The sets ’(x, M) {71(s3)7-1(s2)7 l(Sl)X’si >= 0} and Cg(x, M)

{71(s3)7_ (Sz)71(Sl)X’si <= 0} both have nonempty interior.

3. The bang-bang theorem. Henceforth we shall consider the system

: ui(t)ai(x),
i=0

x(O)= x u(t) > O u()=

where ao, "’, ak are vector-valued functions C with respect to x2, x and
piecewise C with respect to x t. The controls, u(t), are piecewise Coo-functions
of x l, lying in the compact convex set {u:ui >= O, ui 1}. We let E
denote the set of extreme points of. E is the set of unit vectors, (0, , 0, 1, 0, ,
0), in k. We call the set of admissible controls and E the set of bang-bang
controls. We alter our notation to distinguish between the set of points, (x,
U, ), accessible in U from x by admissible controls, and the set of points, (x,
U, E), accessible in U from x by bang-bang controls. We adopt a similar conven-
tion regarding Cg(x, U, ) and Cg(x, U, E). The bang-bang question is, under
what conditions is it true that z’(x, U, E) ’(x, U, ) and Cg(x, U, E)
U,). It is well known that ’(x, U, E)_c z’(x, U,)_ closure ’(x, U, E)
and Cg(x, U, E) c_ Cg(xO u, ) c_ closure cg(x, U, E).

THEOREM 2. Suppose (3) is locally semi-integrable and U, L +, L- are as above.
Then L+-interior ’(x, U, E)= L+-interior g/(x, U,)and L--interior Cg(x,
U, E) L--interior Cg(x, U, ).

Proo]i To simplify the proof we restrict (3) to a control system on the manifold
L +, in other words we take M L +. Clearly interior ’(x, U, E)_ interior
z’(x, U,). To show the opposite inclusion we let x interior ’(x, U,).
We choose an open connected neighborhood V of x such that V c_ interior ’(x,
U,). The set of vector fields {f,:u} and {j:u E} generate the same sub-
module H and hence by Theorem 1, (x, V, E) has a nonempty interior. Let y
interior Cg(x, V, E) V

___
(x, U, ))

_
closure (x, U, E). Then there is a

sequence y" ’(x, U, E), such that ym converges to y. For m sufficiently large,
y" interior Cg(x, V, E), so y" is bang-bang accessible from x and bang-bang
controllable to x. This implies x z’(x, U, E). Q.E.D.

From Theorem 2 it is clear that ’(x, U, E) will equal ’(x, U, ) if every
admissible trajectory which does not come from a bang-bang control goes to
an interior point of z’(x, U, ). To decide when this will happen we study the
effect of control variations.
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Let #(xl) be an admissible control, j)(x)= ’. u(x,)ai(x) and 7j(s)x be the
family of integral curves of.l)(x) for j 0, 1. Suppose as we approach x 7o(S)X
e d(x, U, f) using the control u, we replace u with u for r units of time. The
result is a trajectory whose endpoint is 71(r)7o(S- r)x= 7(r)7o(-r)x. If we
vary r through small nonnegative values, we obtain a C-curve q(r) 71(r)7o(- r)x
satisfying q(0)- x. To compute the derivative from the right at 0, we define
q(ro,r) 71(r)?o(-ro)x. Then

dq(O + cq(O) cq(O)
.l’,(x) j’(x).

dr rl ro
If we continue to x )o(S1)X0 E ’(XO, U, ’-) using the control u, we can

define a new curve q(r) 7o(Sl s)7(r)7o(-r)x. This is also C for small non-
negative r and q(0) x . The derivative from the right at 0 is

q(O+)
(4)

dr
7o(S, s),(f(x) fo(x)),

where 7o(sl s), is the tangent space map induced by the map x--- 7o(S s)x.
Ifj;(x) and j’(x) are Coo in a neighborhood of the trajectory joining x and x , then
(4) can be expressed in a Taylor series,

dq(O+)_ (s-s,)
()

dr re=o/-2’ mad,,(fo)(f .I))(X1)_qt_ (_Q(S S 1)h+l

where

ad(fo)(f Jl)(xl) fl(x’) .l)(x 1),

adm(fo)(fl fo)(X’) [fo, adm- ’(J’o)(f J)] (X)

and C(s s)’ + is an error term of order (s s) + .
The second type of control variation is similar to the one introduced by

Kelley [11].
Suppose u,u,u2, u are admissible controls such that u= (2u+ u2

+ u3)/4. Then fo(X) (2j](x) + j(x) + j(x))/4. For ease of notation we
introduce another control u u so u ( uz)/4, fo(x) ( (x))/4.
Consider the control modification p(r) made at x 7(s)x, where p(r)= 7(r)
73(r)72(r)7 (r)7 o( 4r)x.

To compute the first two derivatives of this curve, we introduce new variables

ro -4r, r r2 r3 r4 r and use the chain rule

dp(O d, p(O)
-L(x) + j(x) + .l(x) + j(x) 4j(x) 0,+

dr dr ri=0

d d e +2
=o o . dr dr

4.

dr
li(x) + 2

o<=i <= dr dr "x
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Since dp(O+)/dr 0, the curve q(r) defined for small nonnegative r by q(r2/2)
p(r)is C and dq(O+)/dr dZp(0 +)/dr2 We can pull this control modification

along to x 7o(Sl)X as before and obtain

)
(6) 70(s, s),[f2,j’](x)=

(s S

m--0 /91!
ad"(fo)[f2,f3](xr) + C(s Sl)h+ 1.

Notice that if we reverse u2 and u3 in defining p(r), we obtain 7o(S s),[j,
f2](X) --))o(S1 S),[J, f3](X).

The last type of control modification which we consider is to stop short of x
or continue on past x . These lead to curves q(r)= 7o(xl + r)x= 7o(+r)x ,
whose derivatives are

(7)
dq(O+)

+ fo(x’).
dr

Let Kx, be the convex cone in L+, generated by the vectors of the form (4),
(6) and (7), for all 0 < s =< s and admissible controls ui(t), 1, 2, 3. We say the
trajectory of u between x and x is singular if Kx, is a proper subset of Lx+,. This
definition is different from the usual one stated in terms of the maximal principle
(see Gabasov and Kirillova [6] and Hermes [20]). Since x, the usual one is
equivalent to the following" the trajectory is singular if the cone generated by the
vectors of the form (4) and (7) is a proper subset of Mx,. There are of course less
singular controls under our definition. It can be shown, using the standard methods
(implicit function or fixed point theorem), that if Kx, Lx+, then X2 L+-interior
(x, U, O) and so is bang-bang accessible. It follows then that g(x, U, E) will
equal /(x, U, O) if the only singular trajectories are bang-bang. Consider the
following examples.

Example 4. Let M [3 and ual + (1 u)a2, 0 U 1, where

X2 X2

H is the C(M) span of a and a2 and since [a, a2] 0, DH H. The integral
manifold of H through x= (0,0,0)is L {(x,x2,x3)’x (X2)2}. Let u(t)

1/2 and x ,o(sl)x (s, 0, 0). The cone Kx,, generated by +(1/2)(a(x)
nt- a2(X1)), (a(x’) a0(X1)), and (a2(x 1) ao(xl))= (ao(X’) al(xl)) equals L,
so the trajectory is not singular in our sense. However, Kx, is a proper subset of
Mx, and so the trajector.y is singular in the usual sense. Notice that x is bang-bang
accessible, x 72(s/2)71(sa/2)x or any other bang-bang trajectory that uses a
and a2 each a total of s/2 units of time.

Example 5. Let M [4 and 9 Ulal(x) nt- u2a2(x -+- u3a3(x), u 0,
ui 1, where

1

1/2
a(x)=

1/2
az(x)=

0
a3(x)=

X2/2 0 \X2/
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0 0 0

[al az](X) O0 [al a3](x) O0 [a2, a3](x) i1/2 1/2

and all other brackets are zero.
DH is of dimension 4 everywhere so the integral manifold of DH through

x= (0, 0, 0, 0) is exactly M. The control u- (1/2, 1/4, 1/4) gives rise to the
vector field

j’;(x) !,
and If0, ai] 0. If x 70(sl)x (sl, 0, 0, 0), then the cone generated by control
variations of type (4) and (7) is a linear space of dimension 3, since the trajectory
is singular in the usual sense. If we add the variations of type (6), we see Kxl Lxl

Mxl and so is not singular in our sense. Notice that x is bang-bang accessible,

X 73(S1/8)’2(S1/8)’l(SI/2)T2(S/8)73(S,/8)X.
A subsystem of (3) is a system obtained by restricting the control u(t) to lie on

one of the faces of O, that is, if I is a subset of 1,..., k} the subsystem specified by I
is given by requiring u(t) 0 for I. We consider a face of fl, so that (3) is a
subsystem of itself.
TNOM 3. Suppose jbr every subset I of {1,..., k}, the subsystem specified

by I is locally semi-integrable. Let U be a neighborhood of x and H + and L + be the
submodule and integral man,old which carry the subsystem specified by I on U+.
U there exists h > 0 such that

(i) DhH DH] .lbr all x L+,
(ii) given any is I,j 1, ..., 4, and any m, m < h, there exists a function

g(x) 0 such that for all x L + either

D Hadm(ai) [ai ai (x) g(x)adm(ai4) [ai ai (x) mod +

o

D Had(ai3) [ai ai] (x) (x)adm(ai) [ai ai] (x) mod +,

then s’(x, U, E) (x, U, f).
Proof Let I {1,..., k} and u(t), um(t), vl(t), l)m(t) be controls

lying in the interior of f, that is, 0 < u{(t) < and 0 < vj(t) < for j 1,..., m,
1, ..., k. LetJi(x) Z=I u{(x)ai(x)and gj(x) = vj(x)ai(x). By induction

on m < h, we show there exists a 2(x) > 0 such that

[f" [f,,,Eai, ail]"" ](x)=_ (x)[g, [gm[ai, ai2]] ](X)mod +.
It is trivial for m 0 and it follows immediately from (ii) for __< m < h.
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Therefore ifu(t)lies in the interior off in some neighborhood ofx 7o(Sl)X,
then +D H,, is spanned by the vectors

ai(xl), [ai, aj] (xa), adl(fo)[ai, aj] (x), ad- ’(fo)[ai, aj] (xl),

for 1 =< i, j =< k. But the cone K,, contains fo(x), ai(x 1) fo(x ), and, (s s,)adm(fo)[ai, aj.](x, + C(s s,)
=o m!

for all 1 =< i,j k and small s s =< 0. Hence, K, equals DH+ DH+. This
implies x (x, U, E).

If u(t) is not interior to f at x but is interior to some face of f of dimension
>_ 1, then we repeat the above argument for the subsystem generated by that face.
The controls that lie on faces of dimension 0 are bang-bang controls. Q.E.D.

There is a bang-bang controllability version of Theorem 3 that assumes the
same hypothesis except H- and L- replace H+ and L + in (i) and (ii). Together
they yield a global result.

COROLLARY 4. Supposefor all x M, there exists a neighborhood U ofx such
that (x, U, E) (x, U, )) and OK(x, U, E) OK(x, U, )). Then a’(x, M, E)
(x, M, f) and Cg(x, M, E) Cg(x, M, f).
Proof. Suppose u(t) is an admissible control. We must show 7o(S)X (x,

M, E) for all s _> 0. Let s inf {r >= O’7o(S)X ’(x, M, E)} and x 7o(S)x.
Ifx (x, M, E), then by hypothesis there exists an e > 0 such that for all r [0, e),
7o(r)x 7o(r + s)x l(x, M, E)

_
l(x, M, E). This contradicts the definition

of s. If x (x, M, E), then there exists e > 0 such that for all r (-e, 0], 7o(r)x
7o(r + s)x Cg(x, M, E). By the definition of s, for small r, 7o(r + s)x l(x,

M, E) so x (x, M, E). This is a contradiction.
COROLLARY 5 (Halkin-Levinson). Consider the linear control system defined

on M " by

(8) F(t)x + G(t)v + h(t),

where F(t), G(t) are matrices, h(t) is a vector of piecewise analytic functions and
the control v(t)= (vl(t), ..., v,(t)) is a piecewise analytic function satisfying
Ivi(t)[ <= 1. If x is accessible j?om x by an admissible control, then x is accessible

from x by a piecewise analytic bang-bang control v(t), where Ivi(t)l 1.

Proof Let a(x),..., ak(x) be the right side of (8) for the finite number of
constant controls satisfying Iv(t)l 1. Then (8) can be put in the form (3) and
each of the a(x) is piecewise analytic. It follows that every subsystem of (3) is
locally semi-integrable. By direct computation it is easy to show

adm(ai3) [ai, ai2] (x) adm(ai4) [ai, ai2 (x) for all m 1, 2, 3, "",

and for any x there always exists a neighborhood, U, of x and h > 0 such that
+D H DH+ for all x e U / and DhH-o for all x e U so the result follows from

Theorem 3 and Corollary 4. Q.E.D.
Notice that Examples 4 and 5 satisfy the conditions of Theorem 3. As a

counterexample, consider this one taken from Filippov [5] as modified by Lobry
[14].
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Example 6. Let M [3, 2 ual + (1 u)a2 and 0 -< u < 1, where

1

al(x)= 1-x az(x)= 1-x
1

0

[al[a,az]](x) [az[az,al]](x) -4

0

Condition (ii) of Theorem 3 fails and the point (1, 1, 0) is accessible from (0, 0, 0)
by the singular control u 1/2, but is not bang-bang accessible (see Filippov [5]).

0

[a,az](X) 4x

o
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tions with Professors S. P. Diliberto and H. J. Sussmann, and also the many helpful
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SOME RESULTS ON MAX-MIN PURSUIT*

JAMES FLYNNf

Abstract. A pursuer P and an evader E are confined to a subset 5 of the Euclidean plane. E whose
speed is bounded by w _>_ wants to maintain the greatest possible distance between himself and P
whose speed is bounded by 1. We will show that if 5f is a half-plane or a circle, then E can prevent the
distance IPE] from falling below its initial value only if he has a strategy under which ]PE] stays constant
whenever P moves at maximum speed along a polygonal path. We use this result to characterize d*,
the least upper bound on the values of IPEI that E can maintain for the case of pursuit in the circle.

Introduction. A pursuer P wants to get close to an evader E, who wants to
stay away. The players are confined to a subset 5 of two-dimensional Euclidean
space, P moving with speed bounded by and E moving with speed bounded by
w __> 1. P is required to select his trajectory before play begins, while E is allowed
to use a strategy; that is, E can continuously observe P and select his trajectory
as a function of his observations. However, E is required to tell P his strategy, and
P can use this information in selecting his trajectory. We are faced with the follow-
ing question. Given a specific starting position, what is the largest value of
that can be maintained by E? We attempt to answer that question by considering
the following one. Under what conditions can E prevent the distance IPEI from
decreasing?

We obtain the following result when 5 is a half-plane.
(A) If E can keep IPE] from falling below its initial value whenever P moves

at maximum speed along a polygonal path, then E can do so by using an isometric
strategy; that is, a strategy under which E keeps the distance IPEI constant until
an escape position is reached.

(The fact that condition (A) deals only with the case where P is restricted to
trajectories in which he travels at maximum speed along a polygonal path involves
no essential loss of generality (see Remark 2).)

In a sense, the arguments which we use to establish (A) for the half-plane are
unnecessarily long. One can, in fact, use the results of Isaacs [5, 9.5.2] to develop
shorter ones. Unfortunately, the shorter arguments do not work for the circle. Since
our main interest is in the circle, we prefer longer arguments which are more
general.

To describe our results for the circle, we need the notion of stable position.
Let O denote the center of the circle. Any position where P lies on the radius
through E and satisfies [OPI (1/w)[OEI is said to be stable. The main reason for
the importance of such positions is that P can always force the play into a position
which is approximately stable (see Remark 7).

We show that (A) holds for stable starting positions when 5 is a circle. We
use this result to characterize d*, the least upper bound on the values of ]PE] that E

* Received by the editors July 21, 1972, and in revised form December 12, 1972.

? University of Chicago Graduate School of Business, Chicago, Illinois 60637. This research was
supported in part by the Office of Naval Research under Contract N00014-67-A-0112=0053 (NR-042-
267) at the Statistics Department, Stanford University.
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can maintain. One can use our characterization to obtain numerical values for d*.
We use it to obtain bounds (see Theorem. 4).

We wish to thank L. Dubins and D. Blackwell for introducing us to these
problems. A version of the problem of pursuit in the half-plane appears in Isaacs
[5, pp. 260--265]. Apparently Isaacs was the first to suggest that the problem be
generalized to a circle [5, pp. 265,270]. Our results, however, owe more to the work
of Gerald J. Smith 8] which dealt with the problem of pursuit in the circle. Smith
attempted to establish result (A) for the circle. He also used (A) to characterize d*.
Some of our arguments are borrowed from him. Other results on pursuit in the
half-plane and pursuit in the circle appear in Flynn [2], [3].

1. Formulation. Let R represent the real numbers and let R2 represent the
space R R with the metric determined by the norm where I(r.,r2)

(r2 + r)1/2. Denote the time axis [0, ) by T. Define

e(p) {plp’T ,p(O) p and Ip(t’)- p(C’) = It’- C’ll
for all t’t" E T} for p ,,

E(e) {ele’T 5, e(O) e and e(t’) e(t") _-< wilt’- t"

(1) for all t’, t" s T} for e 9,
and

P= [_J P(p), E= U E(e)

(e, p) inf e(t) p(t) for (e, p) e E x P.
tT

P(p) and E(e) are the sets of pursuit and evasion trajectories, respectively, originat-
ing from the positions p and e, while (e, p) is the payoff from P to E when P
follows p and E follows e.

We define strategy as in Ryll-Nardzewski [7, pp. 113-126]. Let (e, p) 9.
A mapping r/"P(p) E(e) is an evasion strategy at (e, p) if it satisfies the information
constraint" If p’, p" s P(p) satisfy p’(t) p"(t) for 0 < < t’, then r/(p’)(t) r/(p")(t)
for 0 < t’. Denote by H(e, p) the set of all evasion strategies at (e, p). Define

(2) V(e, p) sup inf 2/(r/(p), p).
qH(e,p) peP(p)

We call V(e, p) the max-min value at (e, p).
Remark 1. As stated in the Introduction (see paragraph 1), we want to deter-

mine when the following situations arise:
(1) V(e,p)= I[e

(II) V(e, p)< lie- p[[.
(Observe that V(e, p) <_ [le Pll always holds.)

In this paper we shall have occasion to refer to the derivatives of various
quantities with respect to time. We will always have in mind the forward or right-
hand time derivative. Whenever such a derivative exists we will represent it by the
usual "dot" notation. An object’s speed will, of course, always refer to the norm
of its right-hand velocity vector. Define
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(3a) P*(p) {p P(P)IP is piecewise linear and O(t)II 1, T} for p e 5T

and

(3b) P*= U P(p).

P* is the set of pursuit trajectories under which P travels at maximum speed along
a piecewise linear path. Remark 2 tells us that P* is almost as good as P.

Let p 5e. One can show that for every positive integer n, there exists an
approximation mapping " from P(p) to P*(p) satisfying

(4) sup sup "(p)(t)- p(t)l[ l/n,
pP(p) tT

such that if p’, p" P(p) and p’(t) p"(t) for 0 =< t’, then a"(p’)(t) a"(p")(t)
for0 < _< t’.

Remark 2. If the strategy rl* H(e, p) satisfies

(5) 0(/*(1), P) lie pll, P P*(p),

then the strategy defined by the composition oft/* and the approximation mapping
e" satisfies

(6) 9(r/*(z"(p)), p) >= e Pll 1/n, p P(p),

for n 1, 2,.... It follows that the existence of such an r/* is sufficient for (I)
(see Remark 1).

The above remark justifies the following assumption.
Assumption 1. P is restricted to p P*.

2. The half-plane. In this section we consider the case where ,9 is a closed
half-plane in R2 with the line 1 in R2 as its boundary. After determining
conditions under which (I) and (II) hold (see Remark 1), we will establish result (A).

Let &a2 be a line perpendicular to 1. at some arbitrary point O. Set up a
rectangular coordinate system where O is the origin, the coordinate axes are

1 and 502 and ocg coincides with the first and second quadrants. Positions of
P and E are represented by points p (p l, P2) and e (e, e2) respectively (see
Fig. 1).

Let s,-n < s =< n, denote the angle that PE makes with 2 (we give s
the same sign as e -p). Whenever P’s and E’s right-hand velocity vectors
exist, let b and , denote the respective angles which these vectors make away from
the direction PE, n < ok, q, <= re. These angles are positive when they are measured
in a counterclockwise arc, e.g., all the angles are positive in Fig. 1. Evidently,
whenever P-and E travel at maximum speeds, we have

(7)
sin (s + b), 12 --COS (S - (/)),

/1 =wsin(s+,), i2= --wcos(s+,).
Assumption 2. We will always assume that play starts in a position (e, p)

e o , where lip e > 0, and s > 0. There is, of course, no loss of gener-
ality in making such an assumption. We will also assume that w > 1. (The case
w is left as an exercise for the reader.)
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(e, ,ez)e ,.

FIG.

P

Define
(8) / arc sin (l/w).
We say that P corners E whenever the game is in a position where e2 0 and
Is] </3. The reader should verify that whenever P corners E, P can force a decrease
in ]PE] by heading directly towards E (see Isaacs 5, pp. 260-264]). Hence (II) holds
at any position where P corners E.

We are going to show that (I) is equivalent to the existence of an isometric
strategy for E, that is, a strategy under which ]PE] stays constant until an "escape"
position is reached whenever P uses a trajectory in P*. Formally, an isometric
strategy is any evasion strategy under which E follows the isometric rule (described
below). We define the isometric rule by describing its consequences. For the
present we do not worry about whether it is a valid rule, e.g., whether it satisfies
the information constraint (see paragraph 2 of 1).

The isometric rule is that method ofplay for E under which the following holds
when P selects p P*:E travels at maximum speed along a path with a piecewise
continuous derivative, such that if

we have

while if
(9)
we have

Is(t)l /3,

+ 1(0 w sgn (s(t)),

(10)

2(t) O,

e2(t > 0, Is(t)] < /3,

cos (t) (l/w)cos 4)(0,

> 0 ifs(t) >= O,
(t) <0 ifs(t)<0.

The next lemma follows from the arguments of Isaacs [5, pp. 261-264].
LEMMA 1. IfEfollows the isometric rule, then as long as (9) holds we have

p(t) e(t) lip el,

(11) 62(0 (w2 cos2 b(t)) 1/2 sin s(t) cos b(t) cos s(t),

J(t) [(w2 cos2 4(t)) 1/2 sin b(t)]/ p e > 0.
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Also iffor some to,

then

S(to) >= ,
10(t) e(t)II p ell,

(Observe that lip(t) e(t)ll approaches o in this case.)
Remark 3. At first it appears that the isometric rule is not allowable. Certainly

we cannot define a strategy directly by rule (10) without violating the information
constraint. Fortunately, we can get around this problem by exploiting the fact
that (10) is required to hold only when p e P* (see Assumption 1). The proof of the
next lemma is left to the reader.

LEMMA 2. E canfollow the isometric rule.
Given that E follows the isometric rule, P’s objective is to select a p e P*

which corners E. We have the following lemma.
LEMMA 3. IfEfollows the isometric rule, then P can corner E only ifhe can do

so with a trajectory p which satisfies
(12) 0 =< 4(t) =< arc cos (w sin s(t))

until cornering takes place.
Proof. By Lemma 1, (t) > 0. Hence we want a p for which/2(t) =< 0. This

gives us the condition

(13) Ib(t)l arc cos (w sin s(t)) <__ /2.
Consider any 4(t) < 0 which satisfies (13). Lemma 1 implies that qS(t) is better
since it gives the same value of t}2(t and a smaller value of (t). The result follows.

Now we need a notion ofconvexity. We say that a pursuit trajectory p (Pl, P2)
is convex on an interval To c T if (a) pl(. is a monotone function on TO, and
(b) the set I,,Jt,o{(P(t), Pz)IP2 ----> Pz(t)} is convex. A similar definition holds for
evasion trajectories. (We will omit any specific reference to To whenever its identity
is clear from the context.)

Lemma 3 implies that P can limit himself to trajectories which satisfy (a)
above. That P can restrict himself to convex pursuit trajectories is more difficult
to establish. The proof of the next lemma takes up 3.

LEMMA 4. IfEfollows the isometric rule, then P can corner E only ifhe can do
so with a convex p which satisfies (12) until cornering takes place.

We need one more lemma.
LEMMA 5. If P uses a convex p for which dp(t) >= O, T, while E follows the

isometric rule, then E’s trajectory e is convex on the interval [0, to] where to denotes
the first time that condition (9)fails.

Proof. We assume that P’s trajectory passes through the polygonal line
segment joining Po to P and Pa to P2 as illustrated in Fig. 2. Let e (e, e),
e (e e2) and e2 (e, e22) denote E’s positions when P reaches Po, P1 and P2,
respectively. Let r denote the angle that the line PoPI makes with the -axis
and let r denote the angle that the line PP2 makes with the (’-axis. As usual,
we take these angles as positive when we measure them in a counterclockwise
direction.
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FIG. 2

Now (10), (12), Lemma 1 and the assumption that s(0) => 0 imply that/l(t)
is strictly positive. Hence, we can define the real-valued function A(. on the set
(el, el)U (el, e21) by

(14) A(el(t)) i2(t)/i,(t).

We will establish the convexity of e by showing that A(. is an increasing function
on (e, e[)U(e], e).

Using a simple geometric argument one can show that

r rt/2 for el(t (e, e),
(15) s(t) + dp(t)

r2 /2 for e,(t) (e e).
Consequently, (7) and (15) give us

tan [0(t) qS(t) + r,] for e,(t) (e, el),
(16) A(e,(t))

tan[0(t)_ b(t)+ r2] for e,(t)6(el,e).
Let el(t e (e, el). Since Lemma implies that s(t) is increasing, (15) implies that
qb(t) is decreasing. Now using (10), one can verify that qb is a decreasing func-
tion of 4). It follows that A increases on (e, e). A similar argument establishes the
same result on (el, e). All we have to do is show that

(17) A(el 0) __< A(el + 0).

Let t denote the time that P reaches P. By (16) we have

A(el 0)= tan [O(t, 0) b(t, 0) + r l],
(18)

A(el + 0)= tan [O(tl + 0)- b(t, + 0) + r2].

Now (15) implies

(19) b(t 0) r b(t -t- 0)- r2.

But (12) and the fact that p P* imply

n/2 < r < r2 < /t.
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Thus (19) implies

,(t + o) > ,/,(tl o).
Hnc,
(20) (t 0) < /(t -t- 0)

holds. Evidently (17) follows directly from (18), (19), and (20).
Now we have our first main result (see Remark 1).
THEOREM 1. Let (e, p) /f /f be an initial position with lip ell > 0 and

let V(e, p) be defined by (5). Then

(II) V(e, p)< lie Pll
holds ifand only ifP can corner E with a pc P* whenever E uses the isometric rule.
Furthermore, whenever (II)fails to hold, we have

(I) V(e, p) lie pll.

The following corollary follows immediately from Theorem 1.
COROLLARY 1. (A) holdsfor the half-plane.
ProofofTheorem 1. The second claim and the "only if" part of the first claim

follow directly from Remark 2. The only thing left to show is the "if" part of the
first claim. Clearly we can assume without loss of generality that s(0) _>_ 0. Also
we can show that there is no loss of generality in restricting E to strategies for
which

(21) s(t) >= O, T,

whenever P uses a trajectory in P*.
Suppose that P can corner E with a p P* whenever E follows the isometric

rule. It follows from Lemma 4 that P can also corner E with a convex P* for
which (12) holds. Lemma 5 implies that whenever P uses , the trajectory (, which
E follows under the isometric rule, is also convex. The reader should verify that
to establish the theorem we need only show that the convexity of 8 implies that
there does not exist an evasion trajectory e satisfying

(22) [l(t)- e(t)[I >_- liP eli, t T,

for which (21) holds.
Observe that (21) is equivalent to

(23) el(t)- ,(t) => 0, e T.

Assume that there exists a trajectory e satisfying (22) and (23). We will show that
this leads to a contradiction. Let tc denote the time at which cornering takes place
when P uses and E uses 8 (see Fig. 3). Using (22) and (23) one can show that there
exists a o (0, t) such that the trajectory e reaches the point ((to) strictly before
time o Using (22) one can also show that during the time interval [0, to, e(t) must
lie below the curve generated by the trajectory e. Now the convexity of 8 implies
that the arc spanned by ( between time 0 and time o is the shortest arc joining
((0) and ((to) which lies below the curve generated by (. By (3) and the definition
of isometric rule, E travels at maximum speed when he uses (. Hence e cannot
reach the point 8(to) strictly before time to. This contradiction finishes our proof.
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e(o)

FG. 3

Remark 4. The above proof borrows heavily from Gerald Smith [8]. In
particular the idea that we can assume that E restricts himself to strategies for
which (21) holds is his. Smith also uses a similar convexity argument.

3. Proof of Lemma 4. Suppose that P has a p P*(p) which corners E. By
Lemma 3 we can assume that (12) holds when P uses p. Now (12) implies that p
satisfies part (a) of the definition of convexity. Suppose that p violates part (b) of
that definition. We want to show that P can do better by replacing p by a convex
trajectory. Specifically, we will show that any nonconvex polygonal path segment
PoP1P2 which satisfies (12) is dominated by a convex polygonal path segment
PoP2 which also satisfies (12) (see Fig. 4). This result gives us a step-by-step pro-
cedure for replacing a nonconvex p P* with a better convex trajectory.

Examine Fig. 5. We have a rectangular coordinate system in which P0 coincides
with the origin,/’2 lies on the positive Y-axis, P1 lies in the second quadrant and
Eo lies in the first. Let d denote the distance IPoPI, xd the distance IPoPll and
p the distance IPoEo[. Let Oo denote the angle that PoEo makes with the X-axis,
let u denote the angle that PoP makes with the Y-axis and let 7(u, x) satisfy

(24) 7(u, x) arc sin (x sin u/(1 2x cos u + x2) x/2).

Since s(0) => 0, we have Oo > 0. Also, condition (12) implies that s < re/2, u >= 0,
x > 0andd > 0.

Suppose that P moves at full speed along PoP2 Let a(t) denote the angle that
the line through PE makes with the Y-axis at time t. Using Lemma 1, one can show
that a(t) satisfies the differential equation

(25)
da x//w2 sin2 a- cos a

dt p

and using (25), one can show that the value of a when P reaches P2 is equal to
I- (d + I(ao)), where I is the elliptic integral

/9 (N//W2 sin2t + cos t)dt(26) 1(o) w2
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Po
\ p

Eo \\ \

FIG. 4

and I- denotes the inverse of I.
Another possible trajectory arises when P moves at full speed along the poly-

gonal line PoPIP2. Let f(u, x) denote the value of the angle a when P reaches P2
under this trajectory. Clearly,

f(0, 0)-- I-l(d -1- I(ao)).

More generally, one can show that

(27) f(u, x) C(u, x) ,(u, x),

P2

PI d

dx p
E o

FIG. 5
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where

(28)

C(u, x) I- lid(1 2x cos u + x2) 1/2 - I(B(u, x))],

B(u, x) ,(u, x) + u + A(u, x),

A(u, x)-- I-l(xd + I(ao u)),

and 7(u, x) satisfies (24). The reader should verify that (12) implies

(29) 0 <_ a- u <= A(u, x) <_ B(u, x) <= C(u, x) <= rc/2.

In order to show that the nonconvex polygonal path PoPIP2 is dominated by
the convex PoP2, we must demonstrate that

(30) n(u, x) >__ n(0, 0)
holds whenever (29) does. To that end, we will establish the following result.
If condition

(31) 0 <_ d/p <= (w 1)/(w + 1)

holds, then (29) implies (30). By repeated application of that result and a uniform
convergence argument, one can show that (29) by itself is enough to guarantee (30).
Note that condition (31) is only a device introduced to simplify the proof.

Assume that (31) holds. Consider any fixed x _>_ 0. We will show that

c(u, x) > 0,(32) cx
whenever u satisfies (29). (We assume that there is a u satisfying (29), since other-
wise the lemma is trivial.) Straightforward calculations give

O(u, x) N(u, x)
(33) cx D(u, x)’
where

D(u, x)= I’(C(u, x)) > O,

N(u, x) N x(u, x) + N2(u, x) + N3(u, X),

(34) sin u
Nl(U,X

(1 2xcosu + x2)

and

(’((u, x)) I’(C(u, x))),

N2(u,x
d(x cos u)

(1 2x cos u + x2) 1/2’

N3(u x) dI’(B(u, x))/I’(C(u, x)).

(As usual the "prime" notation refers to the first derivative.) Define the function R
by

(35) R(z) I’(I-l(z)).

The reader should verify that

(36) R’(z) -sin I- I(Z)/(W2 sin2 I- l(z))l/2.
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By (28), (29), (34), (35), and the mean value theorem, we have

(37) N(u,x) >= R(u,x) > O,

where

dsinu (sinB(u,x)(38) Nl(U,X)
(1 2x cos u + x2) 1/2 (w2 sin2 B(u, x)) 1/2

Also, using the definition of I, one can show that

(39) N3(u, x _>_ d(w 1)/(w + 1) > 0.

Define

(40) /r(U, X) ]r (U, X) 4- N2(l,/, x) 4- N3(u, x).

Because of (34) and (37),

(4) R(u, x) >= o
implies (32). Now, by (36), (37) and (39), we have (32) if u satisfies

(42) N2(u, x) >_ d(w 1)/(w + 1).

Hence, we need only show that (41) holds whenever u satisfies (29) and

(43)
COSU X

(1 2x cos u + X2) 1/2 > d(w- 1)/(w + 1).

Observe that the set of all points satisfying (43)is ofthe form {ul0 =< u < k(x) < zt/2},
where k(x) is a constant depending on x.

We want to show that the set of points satisfying both (29) and (43) is an
interval containing 0. We will do this by showing that

(44)
c3B(u, x)

> 0

whenever u satisfies (43). It follows a fortiori that cC(u,x)/cu is also positive.
Straightforward calculations give us

(45)

cB(u, x) x(cos u x) I’(rro u)
4-1-

c3u 2x cos u + x2 I’(A(u, x))

> x(w 1)/(w 4- 1) 4-
R(dx + I(rro u))- R(l(rro u))

I’(A(u,x))

But by (31), (36), the mean value theorem, and the definition of I, we have

(46)
R(dx + I(ao u))- R(I(ao u)) > dx/(w2 1)/2

I’(A(u, x)) p/(W2 1) 1/2 >= x(w 1)/(w + 1).

Define

(47)
F(x) {ulNz(u, x) + N3(U x) >= 0 and (29)holds},
G(x) {ulN2(u, x) + N3(u, X) < 0 and (29)holds}.
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By (39), u e G(x) implies (43). And, more important, (37) tells us that u e F(x) implies
(41). We want to show that u e G(x) also implies (41). To accomplish this, we will
establish

(48)
c.(u, x)

c3u
> O, u e G(x).

That (41) holds on F(x) LJ G(x) will follow from (48),

(49) (0, x) 0,

and a continuity argument. We leave the details to the reader.
Let u G(x). Straightforward calculations give

N 1,(u, x) + N b(u, x),

(5O)
(?N 2(u, x) d sin u(1 x cos u)

(1 2x cos u + x2)3/2’u
(N3

(u, x) N3a(U x) + N3b(u, x)
c3u

where
1 x cos u

N,(u, x) N2(u, X)
2x cos u + X2

sin B(u, x)
(w

N,(u, x)
dwZcosB(u,x) ).( sinu

(w2 sin 2 B(u, x)) /2 (1 2x cos u + x2)/2
c3B(u, x)
u

(51) N3a(U, X) N3(u, X)
xcosu

2x cos u + X2

sin B(u, x)
(w2 sin2 B(u,x))i/2

N3b(U, X) N3(u, x)
R(I(ao u))

R(dx + I(ao-
sin B(u, x)

u)) (w2 sin2 B(u, X)) 1/2

Now (43) implies

(52) x cosu > 0,

while (29), (39), (44), (50), (51)and (52)imply

aN2(u,x)(53) 0 <= Nlb(U X),
63u

N3b(U X),

sin A(u, x)
(w2 sin 2 A(u, X)) 1/2]

u e G(x).

Also, (50), (51), (52) and the definition of G(x) can be used to establish

(54) 0 =< Na(u, x) + N3.(u x), U e G(x).

Evidently (48) follows from (50), (53), and (54). We are done with Lemma 4.

4. The circle. In this section we consider the case where 9 is the closed unit
disc 5 in R2 with the unit circle cg in R2 as its boundary. We will show that result
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(A) holds whenever play begins at a position which is stable (see paragraph 4 of
the Introduction for a definition of stable).

We represent positions of P and E by points p (P l, P2) and e (el, e2) in
@. Observe that the center O corresponds to the point (0, 0) in R2. Let s,
-t < s =< t, denote the angle that the directed line segment EP makes away
from the direction EO (see Fig. 6). Whenever P’s and E’s right-hand velocity
vectors exist, let q and ff denote the respective angles which these vectors make
away from the direction PE, t < b, ff __< . These angles are positive when they
are measured in a counterclockwise arc, e.g., all the angles are positive in Fig. 6.

FIG. 6

Assumption 3. We will always assume that play starts at a position (p,e)
which is stable (see the Introduction). We also assume that w > 1. (The case
w is trivial.)

Whenever Ilell and Isl </3 where/3 satisfies (8), we say that P corners E.
The reader should verify that whenever P corners E, P can force a decrease in
IPEI by heading directly toward E. Basically, we are interested in whether P
can corner E at a position where IPEI <= lip ell (see paragraph 4 of 2). We have
the following lemma.

LEMMA 6. If P can corner E at a position where IPEI <= lip eli, P can do so
with a trajectory p which satisfies
(55) lip(011 >= Ilpll T.

Proof. Assumption 3 implies that s(0) 0. One can use the latter to show that
restriction (55) does not affect P’s ability to corner E.

Because of Lemma 6, we can make the following assumption.
Assumption 4. P is restricted to p P* which satisfy (55).
As in 2, we introduce the notion of an isometric rule by describing its con-

sequences. The isometric rule is that method ofplay for E under which the following
holds when P selects a p P*(p) which satisfies (55). E travels at maximum speed
along a path with a piecewise continuous derivative; and as long as

(56a) lie(011 < 1, Is(t)l </

or

(56b) / < Is(t)l <
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holds, we have

(10a)

and

(lOb)

cos (t) (l/w)cos b(t)

J>0 ifs(t)>=0,
(t)

<0 ifs(t) < O.

The proof of the next lemma is essentially the same as the proof of Lemma 1.
We leave the details to the reader.

LEMMA 7. IfEfollows the isometric rule, then as long as (56) holds we have

(57a) lip(t) e(t) p ell,

and

(57b)
dlle(t)ll

cos b(t) cos s(t) (w2 COS (t)) 1/2 sin Is(t)[.
dt

Also, iffor some to e T,
IS(to)l >_-/,

then E can guarantee that

p(t) e(t)ll p ell,

_
to.

Remark 5. Using the fact that (10) is required to hold only for pursuit trajec-
tories satisfying Assumption 4, one can show that the isometric rule is well-definedo
and satisfies the information constraint (see Remark 3).

The next lemma implies that given our assumptions, P can restrict himself
to trajectories p for which lip(" )11 is an increasing function on T. (This is not true
in general. The critical assumption is that the initial value of s is 0.)

LEMMA 8. If E follows the isometric rule and

(58) p(t2)l

holdsfor some 2 > O, then either

(59) s(t2) s(t) >_ O,

or

(60) min {s(t2) S(tl)} fl"
Proof Let a, -r < a _<_ r, denote the angle that the directed line segment

PO makes away from the direction PE. (Observe that we give a the same sign as s.)
We want to show that a(t) is a nonincreasing function. A simple geometric argument
establishes that as long as > 0,

d sin [(t) b(t)]
dt l)(t)ll

Hence (55) and (10) imply that

d
dt-

[w sin 4’(0 sin b(t)]

w (w2 cos2 (])(t)) 1/2 "+" sin @(t) _< O.
pine
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Suppose (58) holds for tl and t2, where 2 > tl > 0. If S(tl) < r/2, then the fact
(t2) =< (t)implies (59). Similarly, ifs(t) >_ /2, then the fact (t2) (tl) implies
that s(t2) /2. The observation that fl =< g/2 finishes the lemma.

LEMMA 9. IfEfollows the isometric rule, then P can corner E only if he can do
so with a trajectory p which satisfies
(12) 0 <= qS(t) __< arc cos (w sin s(t))

until cornering takes place.
Proof Because of Lemma 8, P need only consider trajectories p for which

d e(t) /dt <= O. By Lemma 7, the latter condition implies that (t) should satisfy

(13) [b(t)[ arc cos (w sin s(t)) <= zt/2.

(Assumption 3 allows us to use s(t) instead of Is(t)l in the above formula.) The rest
is essentially the same as the proof of Lemma 3.

In order to state the analogues ofLemmas 4 and 5, we need another definition
of convexity for trajectories. Suppose that P selects a trajectory 1 which satisfies
(55). As the vector p(t) rotates about O it sweeps out a directed angle. (Following
the usual convention, we let positive angles correspond to counterclockwise
displacements.) We can represent this angle by a continuous function 0(. on T,
where O(t), < O(t) < v, is interpreted as the directed angle generated between
time 0 and time t. We say that the pursuit trajectory p is convex on an interval
To = T if (a’) 0(. is a monotone function on To, and (b’) the set

U {peDIp=kp(t) for someke[O, 1]}
to<=t<=tl

is convex whenever 10(to) 0(tl)l =< and [to, t] c To. A similar definition holds
for evasion trajectories. (As before (see the paragraph preceding Lemma 3), we
will omit any specific reference to To whenever its identity is clear from the con-
text.)

LEMMA 10. IfEfollows the isometric rule, then P can corner E only ifhe can do
so with a convex trajectory p which satisfies (12) until cornering takes place.

Proof See the proof of Lemma 4.
LEMMA 11. If P uses a convex p for which dp(t) >__ O, T, while E follows the

isometric rule, then E’s trajectory e is convex on the interval [0, to], where o denotes
the first time that condition (56)fails.

Proof See the proof of Lemma 5.
Now we can state our second main result (see Remark 1).
THEOREM 2. Let the initial position (e, p) x be stable and let V(e, p)

be defined by (5). Then

(II) V(e,p) < e p

holds ifand only ifP can corner E with a p e P* whenever E uses the isometric rule.
Furthermore, whenever (II)fails to hold, we have

(I) V(e, p) e p

The next corollary follows immediately from Theorem :.
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COROLLARY 2. (A) holdsfor stable starting positions in the unit circle.

Proofof Theorem 2. The theorem follows from Lemmas 6, 10 and 11 via the
arguments of Theorem 1.

5. Application. In this section we apply the results of the last section to the
problem of pursuit in the circle.

Given any d, 0 <= d <= (v- 1)/w, let (ea, pd) represent any stable
position for which lied pd[[ d. Define

(61) d* sup {did V(ea,
The following result is essentially the same as one formulated earlier by Gerald
Smith [8].

THEOR,M 3. V(e, p) <= d*, (e, p) .
Remark 6. Evidently d* is the least upper bound of the set of values of

that E can maintain from any starting position. One can--at least in principle--
use the characterization of d* implicit in Theorem 2 to obtain numerical values for
d*. In Theorem 4 we use that characterization to find an upper bound on d*.
The proofs of both of these theorems are deferred until the end of this section.

THEOREM 4. V* < d* < (w2- 1)/([w2 q- wE(l/w)] 2 q-(w + 1)2) 1/2, where

(62a) v* (1/w)[(w2 1) 1/2 arc cos (l/w)]

and

(62b)
n/2

E(1/w) (sin U/W)2] 1/2 du
,0

is an elliptic integral of the second kind.
Some sample values are found in Table 1. The numbers are rounded off

to the nearest hundredth.

TABLE
Tabled values of bounds on d*

Value of w 1.00 1.50 2.00 5.00 15.00
Upper bound .00 .25 .40 .73 .90 1.00
Lower bound .00 .18 .34 .71 .90 1.00

As mentioned earlier, P can always force play into a position which is ap-
proximately stable. Specifically, one can show that given any e > 0, any initial
position (e,p)e and any evasion strategy rl H(e, p), P has a pursuit
trajectory p P(p) which leads to a position in which is at a distance (in
the product norm) less than e from some stable position. We will use this fact.

Remark 7. Following a suggestion given by L. Dubins, Gerald Smith [8]
established that for any e > 0, P has a strategy which brings him to a point Q
on OM which satisfies IOQI => (1/w)lOMI e. The idea behind Smith’s strategy
is to have P go to the center and then move out along the radial line OM. We can
apply his results to our situation by having P select a trajectory which takes him
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to the center and then keeps him on the radial line passing through the position
which M occupied e/(w + 1) time units before. We leave the details to the reader.

We need the following lemma.
LEMMA 12. If V(e2, p2) dl where d d2, then d2 > dl and V(e

Furthermore V(-, is a continuous function on 9 9.

Proof That d2 > d is immediate. Starting from the position (eal, pal), let E
travel outward at maximum speed along the radius through e. Clearly P’s best
trajectory follows E along this line. Observe that the distance IPEI remains greater
than d until a position (e2, pa:) is reached. Since by hypothesis V(e
we have V(e, pa) d 1. The proof of the continuity of V(., is left to the reader.

Now we can prove Theorems 3 and 4.
Proof of Theorem 3. The continuity of V(., and the remarks preceding

Remark 7 give us

(63) V(e, p) sup V(ed, pd), (e, p) 9 9.
O d (w 1)/w

But the first part of Lemma 12 implies that the right-hand side of (63) is equal to
d*. The theorem follows.

Proofof Theorem 4. To get the lower bound we restrict E to the boundary
That v* =< d* follows from Theorem 2 of Flynn [2]. (Compare (62) above with
(2) of Flynn [2] .) One can establish that strict inequality holds by showing that E
can do better by traveling along small chords than by staying on the circumference.
(This fact is established in [3] .)

Now we justify the upper bound. Suppose play starts at (en, pn) and we restrict
P to straight-line paths which are perpendicular to the line joining pn to e at pa.
One can show that if d is greater than the right-hand side of Theorem 4, then P
can force a decrease in IPEI. (See 10 of Flynn [1] for details.) The theorem follows.
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NEUTRAL AUTONOMOUS FUNCTIONAL EQUATIONS WITH
QUADRATIC COST*

R. DATKO"

Abstract. In this paper a control problem for neutral functional equations with a quadratic cost
function is considered. It is shown that the optimal control is a feedback control. If the problem can be
optimized over the positive half-line, then the solution of the problem is obtained by solving a linear
homogeneous functional equation which possesses a type of exponential stability.

Introduction. In this paper we extend some of the.. results in [2] to a control
problem involving linear functional equations of neutral type. The problem is to
optimize a quadratic functional which has a constraint involving an n-dimensional
neutral functional equation. It is shown that the optimal solution is unique and
satisfies a linear feedback law. In addition, if the initial functions are continuously
differential, then the solution of the problem can be found among the solutions of a
2n-dimensional linear homogeneous differential-difference equation. In case the
problem can be optimized over the positive half-line, we demonstrate that the
optimal solution leads to an autonomous linear homogeneous functional equation
and the the spectrum of this equation lies in a half-plane Re z =< -a0, ao > 0.
This last result might lead one to expect that the solutions of the functional equation
are exponentially stable. However, we are unable to prove this. The best we can
do is to show that for initial conditions which are continuously differentiable,
a form of exponential stability holds. This is made precise by Theorem 4. The
problem discussed here is the most elementary of its kind, and the results of this
paper can be extended to more complex functional equations. The main reason
for not considering a more complex problem is that certain computational aspects,
particularly in 2, are involved enough as it is and would soon get out of hand for
any significant extension of the problem.

The paper is divided into three parts. Section sets down some conventions and
assumptions which will be used throughout the paper. Section 2 discusses the
control problem over finite intervals. In this section we compute, in a suitable
Hilbert space, the Fr6chet derivative of the functional to be optimized, set it
equal to the zero vector, and from this obtain the characterization of the optimal
control and optimal trajectory. To be more explicit, we show, in Theorem 1, that
the point which minimizes the functional satisfies an n-dimensional linear
differential-difference equation. Section 3 deals with the problem over the infinite
interval, and the basic result, Theorem 3, is obtained as a limiting case of the
problem in 2. General references for the functional equations considered in this
paper are [1] or [3] and a reference for the semigroups in 3 is [4].

1. Preliminary notation.
1. We shall use standard vector and matrix notation. Unless otherwise

specified, all matrices and vectors are real. Vectors will be denoted by lower-case
letters and matrices by upper-case letters. The complex inner product oftwo complex
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vectors x and y of the same dimension will be denoted by (x, y). The norm of a
vector x in R" or C" will be denoted by Ixl. The conjugate transpose of a matrix A
will be denoted by A*.

2. The symbol C[-h, 0] will stand for the Banach space of all continuous
mappings from the closed interval -h, 0] into R" or C" as the cases may be.
The norm of a point 4 in C[-h, 0] will be given by
If 4 C[-h, 0] is continuously differentiable, then its C,-norm is given by

4),= sup IO(s)l + sup
-h<_s<_O -h<_s<_O

If to 0, then bto(.) will denote a continuous mapping from [to h, to] into
R"(C"). Clearly 4to(" is a point in C[-h, 0]. If g is a continuous linear functional
on C[-h, 0], its value at a point 4 will be denoted by (g,

3. L2 will stand for the equivalence classes of all measurable square integrable
mappings from [0, oe) into Rm(cm). This space is a Hilbert space with inner product
(v, u) (v(t), u(t)) dt and norm u (u, u)’/2. We shall frequently consider
measurable mappings over intervals of the form I [to, T]. Clearly, if a mapping
is square integrable over I, then it is square integrable over [0, o) if we extend it by
defining it to be the zero vector on the complement of I.

4. If q is a continuous functional on L2, then q is said to have a Fr6chet
derivative q’ at a point Uo in L2 if there exists a point g in L2 and a functional r on

L2 such that
q(u) q(uo) + (g, u Uo) + r(u),

r(u)
lu- Uoll

-,0 as U-Uo -,0.

5. A, B and D will denote specific n x n real constant matrices and E will be
a specific real constant n x m matrix. W will be a real n x n symmetric positive
definite matrix and U will be a real m x m positive definite symmetric matrix.
The conditions on W and U imply that there exist positive constants w,, w2, u,
and u2 such that

w,lx] 2 (Wx,x) w2lx] 2 and u,ly] 2 (Uy,y) u2ly[ 2

for all n-vectors x and m-vectors y.

2. Statement of the basic problem and some of its properties. Let 0 __< o

=< T < oe and let tpt be in C[-h, 0]. The problem is to minimize the functional
on L2 defined by the equation

(1)
T

J(u, 4’,0, to, T) [(Wx.(t), x.(t)) + (Uu(t), u(t))]
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(2)

where x,(t) satisfies the equation

dp(to)- Ddp(to h)+ Dx,(t h)

x,(t) + [Ax,(s) + Bx,(s- h) + Eu(s)] ds

b(t) if [to h, to].

ift >= to,

It is shown in [3] that for any 4to in C[-h, 0] and u L2, there exists a unique
solution of (2) in C[-h, 0]. Furthermore, if bto is continuously differentiable on
[-h, 0], then (2) can be replaced by the differential equation

(2’)
St,(t) Ax,(t) + Bx,(t- h)+ DYc,(t- h) + Eu(t),

x,(t) qS(t) on [to h, to].

Remark 1. We shall sometimes denote the dependence of
or Xu(’,

DEFINITION 1. Given qS,o in C[-h, 0] we define

(3) j(b,o, to, T) inf J(u, Ok,o, to, T).
uL2

If there exists u L2 for which the infimum in (3) is attained, this u will be called
an optimal control and denoted by u’(t, ekeD, to, T) or by urn(t) if bto, to and T are
not important to the discussion at hand. The solution of (2) corresponding to an
optimal control is called an optimal trajectory and denoted by xm(t, bto to, T)
or simply by In(t).

We shall now construct a variation of parameters formula for (2) or (2’)
(see, e.g., [1, pp. 320-323]). The reason for rederiving the formula in [1] is that our
notation is somewhat different and we wish to emphasize the role played by the
initial function if it is differentiable.

Let S(t, ) denote the unique n n matrix which satisfies the conditions

S S
(4a) --c3a (t, a)= -S(t, a)A S(t, + h)B +-(t, + h)D

ifto < a < t, a :/: t- nh, n=0,1,2...,

(4b)

(4c)
and

(4d)

S(t, t) I,

S(t, a) O ifa>t

S(t, a)- S(t, a + h)D

is continuous for all a in [to, t].
Remark 2. Hale and Meyer i-3, p. 13] have shown that S(t, ) is dependent

only on the difference a. That is, S(t, ) S(t a, 0). This is a consequence
of the autonomy of (4a).

Let Ckto C[-h, 0] be continuously differentiable and let u L2. Let x(t) be
the solution of(2’) for the given pair bto and u. Then if S(t, ) satisfies (4), the following
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identity holds"

IS(t, e)A + S(t, + h)Bx(e) de

S(t, e)Ax(e) de S(t, e)Bx(e h) de
o+h

o--[S(t’ e) S(t, e + h)D]x(e) de

(5) x(t)- IS(t, to)- S(t, o + h)D](to)

)[Ax() + Bx( h) + D2(.- h) + Eu()] d

+ S(t, e)D2( + h)d.
o+h

Comparing the extreme right-hand side of (5) and the terms in the second equality
from the left in (5) and making some obvious cancellations and rearrangements,
we obtain

x(t) IS(t, to)- S(t, to + h)D](to)
(6)

+ S(t, + h)[B() + D()] d + S(t, )Eu()d.
o-h

If Xo(t) is a solution of (2) for Cto and u 0, then on the basis of (6) we can write
the solution of (2) for Cto and u in the form

(7 x(t, 4o xo(0 + s(, Iu(.
Remark 3. If 4o has a continuous derivative and u in L is continuous on the

interval [to, T] except possibly at the points nh + to, n 0, 1, 2,..., then
x(t, 4o,U) is differentiable on [to, T except possibly at the points {nh + to}.
This is an immediate consequence of the representation given for the solution in
(6.

Let 4o e C[- h, 0] and uo e L be fixed, and let h e Lz be arbitrary. Abbreviating
J(u, o, to, T) to J(u) and setting

(a (h, 0 S(t, eh(,
we form the difference

J(uo + h) J(uo) 2 (Wxo(t), y(h, t)) dt + (Uuo(t), h(t)) dt

+ (Uh(t), h(t)) dt + (Wy(h, t), y(h, t))dr.
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Thus we see that the Fr6chet derivative of J(uo) exists and is given by the expression

(9) (J’(uo), h) 2 (WXo(t), y(h, t)) dt + 2 (Uuo(t), h(t)) dt.

Making use of (8), we can explicitly compute J’(uo) for

(Wx.o(t), y(h, t)) dt (WX.o(t), S(t, )Eh(u)) du dt

(E*S*(t, e)Wx,o(t), h(e)) dt de

E*S*(t, e)Wx,o(t dr, h(e) de.

Substitution of the above expression into (9) and observing that (9) holds for all h
in L2, we obtain

(10) J’(Uo)() 2 Uuo(e) + E* S*(t, e)WX,o(t dt

The following two properties of J(u) will be needed in the sequel. Their proofs
are omitted since they have been given in [2].

Property 1. For 4o fixed in C[-h,O], the infimum of J(u, o, to, T) is
uniquely attained and satisfies the condition J’(u, 4o, to, T) 0. This is equivalent
to the relation

( u( -* s*(t, Wx(t

Moreover, for each 4o in L, (11) has a unique solution.
Property 2. Let a and b be real scalars. If u and v are, respectively, optimal

controls for J(u, o, to, T) and J(u, 0o, to, T), then au+ by is the optimal
control for J(u, a4o, + bOo, to, T). In other words, the optimal control associated
with (1)-(2) induces a linear mapping from C[-h, 0] into L.

On the basis of Property 2 and equation (11), we introduce the following
definition.

DEFINITION 2. Let 4oeC[-h, 0], and let x(t, 4o) denote the optimal
trajectory for the problem (1)-(2). For each e [to, T], define the linear mapping
from C[-h, O] into R by the relation

(a c(t, to, r4,o S*(, tIx(, 4,o

iftoNtN Tandift Tby

(b c(t, to, r4o 0.

Remark 4. The linearity of L(t, to, T) is a consequence of Property 2. For by
Property and Definition 2,

( u(t, 4,o - e*c(, to,
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Hence, since equation (2) is linear in u, it follows from Property 2 that L(t, to, T)
is linear in

LEMMA 1. Let g:[to, T] R" be continuous and let

S*(a, t)g(a)da, to < <_ T,
y()

0 iftT.

If 4= T- nh, n O, 1, 2,..., then on [to, T], y(t) has a derivative which satisfies
the equation

a---Y(t)- -g(t)- A*y(t)- B*y(t + h)+ D*
a(y(t + )).

dt dt

Proof. Assume T- nh z, where 0 < -c < h. Then

i=0 ,t+ih

S*(a, t)g(a) da + r+nh
S*(a, t)g(a) d.

Notice, since 0 < z < h, that for sufficiently small changes in t, n in the above
expression does not vary. Moreover, since each term is differentiable, y(t) has a
derivative. By Remark 2, S*(a, t) S*(a t, 0). If we use the notation S*(ih-, O)

limt_,ih-S*(t, 0) and S*(ih +, 0)= lim,ih+ S*(t, 0), then the derivative of y(t)
is given by

(14)

f(t) -g(t) + [S*(ih-, O)- S*(ih +, O)]g(t + ih)
i=1

T

-(a, t)g(a) da.

Since S(a, t) satisfies the relations in (4), we obtain from (14)"

(15)

.9(t) -g(t)- A*y(t)- B*y(t + h)

+ [S*(ih-, O)- S*(ih +, O)]g(t + ih)
i=1

D* [S*((i- 1)h-, O)- S*((i- 1)h +, O)]g(t + ih)
i=1

+ D* [S*((i- 1)h-, 0)- S*((i- 1)h+,0)g(t + ih)
i=1

+ D*
i= t+ih [

+ D*
+,h
(a, + h)g(a) da.

Note that by (14), the last three terms in (15) can be replaced by D*(t + h).
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Also by (4d), S*(t, O) D*S*(t h, 0) is continuous for all t. Thus (15) becomes

/9(0 -g(t)- A*y(t)- B*y(t + h)+ D*(t + h),

which proves the lemma.
THEOREM 1. Let dpt be in C[-h, 0] and let L(t, o T)dpt be given by Definition 2.

Then, for a.e. on [to, T], L(t, o, T)dPto satisfies the differential equation

(16) (t) --Wxm(t, )to) A*y(t)- B*y(t + h)+ D*(t + h).

Proof. Wire(t, dpto) is continuous on [to, T], hence L(t, to, T)dP,o satisfies the
hypotheses of Lemma 1.

COROLLARY. If dp, has a continuous derivative on [to h, to], then the solution

of the control problem (1)-(2) satisfies the 2n-th order system of differential-difference
equations given by

(17)
2(t) Ax(t) + Bx(t h) + D2(t- h)- EU-XE*y(t),

(t) -Wx(t)- A*y(t)- B*y(t + h)+ D*y(t + h).

The proof of the following property is straightforward but lengthy. It is
therefore omitted. The proof is similar to Lemma 3.1 in 2].

Property 3. If {b’o} 4),0 in C[-h, 0], then {Urn( 4’o)} Urn( b,o) in L2,
and {xm( b,"o) X(’, b,o uniformly on [to, T].

DEFINITION 3. Let blo, 1, 2, be in C[-h, 0], and let the pairs (x l, ul) and
(X2,U2) denote the optimal trajectory and optimal control corresponding
respectively to o and 42o Let L(t, to, T) be abbreviated to L(t). We define the
bilinear form on C[-h, 0] C-h, 0] given by

(18)

R(t, o T)(blo, qSt2o) (L(t)tho, xz(t) Dx2(t h))

t’+ (L(a + h)blo, Bx2(a))da
-h

(L( -+- h))o), Dx2(00
-h

THEOREM 2. The bilinear form in Definition 3 satisfies the equation

(19)
T 2R(to, to, T)(dPXo dp2to) R(to, to, )(dP,o, dpto)

[(WXl(t), x2(t)) + (Uul(t), u2(t))] dt.

Thus if dp dp2to, R(to, to, T)(dp)o, dplo) j(dp]o, to, T).
Proof. Let bo and b2o be in C[-h, 0], and assume that bt2o is continuously

differentiable on [to- h, to]. Let L(t, to, r)dplo L(t)c) y l(t). By Remark 3
and equation (11), x2(t) has a derivative a.e. on [to T]. A straightforward computa-
tion using (2’) and (16) yields

d
dt
--JR(t, to, T)(dP)o, d?2o)] -(Wxl(t), x2(t)) + (E*yl(t), u2(t))
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a.e. on [to, T]. Since U- E*yx(t ux(t), it follows that

(20)
(t, to, T)(4,o, 4,,o) e(to, to,

[(Wx(s), x(s)) + (Uu,(s), u(s))] ds.

However, R(T, to, T)(bto, bt2o) 0 because L(t, to, T) 0 for t >= T. Thus the
conclusion of the theorem holds if bt2o is continuously differentiable. Using
Property 3, the fact that the continuously differentiable mappings are dense in
C[-h, 0], and that R(to, to, T) is continuous, we reach the conclusion that the
theorem holds for any bt2o in C[-h, 0].

COROLLARY 1. For any [to, T] and ,o and c2,o in C[-h, 0],

(21)
T

R(t, to, T)(dPto, dp2to) [(WXl(t), x2(t)) + (Uu,(t), u2(t))] dt.

Proof. This corollary is a consequence of Theorem 2 and the observation
that if x and u are optimal for J(u, ,o, to, T), then they are also optimal for
J(u, xT’, t, T).

3. The ease T oo. In this section, we shall consider the optimal control
problem posed by equations (1)-(2) when T oo. To consider this case, it is
necessary to make an additional assumption which will be given below. We shall
first consider some further properties of the problem in case T is finite. Property 4
is a consequence of Property 1.

Property 4. If u"(t, to, T, 4),o) is an optimal control for the problem (1)-(2),
then it is also optimal for the functional J(u, xT’(qb,o), t, T).

The next property has been proven in [2, Property 4, 3].
Property 5. If to > 0 and b,o(t + s)= ,(s), where s e[-h, 0], then

J(qto, to, T + to) j(O, 0, T)and L(t + to, to, T + to)Cb,o L(t, O, T)O.
The next property is the feedback control mentioned in the Introduction.

Its proof also can be found in [2, Property 3, 3].
Property 6. For each q,o in C[-h, 0], the identity L(t, to, T)4, L(t, t, T)xT’

(’, b,o, to, T) holds. Thus Urn(t, dp,o) U- E*L(t, t, T)x(., 4),0, to, T).
Hypothesis H. For all to >- 0 and each bto in C[-h, 0], it will be assumed that

limw,ooj(c/),o, o, T) <
Remark 5. What Hypothesis H says is that the problem (1)-(2) can be optimized

for T and all b,o.
The next property is proved in [2, Theorem 3.1 and its corollary].
Property 7. Assume Hypothesis H holds; then there exists a continuous

symmetric bilinear form R on C[-h,O] x C[-h,O] and a continuous linear
mapping q:C[-h,O] BV[-h, 0] (the space of n-dimensional functions of
bounded variation on [-h, 0]) such that for b,o and ff,o in C[-h, 0],

(22)

lim R(to, to, T)(bto, dpto) R(to, el)to)
T-

(qdP,o, Oo) (qO,o, dp,o).
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Moreover, for each 4,o e C[-h, 0],

lim L(to, to, T)bt lim (qdPto(O) qdpto(S)).
T O

DEFINITION 4. Define the mapping L’C[-h, 0] --, R" by

(23) Lb,o lim [(q4to)(0)- (qb,o)(S)].

Property 8. The mapping L is linear and continuous.

Proof. The proof is a consequence of the fact that q:C[-h, 0] BV[-h, 0]
is linear and continuous.

Using Property 8 and Definition 4, we can prove in a manner analogous to
Theorem 3.2 in [2] the following theorem.

THEOREM 3. Assume Hypothesis H holds and let L be the linear mapping
defined by equation (23). Consider the functional equations

(24) x(t)

(to)- Dc(to h)+ lAx(s) + Bx(s h)] ds

+ Dx(t h) EU-1E*Lxs ds fort >= o

c(t) for to-h<= <__ to.

Denote the solution of (24) by x,(b,o). Then, given any sequence {T,} --, oe, the
following holds"

(25a)

(25b)

lim xm( d?to, to, T.) xt(to) for each [to, oo),

lim j(dpto, to, Tn) R(Cto, qbto),

(25c) the point u e L2 given by u(t) U- 1E*Lx,(dPto)
is the optimal control for the functional J(u, 4)to, to, oe) and xt(4)to) is the optimal
trajectory.

COROLLARY 2. If Hypothesis H holds, then given any continuously differentiable
dpt in C[-h, 0], the optimal control and optimal trajectory for the functional
J(u, 4)to, to, o) are connected by the relations

2(t) Ax(t) + Bx(t h) + D2(t h)- EU-1E*q(t),

O(t) Wx(t) A*q(t)- B*q(t + h)+ D*(l(t + h),

(26)

(27)

and

(28) U(t) U-1E*q(t).

Proof. Let 4),o be continuously differentiable. Let {T,} o and x"(t)
xm(t, Ok,o, to, T,) and set L(t, t, T,) L,(t), n 1, 2, .... By Theorem 3, {x"(t)}

--, x(t, 4),o) uniformly on compact intervals, and by Property 7, {L,(t)qS}--, Lq5
for all 4) in C[-h, 0]. Hence if we set

q,(t) L,(t)x’] and q(t)= Lxt(dPto),
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it follows that for each [to, ),

lim q.(t) q(t).

Notice that x,(bto satisfies (26) and that (28) holds by Theorem 3. We have
shown in the corollary to Theorem that each q,(t) is differentiable a.e. and satisfies
(16). The function q(t) is also differentiable a.e. by Remark 3 since L is a continuous
linear mapping. Hence the sequence of differential equations

d
dt
--[q,(t)- D*q,(t + h)] -Wx"(t)- A*q,(t)- B*q,(t + h)

converges a.e. to the function

-Wx(t, Ok,o)- A*q(t)- B*q(t + h).

Using standard arguments from real variables, it follows that

d
d-[q(t D*q(t + h)] O(t)- D*q(t + h)

-Wx(t, dPto)- A*q(t)- B*q(t + h),

which establishes (27) and proves the corollary.
COROLLARY 3. If the control problem (1)-(2) satisfies Hypothesis H, then all

solutions of the differential-difference equation

(29a) c(t) Ax(t) + Bx(t- h) + DYc(t- h)- EU-1E*Lxt,

where

(29b) x(t) ok(t)

have the property that

is continuousiy differentiable on C[-h, 0],

(30)
o

]X(t)l 2 dt < o.

Proof. The inequality (30) is a consequence of the fact that

j(qS, O, ) w Ix(t)l 2 dt, where wl > 0.

Remark 6. If A, B, D, E, W and U are real matrices, and C[-h, 0] and L2

are complex Banach spaces and Hypothesis H holds, then the conclusions of
Corollary 3 remain valid.

In [2] it was possible to prove for the case D 0 (i.e., the retarded case) that
the system (29) generated an exponentially stable semigroup of operators on
C-h,O]. If D 4: 0, the situation is unclear. However, we can obtain certain
analogous properties for the system of differential-difference equations given by
(29). Thus let us assume that Hypothesis H holds and that C-h, 0] and L2 are
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complex Banach spaces. The functional form of (29)is the system

c/)(to)- Dd?(to h) + lAx(s) + Bx(s h)] ds

(31) x(t) EU-E*Lxds + Dx(t h) ift to,

b(t) ifte[t-h, to].

It is known (see, e.g., [3]) that the solutions of (31) in C[ h, 0 generate a semigroup
of operators T(t) which is strongly continuous on C[-h, 0]. Let a/ denote the
infinitesimal generator of T(t). Recall that the domain of s’ is dense in C[-h, 0]
and consists of those q5 which are continuously differentiable and satisfy the
condition

(32) d--- (0)= Ab(0)- Bc(-h)- EU-’E*Ldp + Dd-(-h).
ds as

Also, if 4 is in the domain of s, then

d
dt
--( T(t)dp) x’ T(t)dp

Hale and Meyer [3] have proven that the spectrum of s’, a(s), consists only of
point spectra and that the generalized eigenspace associated with any 2 a(s’) is
always finite-dimensional. Furthermore, since T(t) is strongly continuous on
[0, ), there exist constants m => 1 and w > 0 such that IIT(t)bl] =< mew’llb]l
for all 4)e C (see, e.g., [4]).

LFMMA 2. Let the control problem (1)-(2) satisfy Hypothesis H. Then there
exists ao > 0 such that spectrum a(s’) of the infinitesimal generator of _T(t) lies in
the left half-plane Re z _< -ao.

Proof. On C[-h, 0] x C[-h, 0] we define the bilinear Hermitian form

io(33) fl(b, 0) (Wx(t, c), x(t, 0))dt.

By the second corollary to Theorem 3 and Remark 5, it follows that fl is defined
on all C[-h, O] C[-h, 0] and that fl(b, b) _> 0 for all b. Since fl is Hermitian
and defined everywhere, it is evident that fl is continuous. Hence we can find
b > 0 such that

(34) 0 _<_ fl(b, 4)) _<_ bllb[I 2 for all qb e C[-h, 03.
Using the semigroup property of T(t) we have the identity

;ofl(T(t)dp, T(t)) (Wx(s, x,(dp)), x(s, x,(O) ds

;o(35) (Wx(s + t, 4)),x(s + t, O))ds

(Wx(s, dp), x(s, 0)) ds.
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Hence if q5 is in the domain of ’,

(36)

--(T(t)b, T(t, b)) fl(CT(t)qS, T(t)dp) + fl(T(t)b, .T(t))

-(Wx(t, ), x(t, 49))

)ff(T(t)b, T(t)dp).

Here is the continuous Hermitian form defined by

(37) (b, O) (WqS(O), O(O)).

Clearly because of the assumptions on W,

(38) 0 =< (4, ) -<_ wl 1 .
Hale and Meyer [3] have shown that the eigenvectors of 1 are of the form qS(s)

eZSc, where c is an n-vector and s I-h, 0]. Let 2 be an eigenvalue of and
c(s) eZSc, c - 0, a corresponding eigenvector. Then by (36),

(39) 2 Re 2fl(b, b) -(Wc, c) < 0,

which means that Re 2 < 0. Hence the spectrum of lies in the left half-plane
Rez < 0.

Notice that if Re 2 < 0, if tk(s) eZc and s [-h, 0], then

(40) q5 2 [C12 e(- 2Re2)h.

Thus using (36), (40) and the bounds on/3 and W, we can make the following
estimate on any eigenvalue and eigenvector of"

-2 Re 2l[bll2b >= -2 Re 2fl(qS, ) (Wc, c)
(41) > wllc] 2

wl q5e2(Re2)h 2

Hence

b e(2Re2)h
(42) _>

w -2 Re 2"

The inequality (42) establishes the lemma since there must exist a number 2ao > 0
such that

b/w >= e- xh/x
for all x __> 2ao. Thus -2 Re2 => 2ao or Re2 <_ -ao.

THEOREM 4. Let the control problem (1)-(2) satisfy Hypothesis H. Let
q5 6 C[-h, 0] be continuously differentiable. Then the solution satisfies the estimate

(43)

where a > 0, M => 1 are independent of the particular choice of d?.
Proof. By Lemma 2, the spectrum of the semigroup generated by the solution

of(31) lies in the left half-plane Re z <_ -ao. Hence the estimate (43) with a ao/2
follows directly from the work of Hale and Meyer [3, p. 38, Theorem 1].

A final word needs to be said concerning Hypothesis H. In [2], necessary and
sufficient conditions are given for the satisfaction of this hypothesis when the
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matrix D is zero (i.e., the retarded case). However, these conditions will not suffice
in the case of neutral equations, and it would be interesting to find reasonable
sufficient conditions for Hypothesis H to be valid. One obvious condition is that
the homogeneous system in (2) be uniformly asymptotically stable.

Thus the value J(0, qSto, to, ) < oe for all (])to in C[-h, 0], and Hypothesis H
holds.
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POSITIVITY CONDITIONS AND INSTABILITY CRITERIA FOR
FEEDBACK SYSTEMS*

RONALD A. SKOOG"

Abstract. An instability theorem is obtained for feedback systems which is analogous to the
"positive operator" theorem for L2-stability, and from this theorem instability counterparts to many
known stability criteria can be obtained. In particular, a counterpart to the circle criterion is given, and
results are given for systems with a time-varying gain with restricted rate of variation in the feedback
loop. The most significant feature of the result is that it allows one to use "multiplier" techniques to
obtain instability criteria.

1. Introduction. In this paper an instability theorem (Theorem 1) analogous
to the "positive operator theorem" [11, [14 for stability is obtained for negative
feedback systems of the type shown in Fig. 1. Of course, one cannot hope to

FIG. 1. A feedback system

prove instability by requiring G and H to be positive operators on L2(0, oo), since
this leads to stability. Rather, for the simplest case of Theorem 1 it is assumed that
G is a linear time invariant operator of the form

(1.1) (Gx)(t) gox(t) + g(t- z)x(z) dz

having a Laplace transform G(s) with Re G(jo) >= 0 for all o, and in addition G(s)
is assumed to have P - 0 poles in Re s > 0. Then, if H is a positive operator on
L2(0 oo) it is shown that there exists an input u e L2(0 oo) such that if e satisfies
the feedback equation

(1.2) e + HGe u,

then e
The main idea behind the proof of this result is fairly simple. The proof is by

contradiction, and thus one assumes that u and e are elements of L2(0, ct3 ), which
then implies that Ge L2(0 oo). The key step is to then show that there is a certain
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bounded noncausal mapping G,c of L2(-oo, oo) into itself with the property that
if GeL2(O, cz?), then Ge G,ce when e and Ge are viewed as elements of
L2(- oo, 0:3). As a result, it is shown that if e L2(0, oo) then, when e is viewed as
an element of L2(- oo, oo) with e(t) 0 for < 0, it must satisfy the equation

(1.3) e + HG,ce u.

The important point here is that (1.3) involves bounded mappings, and is thus
easier to deal with than (1.2). In particular, it is shown that there exists a
u e L2(- oe, oo) with u(t) 0 for < 0 such that (1.3) has no solution eLz(-
with e(t)= 0 for < 0. As a result, for this u, (1.2) can have no solution
e L2(0, oo).

The instability theorem described above is applied to the specific case when
H is a time varying gain to obtain explicit instability criteria. The first application
is to obtain an instability counterpart to the circle criterion. Results of this type
were first obtained by Brockett and Lee [3] using Lyapunov methods and by
Willems [13] using operator methods. The proof of Willems was simplified and
extended somewhat by Bergen and Takeda 1]. The result given here generalizes
those of [13] and [1] in that G is allowed to be an unbounded operator. Also, the
seemingly superfluous assumption used in [13] and [1] that (I + HG) has a causal
inverse on the extended space Lze(0 oo) is not required in the proofs given here.
This advantage has more to do with aesthetics than practicality. Nevertheless, it
justifies the remark that stability or instability and causality are two separate
issues, and should be treated independently from one another.

The second application of the instability theorem is to obtain an instability
counterpart to the stability theorems of Brockett and Forys [2], Gruber and
Willems [6], and Freedman [4]. The result given here is in line with that ofFreedman
in that it does not require the existence of a "multiplier" in the theorem statement.
Specifically, the result states that if H is defined by (Hx)(t) k(t)x(t) with < k(t)
< fl, and if G is a linear time invariant system such that the closed loop system has
the same number (not zero) of poles in Re s > 0 for all constant gains between
and fl, and either

[c(t) k(t) 1(1.4)
k(t) e <= a 1- -fi--

or

> a
k(t)- o

(1.5)
k(t) z ]’

where 0 =< a =< a,, a, depending on G, then the time-varying feedback system
is unstable. Thus, if/ is sufficiently small, stability or instability can be predicted
on the basis of the "frozen-time" systems, so long as the number, of poles in
Re s > 0 does not change. It has been shown by an example [12] that if the number
of poles in Re s > 0 does change, then no matter how slowly varying the system is,
the "frozen-time" systems can be unstable and the time-varying system stable.

Although the main instability theorem given here (Theorem 1) can be used
to obtain results such as the circle criterion for instability, its main utility lies in
proving results as in the second application described above. In these cases
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instability criteria are obtained by the introduction of certain "multipliers" to
create "positive" operators. It is in this direction that the previous methods of
proving instability are not applicable.

The reader is assumed to be familiar with Lp-spaces and the notion of ex-
tended spaces (in particular the extended L2(0 oe)-space L2e(0 o)). The reader
is referred to the works of Sandberg 111 and Zames 141 for these details. We recall
here two notions. The first is the truncation operator Pr. For x(. a real-valued
function and Te R, (Prx)(t)= x(t) for =< T and (Prx)(t)= 0 for > T. The
second notion is causality. A mapping H is called causal if and only if PrHPr
PrH for all T e R.

2. The main results. The feedback system to be considered is that shown in
Fig. 2. The system G is a linear time-invariant system which will be restricted to a
certain class defined as follows.

FIG. 2. Feedback system of Theorem

DEFINITION 1. The class of operators mapping L2e(0 oo) into itself are those
which can be represented by

(2.1) (Gf)(t) gof(t)+ g(t- z)f(z)dz,

where g(t) 0 for < 0 and has the form

(2.2) g(t) g(t) + g2(t),

with g L(O, ), ge- L(O, ) for all a >__ ao > O, and where the Laplace
transform G(s) of g2 given by

(2.3) G(s) g(t) e- dr, Re s >__ Oo,

is a rational function with a finite number of singularities and no singularities in
Re s __< 0. (Note that G(s) is defined by (2.3) only for Re s __> o, but since it is a
rational function, it is clear that it has a meromorphic continuation to the entire
complex plane).

From the conditions placed on Ga(s) it is clear that g(. has the form

(2.4) g2(t) 20i,jtj-1 e’, >= O,
i=lj=l

where i, and ai are complex numbers with Re a > 0 for all i. Thus it is possible
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to make a continuation of g2(t) to negative values of to obtain 2(t) defined by

(2.5) 2(t)
0, t>0.

It is observed that
With this construction of 2 it is now possible to associate with each G

a noncausal mapping G, of Lze(-, ) into itself as follows.
DEFINITION 2. For each G e define G, on L2e(- oo, oo) by

(2.6) (G,f)(t) gof(t)+ g(t- r,)f(r)dr ,(- r)f(r)dr,.

From the fact that
maps L(-oe, oe) into itself. The Laplace transform G.(s) of G, defined by

(2.7) G,c(s) go + gl(t) e -st dt 2(t) e -st dt

exists for -al < Re s < ao for some al >= 0 and is easily seen to be

(2.8) G,c(s) go + ((s),

where {(s) is the meromorphic continuation of

;o(2.9) ((s) g(t) e- dr, Re s > ro

Thus it is seen that G and G,c have the same Laplace transform, but with different
regions of convergence.

Our first theorem is the key result of this paper, and it plays a predominant
role in the proofs of the remaining theorems giving explicit instability criteria.
This result is analogous to the positive operator theorem for Lz-stability obtained
by Sandberg and Zames 11], 14.

THEORF.M 1. Let F, G, and H satisfy the following assumptions:
(a) G e and Re G(jco) >= 0 for all
(b) F is a causal mapping of L2(-oo oo) into itself, FO O, (Fxl Fx2,

X X2) k ]Ix x2[[ 2 and []Fx Fx2[ k2[[x x2[ jbr all X1, X2

L2(- o, o() and some k , k2 > O.
(C) (FGncX FGncX2,X x2) >____ 0 for all xl, x2 L2(-o, ct)), where

G, is as defined in Definition 2.
(d) H is a causal mapping of L2(-oct, ct) into itself, HO O, (Hxl Hx2,

xl-x2) >= llxl-x2]]2, and IIHxl HX21J <= fillxl x211 for all xl, x2
ff L2(-oo, o) and some , fi > O.
Then if G 4= G, (i.e., if G(s) has a singularity in Re s > 0), there exists some
U L2(0 G) such that if e L2e(O o) and satisfies
(2.10) (I + HFG)e u,

then e (d L2(0, o).
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Note that in the theorem statements, F and H were assumed to be causal
mappings 0t" L2(- oc, oc) into itself. For most syste’ms which are of interest, causal
mappings on L2(0, oe) can be extended to causal mappings on L2(-oe, ) in a
natural way (c.f. 131). Thus, there will generally be no difficulty in meeting these
conditions. Also note that (2.10) is viewed as an equation on L2e(0 o). This is
well-defined since a causal mapping of g2e(- o, o) into itself is also a causal
mapping of L2e(0 o) into itself.

The next result gives an explicit instability criteria for the system of Fig. 3, and
is an instability counterpart of the circle criterion. Results of this type were first
obtained by Brockett and Lee [31 using Lyapunov methods and by Willems [13
using operator methods. The result given below (Theorem 2) generalizes those in
[13 and [1] in that there G was restricted to being a bounded mapping of L2
into itself, while here G is allowed to be an unbounded operator on L2(0, o).

U

FG. 3. Feedback system with time-varying gain

For the feedback system of Fig. 3, let k(. be a real-valued function of t, and
denote by K the mapping (Kx)(t) k(t)x(t), where x(. is any real-valued func-
tion of t. Then the feedback equations for Fig. 3 are

(2.11) e + KGe u.

THEOREM 2. For the system ofFig. 3, let G e c5, G(s) have P poles in Re s > 0, and
+ e<= k(t)<=fl-eforsome>Oandallt.

Case (cz > O, fl > 0). If G(jco) does not intersect the closed disk D[a, fil (see
Fig. 4a) centered at (-(1/2)(1/ + 1/fl), O) with radius (1/2)(1/ 1/fl), and makes
N < clockwise encirclements of it as co goesfrom - to , and N =/: -P, then
there exists an input u e L2(0, ) such that ife is a solution of(2.11), then e

and Ge dfi L2(0 oo).

(a)

lmG

ReG

,7,,4) Im 6 .

FIG. 4. The disks D[cz, fl] of Theorem 2
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Case II (a < 0,/ > 0)./f G(jog) lies inside the open disk D(a, ) (see Fig. 4b)
and P. =/= O, then there exists an input u L2(0 (:x:)) such that if e is a solution of
(2.11), then Ge L2(0 o(3).

Note that in Case II it is not possible to conclude that e L2(0 0(3) but only
that the output y Ge is not in L2(0, ). The reason for this lies in the fact that
here k(t) is allowed to be equal to zero. As a result, for k(t) 0 it is seen from (2.11)
that e u and is therefore in L2(0 0(3). Also, it is possible for k(t) to approach
zero as -, oe at a sufficient rate that KGe L2(0 (Z)) even though Ge L2(0 0(3).
For this situation as well, it is seen from (2.11) that e e L2(0 o(3).

One further point is worth noting. The result of Case II has not been obtained
in any of the previous works on instability [31, [131, [11. This result cannot be
obtained by the methods used by Willems [13 or Bergen and Takeda [1 since
their methods of proof depend heavily on the condition that G be bounded on
L2(0 ct3) (i.e., G(s) can have no singularities in Re s > 0). Also, as mentioned
previously, the result of Case I generalizes those in [13] and [1] in that G is allowed
to be unbounded. Thus, Theorem 2 applies to systems having an unstable open
loop, whereas the results in [13] and [1] do not.

The next result (Theorem 3) gives an instability counterpart to stability
theorems of the type given by Brockett and Forys [2, Gruber and Willems [6;,
and Freedman [41 with regard to systems having slowly varying feedback gains.
Before giving the result some notation will be needed.

Let (. be a differentiable mapping of the real line into the interval (-n, n)
with limlol_. I(o9)l 0. Then define 7 by

(2.12) 7 _a_ n- max (o9)l,

and define f by

(2.13) f ___a min {w (o9)1 __<.(n 7)/3 for all [o9 __> w}.
THFOREM 3. For the system of Fig. 3, let G (#, G(s) have P poles in Re s > 0,

a + e < k(t) <= efor some e > 0 and all t, and let k(. be absolutely continuous.
Case (a > O, > 0). Assume G(jog) does not intersect the interval [-

-1/ on the real axis, and encircles it N times in the clockwise direction with
N4= -P.

Case II (a < 0,/3 > 0). Assume G(jog) does not intersect either the interval
(-oe, -1/ or [-l/a, o and P 4: O.
Then, with (o9)= arg [1 + flG(jo9)][1 + aG(jo9)3-1, 7 and f given by (2.12) and
(2.13), and

(2.14) a,
-n --m(o9) do9,

if there exists a a e (0, ,) such that either

(i) [(t)/(k(t) a) <__ 2a(1 -(k(t)- a)/(
O?"

(ii) fc(t)/(k(t) a) > -2o(1 -(k(t)- a)/(

holds for all >= to > O, there exists a u L2(O, oo) such that if e e L2e(O oo) is a
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solution of(2.11), then e La(O, o) and Ge Le(O c) for Case I, and Ge CLe(O, )
for Case II.

It should be noted from the proof of Theorem 3 (in particular (3.17)) that one
does not need to require k(. to be absolutely continuous for Theorem 3 to hold.
One can replace conditions (i) and (ii) above by

(i’) (fl k(t)/(k(t) ) e-t is monotone nonincreasing,
(ii’) (fl k(t)/(k(t) ) e is monotone nondecreasing,

and the conclusions still’hold. Thus in the case (i’), decreasing discontinuous
jumps are allowed, and in case (ii’), increasing discontinuous jumps are allowed.

3. Proofs. As discussed in the Introduction, the essential idea behind the
proof ofTheorem is the replacement of the unbounded operator G by the bounded
noncausal operator G,c defined in Definition 2. The next lemma is the key result
concerning G,c.

LEMMA 1. Let G f# and e L2(0 oo). IfGe L2(O, o), then Ge G,e, where
e and Ge are viewed as elements ofL2(-ct3, ).

The proof of Lemma is given in the Appendix. Before a proof of Theorem 1
can be given, one more lemma is needed.

LZMMA 2. Let F, G, and H satisfy the assumptions of Theorem 1. Then
(I + HFG,c) has a noncausal inverse on L2(-oo ct3), and PT(I + HFG,c) -1

(I PT) =/= 0 for all T’e R.
The proof of Lemma 2 is given in the Appendix. It should be noted here that

if F and H are linear operators, the noncausality of (I + HFG,)-1 implies that
PT(I + HFG,c)-I(I- PT)4: O. However, for nonlinear operators this is no
longer the case.

We are now in a position to give the following proof.
Proof of Theorem 1. If there exists an e e L2(0 ct3) satisfying (2.10) for a given

u L2(0 oo), then Gee Le(O, o). Indeed, from the causality and positivity con-

ditions on F and H and the Schwarz inequality, it follows that for any x Lee(O, o),

(3.)

and

(3.2)

IIPTFxll k IIPTxII

IIPTHxl IIPTxlI.

Thus if x g2(0, cz3), limr_.o IIPTFxll and limr_ IIPTHxll are unbounded and
thus Fx L2(0, oe) and Hx L2(0, oe). Hence if Ge L2(0, c), then HFGe
L2(0, ), and e e L2(0, ) could not satisfy (2.10) when u e L2(0, oe). Therefore,

it is seen that Ge L2(0, ), and from Lemma 1 it follows that Ge G,ce. As a
result, e viewed as an element of L2(-, oe) with e(t) 0 for < 0 must be a
solution of

(3.3) (I + HFG,)e u,

where u is viewed as an element of L2(--o:3, oo) with u(t)= 0 for < 0. It will
now be shown that there exists a fie L2(- ct3, o3) with fi(t) 0 for < 0 such that
if e e L2(-oc, oc) and satisfies (3.3) with u , then Poe 4 O. Thus, for u fi in
(2.10), there can be no solution e
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From Lemma 2 it is seen that (I + HFG,,.) is invertible on L2(-.., c,)) and
Pr(I + HFG,c)-1(1 Pr) = 0 for all T e R. Thus, there exists a fie L2(-c,
with Pofi =0, (i.e., fi(t)=0 for <0) such that Pog’4=0, where 0=(I
+ HFG,c)-1ft. Furthermore, e 0 is the only solution of (3.3) in L2(-oo, c)
with u ft. Therefore, there exists a u L2(- o, ego) with Pou 0 for which there
is no solution e e L2(-oo, oo) with Poe 0. Hence it follows that for this u there
is no solution e L2(0 oo) of (2.10), and thus if e e Lze(0, oo) satisfies (2.10), then
eqL2(O, ct) ). Q.E.D.

The next result to be proved is Theorem 2. The proof simply involves a change
of variables which puts the feedback equations in a form to which Theorem
applies.

Proof of Theorem 2. First add and subtract zG from (2.11) to obtain

(3.4) (I + oG)e + (K z)Ge u.

Now, since G e it follows (cf. [8, pp. 141--150]) that for some ao > 0 there
exists a function h where h e-t e LI(O, ) and a constant ho such that (I +
has a causal inverse on the weighted Lz-space

C2(0 oo;e-’) {Jle-’’f e L2(0

and this inverse is given by

(3.5) [(I + oG)-lxl(t hox(t + h(t r)x(’r)d’c.

Clearly, this inverse of (1 + zG) can be extended to L2e(0 o). From the encircle-
ment conditions on G(jo9) it follows that inf_, <o,<, I1 + G(j’og)I 4:0 and that
(1 + G(s))- has P + N poles in Re s > 0 for Case and P poles in Re s > 0 for
Case II. Thus, (1 + zG)-l ,.

Let g (I + zG)e, so that (3.4) becomes

(3.6) O + (K oOG(I + eG)--1 U.

Next, add and subtract (1/(fl cz))[K e] from (3.6) to obtain

(3.7) O + EK ][1 + G][I / G]- - u.

From the conditions on K, it is seen that [,81- K] has a causal inverse on

L2(0 oo), and hence also on L2(0, oo), given by

(3.8) (El;I- K]x)(t)=---x(t).

Thus, applying [flI K]-1 to both sides of (3.7) yields

(3.9) e* + K*G*e* u*,

where

(3.10a) e* (1/(fl

(3.lOb) u* (flI K)- ’u,
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(3.10c) K* (flI K)-I(K 00,

(3.10d) G*= (I + flG)(I + zG)-l.

Equation (3.9) satisfies the conditions of Theorem for the bilinear mapping
r/ (1 +/z)/(1 + zz) maps the disk D[c,/ onto the half-plane Re r/ < 0 for
e > 0 and onto the half-plane Re q >= 0 for < 0, so Re G*(jco) >= 0 for all 09.

Also, K* is given by (K*x)(t) k*(t)x(t), where k*(t) (k(t) )/( k(t)). Thus,
there exists some : > 0 such that e < k*(t) < 1/e. Finally, note that G* (1
(I + G)-1 +/3/, so G*(s) has the same number of poles in Re s > 0 as does

(I + zG(s))-
From Theorem it then follows that there exists a u*e L2(0, oo) such that

if e* is a solution of (3.9), then e* L2(0, o0). This in turn implies that there is a
u e L2(0, oo) such that e L2(0, oo). For Case it is easily seen from (2.11) and the
positivity of K that e e L2(0 ) if and only if Gee L2(0 ct3). Since (I + eG)e
and L2(0, ), it then follows that eCL2(0 cz3) and Ge . L2(0 ct3). For Case II
it follows from (2.11) that ee L2(0 c5)ifand only ifKGee L2(0 oo). Ifee L2(0 ct3),
then from (I + oG)e it follows that GeCL2(O, c). If e CL2(0 ), then
KGe L2(0 )and thus from the boundedness ofK one has Ge L2(0, ). Q.E.D.

It remains to prove Theorem 3. Before giving the proof of Theorem 3 the
following lemma due to Freedman [41 will be needed.

LEMMA 3 [4]. Let h e LI(- , ), ho e R, and H(jco)

_
h(t) e -’t dt.

Further let (I)(co) arg H(jco) + ho] and assume I(o)1 < for all co. Then with
7, f2, and a, given by (2.12) to (2.14), for any a e [0, a,) there is a y( in LI(0 oo) such
that with

Z(s) + y(t) e -at e -’ dt,

the jbllowing hold"
(i) Re {Z(jco a)} __> 6 > 0 .for all co,
(ii) Re {Z(jco)[H(jco) + hol > 6 > 0 for all co.

It is remarked that in [4], the above result was stated for he LI(0, c) however,
from the proof it is clear that it holds as well for h e LI(- c, c).

Proofof Theorem 3. Make the same transformation of variables as in the proof
of Theorem 2 to obtain (3.9). Since the bilinear map r/= (1 +/z)/(1 + 0z) maps
the line segment Re z e [- 1//3, l/a] onto Im q 0, Re 2 _>_ 0 when e < 0, it
follows from the assumptions in Case and Case II that }arg G*(jco)l > rc for
all co. Also, since G* e a there is associated with G* a G,*c as defined by Definition 2.
Thus, there is an h0 and h e Ll(-c, ) such that G*(jco) H(jco) + ho, and
hence by Lemma 3 there exists a causal mapping Z of L2(0 ct3) into itself given by

(3.12) (Zx)(t) x(t) + y(t- r)e-(t-)x(r)d,

where ),eLI(0 oo), such that Re {Z(jco)G*(jco)} _>_ 6 > 0 and Re{Z(jco- r)}
>6>0.

Since y e L 1(0, c), it is seen that Z(s) is analytic for Re s -a, and thus
since Re Z(jco a) => 6 > 0, it follows from the maximum modulus theorem [7]
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that infRe >_ _.[Z(s)[ 0 and hence that Z has a causal inverse on L2(0 oo) of the
form

(3.13) (Z- lx)(t) qox(t) + q(t z)x(r) dr,

with q e", LI(0, c) (cf. [8]). Also, since Z(j03 a) is bounded and Re Z(j03 a)
> 0, it follows that Z-l(s) is analytic for Re s >= -a and Re {Z-I(j03- a)}
>= fl > 0 for all 03.

Now, rewrite (3.9) as follows"

(3.14) e* + (K’Z-)(ZG*)e* u*.

It is clear that ZG* e (, and from the above it is seen that Re {Z(j03)G*(j03)} >_ 0
for all 03, and hence ZG* satisfies the conditions for G of Theorem 1.

It will now be shown that if (i) holds, then K’Z- is a positive operator on
L2(- t3 ). First of all, K* is extended to a mapping of L2(- v, ) into itself
by defining k*(.) to be (note that this does not effect the solution of (3.9) for
t>=0)

(3.15) k*(t)

fl- k(t)
k(O o’ t>_0,

t<O.

Since Z- is defined by a convolution, it has a natural extension to L2(- o, ).
Then for any x L2(-ct), ),

(3.16)

(K’Z- 1x, x> k*(t)x(t)(Z- ’x)(t) dt

lim k*(t)e-2tx(t)e2’(Z-lx)(t)dt.
Too

Now condition (i) implies that k*(t)e -2’ is monotone nonincreasing for > 0,
and from (3.15) it is seen that k*(t) e -2"t is constant for < 0. Integrating (3.16) by
parts gives

(k’Z- ix, x) lim k*(T) e-2r x(t) e2t(Z Xx)(t) dt

(3.17) -;;oo I.f:oo dtI d[k*(z) *]}.x(t) e"(z ix)(0 e -e

Now, since Z- is causal and Re{Z-(jm-)} fl>0, it follows from
Parseval’s theorem that

x(t) e2a’(Z Xx)(t) dt Z-1(j03 a)[gr(jo a)l 2 doo

flllPTXl] 2,

where 2T(S denotes the Laplace transform of PTx. Thus using (3.18), the fact
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that k*(t) __> e > 0, and k*(t)e-2, is nonincreasing with (3.17), it is seen that

(3.19) (K’Z- ix, x) >= llxll
for some > 0.

Finally, taking F I, G Z- 1G*, and H K’Z- in Theorem 1, it follows
that there exists a u* L2(0, oo) such that if e* satisfies (3.14), then e* q L2(0, ),
and this in turn implies the existence of a u L2(0, oo) satisfying the conclusion of
the theorem.

The proof of the theorem when (ii) holds is similar to the above except that
in lieu of (3.14), one applies Z-1 to both sides of (3.9) to obtain

(3.20) Z-e* + (Z-K*)(G*Z)Z-le* Z-u*.

Condition (ii) implies that k*(t)eTM is monotone nondecreasing, so (1/k*(t))e -2t
is monotone nonincreasing. Using this fact and the properties ofZ- , it is shown as
above that Z-IK* is positive. The remaining details are omitted. Q.E.D.

4. Concluding remarks. An instability theorem (Theorem 1) analogous to
the positive operator theorem for stability has been obtained, and this result has
been used to prove the instability counterparts of the circle criterion (Theorem 2)
and a criterion with restricted rate of gain variation (Theorem 3). The method
employed here for proving instability allows one to deal with a much wider class
of systems than did previous methods, in that unbounded operators can be handled,
and also multiplier techniques can be employed in obtaining explicit instability
criteria.

Although a majority of the stability criteria proved using multiplier tech-
niques can now, through the use of Theorem 1, be given instability counterparts,
it is not true in general. In particular, the results of Freedman and Zames I53 do
not carry over. The reason for this is that although when G is a positive causal
operator and k(.) is a monotone decreasing gain the operator KG is positive
(where (Kx)(t) k(t)x(t)), this is no longer the case if G is noncausal. As a result,
the factorizations used in [5] will not yield a positive operator when G,c is used in
place of G. At this point, it is a perplexing question as to whether this is a result of
the method of analysis or if the instability counterpart to the result in 51 is simply
not true. Most would probably conjecture that it is the method of analysis which
is at fault.

Another deficiency in the methods used here is that the instability circle
criterion for nonlinearities in the feedback path cannot be handled satisfactorily.
One can easily extend Theorem 2 to cover the case of a time-varying nonlinearity
f(., t) satisfying elx Yl < If(x, t)- f(y, t)l </lx Yl but not to the case
< f(x, t)/x </, which has been handled successfully in [1] and [3]. Also, counter-

parts to the results of O’Shea [10 and Zames and Falb [15] cannot be obtained.
The reason for this deficiency lies in the fact that the proof of Theorem 1 relies on
the inverse of I + HG,c existing on Lz(-Ct3, oo), and therefore incremental
bounds on nonlinearities are needed. For finite-dimensional systems, this presents
no problem since one can linearize and prove instability locally.

To end on a more positive note, it is pointed out that one need not assume
anything (such as having a causal inverse) about the behavior of the operator
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(I + HG) on the extended space L2e(O, or). In fact one does not even need to deal
with Lze(0 (x3), but can make the domain of the operator as large as is desired
(e.g., measurable functiong). For recalling the proof of Theorem 1, it was shown
that if e lies in the domain of (I + HG) and satisfies (I + HG)e u for a certain
U G L2(0 ct3), then e L2(0, o).

Appendix.
Proof ofLemma 1. From (2.1), (2.2), and (2.6) it is seen that, with e(t) 0 for

< O, Ge G,ce if and only if

(A.la) g2(t- r)e(r)dr 2(t- r)e(r) dr, => 0,

(A.1 b) 0 2(t z)e(z) dr, < O.

This is equivalent to the condition

(A.2) 2(t- z)e(r) dr O, - < < ,
where 2(t) g2(t) + 2(t)(note" g2(t) 0 for < 0 and 2(t) 0 for > 0).

Let y Ge, so by assumption y L2(0 ). The Laplace transform of y is

(A.3) Y(s) G(s)E(s),

where E(s) is the Laplace transform of e. The region of convergence for G(s) is
Re s > a0, and for E(s) it is Re s > 0. Thus Y(s) is well-defined for Re s > ao.
However, since y L2(0 ct3) it follows that (s) is analytic in Re s > 0. Thus if
G(s) has an lith order pole at s ai with Re ai > 0, then E(s) must have at least
and lith order zero at s ai. Thus for q =< li 1,

dqE(s)
(A.4) (- r) e-aire(’c) dT,

ds

Hence, for q <= 1,

(A.5) fo
and since

(t "C)a eai(t-r)e(’c) dr O,

2(t) ai,jtj-1 ei’,
i=lj=l

it then follows from (2.16) that

o
2(t z)e(z) dz 0

for all t.

Proof of Lemma 2. Two preliminary lemmas are required for the proof of
Lemma 2.

LEMMA 4. Let Q be a mapping of L2(-v, or) into itself and be a contraction

(i.e., [[Qx -QxzI[ =< 711xl- Xzll for all X1,X2 G L2(--(3 o:3) and some 7 < 1).
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Then I + Q is invertible on L2(-x3, o), and if PTQ(I PT) 4: Ofor some T, then
PT(I + Q)-1(1 PT) 4: O.

Proof The fact that I + Q has an inverse if Q is a contraction is well known
(cf. [9] and note that L2(-, t3) is complete). To prove the remainder of the
lemma, note that since PTQ(I PT) : O, there exists some x e L2(-t3, t3) with

PTX 0 and PTQX 4: O. Let y x + Qx, so PTY 4: O, and let 2 be given by
2 (I + Q)-1(1 PT)Y. It will be shown that PT2 4:0 and hence that PT(I
+Q)-1(1 PT):/: O.

Since

(A.6) (I / Q)x y

and

(A.7) (I + Q)2 (I- PT)Y,

subtracting (A.2) from (A.1) gives

(a.8) (x 2) + Qx Q2 PTY.
Thus, from (A.8),

(X 2,PTy) (x 2,x 2 + Qx-

x-212 + (x-2, Qx-

(a.9) _>_ x-2 2_ I(x-2, Qx- Q2)I

>__ x-)t12-11x-)t (2x-

>__ (1 )llx )t 12.
Also, from (A.8) it is seen that 2 va x since PTY 4 O. Thus, from (A.9), (x 2,
PTY) --(PT2, Pr Y) > 0 and thus PT2 4: O. Q.E.D.

LEMMA 5. Let G and F satisfy the assumptions in Theorem 1. Then (I + FG,c)
has a noncausal inverse on L2(-oo, oo), and in fact, PT(I + FG,c)-1(1 PT) g= 0
for all T e R.

Proof Consider the equation

(A.10) (I + FG,c)e u.

It will be first shown that (A.10) has a unique solution in L2(-oo, oo) for every
u e L2(- c, oo), and hence that (I + FG,)- exists on L2(- oo, oo). Add and sub-
tract cG, from (A.10) with c > 0 to obtain

(A.11) (I + cG,)e + (F cI)G,ce u.

From the fact that Re G,(jco) >= 0 for all co, it follows that [1 + cG,c(jCo)]-1 is
bounded and thus defines a mapping of L2(-c, oo) into itself [8], namely,
(I + cG,c)- 1. Also, since G,c(S has poles in Re s > 0 and Re [1 + cG,c(joo)] > O,
it follows easily from the principle of the argument [7] that [1 + cG,c(S)]-1 has
poles in Re s > 0, and hence that [I + cG,c]-1 is noncausal.

Having established that (I + cG,c) has a noncausal inverse, let , (1 + G,)e
so that (A.11) becomes

(A.12) + (F cI)6,(I + cG,c )- 1 u.
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Note that since I- (I + cGnc)-1= cG,,c(I + cGnc) -1, it follows that G,c(I
+ cG,c)- is noncausal. It will now be shown that for c sufficiently large, Q (F

cI)G,c(I + cG,,)-1 is a contraction. First of all,

(A.13) IlG,c(I + cG,c)-’ll sup IG,c(JO3)( + cG,c(jCo)) -’l <= 1/c,

where denotes the induced norm on mappings of L2(-ct3, oo) into itself.
Secondly, for all xl, x2

(F cI)x

(a.14)

Thus

(F cI)x 2
2

2 2c(Fx Fx2 x x2)
_

c2 2Fx Fx2 Ilx X2

<= (k2 2ck + c2)11xl x2[] 2.

QX

(A.15)

Qx 2
2 (1/c2)(k 2ckl + c2)llXl

2kl kl 2---+ x --x
C2 2

C

For c sufficiently large, (1- 2kl/C + k/c2) < 1, and hence Q (F- cI)G,c
(I + cG,c)-1 is a contraction.

Since Q is a contraction for c sufficiently large, I + Q is invertible on
L2(- ct), c) for c sufficiently large. Further, since e (I + CG,c)- 10, it then follows
that I + FG,c is also invertible, and in fact

(A.16) (I + FGnc) -1 (I + cG,,)-1(1 + Q)-I.

It remains to be shown that P(1 + FG,,)-I(I Pr) 0 for all T R. As
shown above, G,,(1 + cG,,c)-1 is noncausal. Since it is a linear time-invariant
operator, it is easily seen that PG,(1 + cG,,c)- 1(1 P) 0 for all T R. Then,
for c > k2, PrQ(l P) O. Indeed, since F is causal,

(A.17) PTQ(I PT)= PT[F cI]PTG.c(I + CGnc)-l(I PT),

and for any x e L2(-oo, oo),

(Pr(F cI)Prx, Prx) (FPrx, Prx) c Prx 2

(A.18) =< (k2 c) PTX 12,

and thus for c > k2, PT(F cI)PTX 0 if and only if PTx 0. Therefore, since

PTG,,c(I / cG,c)- (I PT) : O, it follows from (A.17) that PTQ(I PT) O.
Lemma 4 then establishes that PT(I + Q)-(I Pr) :/= O, and thus for every T
there exists a u e L2(-, ) with PTu 0 and PrO 4: 0, where 0 satisfies (A.12).
Finally, it can be concluded that the corresponding solution e of (A.10) satisfies

PTe :/: O. For suppose PTe 0. Then PTFG,e 0, and since F is causal and
{PTFPTG,ce, PTG,e) >= k PwG,cel, it then follows that PwGne--O. But
O e + cG,e, so Pro PTe / cPrG,ce 0, giving a contradiction. Hence if

PTO O, then PTe =/:: O, and therefore PT(I / FG.c )- 1(1 PT) :/: 0 for all
TeR. Q.E.D.
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From Lemmas 4 and 5, the proof of Lemma 2 can now be given. Consider the
equation

(A.19) (I + HFG,c)e u,

and add and subtract cFG,ce to obtain

(A.20) (I + cFG,)e + (H cI)FG,e u.

Now from Lemma 5 it is known that (I + cFG,) has an inverse on
L2(-, ) and satisfies PT(I + cFG,)-I(I Pv) : 0 for all Te R. Thus let

(I + cFG,c)e so that (A.20) becomes

(A.21) + (H cI)FGn(I + CFGn)- u.

The remainder of the proof proceeds in precisely the same manner as that of
Lemma 5. It is only necessary to show that PrW(I Pr) 0 and ]Wx Wx2
< (1/c)]]x x21 for all x 1,x2 eL2(-, ), where W=FG,c(I + cFG,c) -.
To show PrW(I PT) : O, simply observe that W -(1/c)I (I + cFG,)- 1,
and hence that PW(I Pz) -(1/c)Pz(I + cFGnc)-l(I Pr) : O.

To show ]lWx Wxzll <- (1/c)llxl xz] let xl,x2 L2(-, ) and
define Yi and e (i l, 2) by

(A.22)

(A.23)

Then

(A.24)

Yi FGn(I + cFGnc)-lxi,
e (I + cFG,.)- 1Xi.

(Yl Y2, (Xl CYl) (X2 cY2) (FG,el FGnce2, el e2 >- O,

where condition (c) of Theorem has been used to obtain the inequality. Using
the Schwarz inequality it then follows from (A.24) that

(A.25) IIYl Y211 IlXl x211 _-> Yl Yz,Xa x2 cllYl Y2112,
and thus IIWx Wx211 < (1/c)llXl Xzll. Q.E.D.

REFERENCES

[1] A. R. BERGEN AND S. TAKEDA, On instability offeedback systems with a single nonlinear time-

varying gain, IEEE Trans. Automatic Control, 16 (1971), pp. 462-464.
[2] R. W. Bocl<’rr AYD L. J. Fos, On the stability of systems containing a time-varying gain,

Proc. 2nd Allerton Conference on Circuit and System Theory, Univ. of Illinois, Urbana,
1964.

[31 R.W. BrOCKTT AND H. B. L, Frequency domain instability criteriafor time-varying andnonlinear
systems, Proc. IEEE, 55 (1965), pp. 604-619.

[4] M. I. Fe,DMAN, L2-stability of time-varying systems--Construction of multipliers with prescribed
phase characteristics, this Journal, 6 (1968), pp. 559-578.

[5] M. I. FREEDMAN AND G. ZAMES, Logarithmic variation criteria for the stability of systems with
time-varying gains, this Journal, 6 (1968), pp. 487-507.

[6] M. GuE AND J. L. WILLEMS, On a generalization of the circle criterion, Proc. 4th Allerton
Conference on Circuit and System Theory, Univ. of Illinois, Urbana, 1966, pp. 827-848.

[7] E. HLL, Analytic Function Theory, vol. I, Ginn, New York, 1959.
[8] E. HLLE AND R. S. PHILLIPS, Functional Analysis and Semi-Groups, vol. 31, 2nd ed., Colloquium

Publications, American Mathematical Society, Providence, R.I., 1957.



98 RONALD A. SKOOG

[9] A. N. KOLMOGOROV AND S. V. FOMIN, Functional Analysis, vol. I Graylock Press, New York,
1957.

[10] R. P. O’SHEA, A combined frequency-time domain stability criterion for autonomous continuous

systems, IEEE Trans. Automatic Control, AC-11 (1966), pp. 477-484.
[11] I. W. SANDBV.RG, Some results on the theory ofphysical systems governed by nonlinear jhnctional

equations, Bell System Tech. J., 43 (1965), pp. 871-898.
[12] R. A. SKOOG, Instability of slowly varying systems, IEEE Trans. Automatic Control, AC-17

(1972), pp. 86-92.
[13] J. C. WIILMS, Stability, instability, invertibility, and causality, this Journal, 7 (1969), pp. 645-

671.
[14] G. ZMeS, On the input-output stability of time-varying nonlinear feedback systems, Part I."

Conditions derived using concepts of loop gain, conicity, and positivity. Part II." Conditions
involving circles in the frequency plane and scalar nonlinearities, IEEE Trans. Automatic
Control, 11 (1966), pp. 228-239, 465-476.

[15] G. ZAMS AND P. L. F,IB, Stability conditions for systems with monotone and slope-restricted
nonlinearities, this Journal, 6 (1968), pp. 89-108.



SlAM J. CONTROL
Volume 12, No. 1, February 1974

ON THE EXISTENCE OF MOMENTS
OF STATIONARY LINEAR SYSTEMS WITH

MULTIPLICATIVE NOISE*

U. G. HAUSSMANNf

Abstract. Conditions are derived under which a control system described by a linear stochastic
differential equation with multiplicative noise possesses a stationary probability distribution with
finite pth moment. Both the It6 and Stratonovich interpretations are considered.

1. Introduction. Consider the control system described by the stochastic
differential equation

(1.1) 2 Ax- Bu- C(u) + D(x)2 +
Here x is the state vector, u the control vector and k, 1,i;2, 23 are independent
Gaussian white noise disturbances. The matrices C(u) and D(x) are assumed to
be linear in their arguments, and hence these terms could model wide band
disturbances in the matrices A and B. Some applications of this equation are
given in [4].

A problem of some interest is to determine conditions under which the
corresponding process has a steady state for which the pth moment, i.e.
is finite. This is a type of stability, equivalent to Lagrange stability of deterministic
systems. In the case p 2, such a stability guarantees that there exists a control
minimizing the expected value of a quadratic cost criterion in the steady state
[13, [73, [8].

Usually (1.1) is interpreted in the sense of It6; however, it is well known that
actual physical processes described by a Langevin equation can best be approxi-
mated by equations interpreted in the sense of Stratonovich [5], [6]. In the present
article we extend results about the second moments known for the It6 equation
[1], [2], [3], [7], [8] to the Stratonovich equation, and then extend these results
to higher moments.

In [8] it is shown that if the noise is sufficiently small, then the second moment
is finite for (1.1) in the It6 sense. In [3] it is shown for the case D 0 that the same
conclusion holds if the system has suitable structure. After some preliminaries in
2, both these results are shown to hold in 3, when (1.1) is interpreted in the sense

of Stratonovich. In 4 it is shown that the same result holds for higher moments
for either interpretation. Finally, in 5 conditions on the structure of the system
are given to guarantee finite the pth moment for the case D 4: 0.

2. Some preliminaries. Consider the stochastic differential equation

(2.1) dx (Ax Bu) dt C(u) dw + D(x) dw2 -3t- E dw O,

[_" Ixil] 1/2where x is a vector in R’, Euclidean n-space with norm I1 _-
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n >__ 2, u is in Rm, and wl, w2 142 3 are independent Wiener processes of dimensions
d l, d2, d3 respectively. C(u) and D(x) are given by

C(u) , Cu,
i=1

D(x)-- )’ Dixi,
i=1

and A, B, Ci, Di, E are real constant matrices of corresponding dimensions.
Hence D, C are linear operators mapping R" (resp. Rm) into the space of n d2

(resp. n d l)matrices.
If in (2.1), u has the form u Kx and the random variable x(0) is independent

of the increments of the Wiener processes, then (2.1) determines a diffusion process

(2.2) Xr {x(t)’t >= 0}.
Here we have assumed that the stochastic integrals implicit in (2.1) are taken in
the sense of It6. If they are taken in the sense of Stratonovich [5], then a different
diffusion process results,

(2.3) : {x(t)’t >= 0}.
Although the Stratonovich interpretation of (2.1) is more meaningful

physically, since it is the limit of a suitable sequence of Langevin equations [6];
the It6 interpretation is easier to treat mathematically. In view of this we observe
that the process X also satisfies the ltO equation

(2.4) dx (x (K)u) dt C(u) dWl + D(x) dw2 + E dw3,

with u=Kx, where =A +1/21(j)2, /(K)=B-fl(K). Here
(Dk)ij fl(K) 1/2 ’_ CjKCj, and (Cj)ik (Ck)ij (see [5]).
Let 5r be the differential operator given by

(2.5) KV(x)= 1/2x’[A(Vxx) + K’r(Vxx)K]x + x’(A BK)’V + 1/2 tr(E’VxxE),
where tr M is the trace of M, V is the vector c3 V/cx, and Vxx is the matrix 2 V/X2.
x’ denotes the transposeofx. Moreover, A(P)ij tr (D’iPDj) and F(P)i tr (C’iPCj).
Similarly, let 5: be given by

(2.6) LV(x) x [A(Vx,)+ K’F(V)K]x + x’( (K)K)’Vx + 1/2tr(E’VxxE).
Then 5/ and 5g are the differential generators ofX and X respectively.

We shall say that #, a probability measure on the Borel sets of R", is invariant
provided that x(t) has distribution /, > 0, whenever x(0) has distribution #.
Of interest is the pth moment of #, i.e.,

e.{ Ilxll} t- Ilxll(dx)"
"R

We wish to investigate conditions guaranteeing that there exist controls u Kx
such that for either X or /"

(i) the process admits at least one invariant probability measure;
(2.7)

(ii) all such invariant measures have finite pth moment.
The case ofX with p 2 and D 0 was discussed in [3].
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3. Existence of second moments for ’K In [1], [8 it is shown that there
exists a control u Kx such that the process XK satisfies (2.7) with p 2 provided

(3.1) inf e(-KY[A(I) + K’F(I)K e-dt < 1,

where {K’A BK is stable}. By definition if(A, B) is stabilizable.
The same method applied to (2.4) yields that there exists a control u Kx such
that the process 2K satisfies (2.7) with p 2 provided

(3.2) inf et’- [(K)K)’[A(I) nt- K’F(I)K] et- (K)K) dt < 1,

where af? {K ", -/(K) is stable}.
Moreover, if (A, B) is stabilizable, and if IlC[I and liD are sufficiently small,

then o,U 4= . Hence assuming (A, B) is stabilizable, we again have that if the
noise intensity is sufficiently small, then an invariant measure with finite second
moment exists.

However, just as in the case XK, we can do better if we assume D =- 0 (see [3]).
(2), the minimal polynomial of A, factors into (2)= +(2)_(2), where _(2)
has all zeros in the half-plane Re (2) < 0, and +(2) has all zeros in Re (2) _> 0. Put

(3.3)

Next define

_+(A) {x g" _+(A)x 0}.

// Y/" Bu u E Rm, u e Y/’,j 1,2, dl}
Bu’u e Rm, Image C(u) c }.

Let No -(A) and

Mi+, span {Mi, x, Ax, A"- 1x "x G_ //(i)},

THEOREM 3.1. If m R", then there exists a control u Kx such that the
process "K satisfies (2.7) with p 2.

It should be observed that this theorem is the same as Theorem 3.7 in [3].
Hence if ,, R", then invariant probability measures exist and they have finite
second moment irrespective of whether (2.1) is interpreted in the sense of It6 or
in the sense of Stratonovich. Of course the associated control problem (cf. [1], [7])
can no longer be solved as easily with the Stratonovich interpretation as it could
be with the It6 interpretation.

The proof of the theorem is the same as that of Theorem 3.7 in [3], if we
proceed as follows. Let T_+ be the projection of R" onto c_+(A) along 5(A).
Then T+_A AT+_ A+_. It follows that A_ restricted to 5_(A) is stable. Put
x + T+ x, B + (K) T+ B(K), C + (u) T_+ C(u), E +_ T+_ E. Then (2.4) decomposes
into

dx_ A_x_ B_(K)u] dt- C_(u)dwl + E_ dw3,

(3.4) dx+ [A+x+ B+(K)u]dt’- C+(u) dw + E+ dw3.

IfK is of the form K K+T+, i.e., u Kx K+x+, then

B+(K) /+(K+)= B+ fl+(K+),
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where

Here C + (u) , T+ C,u, , (C +),u,, and (+)j is derived from (C +), just as

C is from Ci. Hence with such a control, (3.4) has exactly the same form as (2.4).
is known 3, Lemma 3.1 that a control as required by the theorem exists, provided

that there exist real matrices P _>_ 0 (i.e., nonnegative definite and symmetric)
and K + and positive constants 2+ and p + such that for all x + 5+(A),

K+ + + +

Here +K+ is the operator as defined in (2.6) with + subscripts on K, F, A, B,
Ci, E and D 0; hence it is the differential generator of the process described by
(3.4) with u K +x +.

As in [3] we try to stabilize A + using controls u in Y, the kernel of C +(-).
Assume R"2 is isomorphic to R"/Y and let S be a linear map of Rm2 into R
with the image of S being complementary to . Then u K + x + can be written as

u Klx+ + Su2,
where K ix + V and u2 e R". Hence

dx+ (A+ B+K)x+ dt + +(K+)Kx+ dt
(3.5)

(B+ fl+(K+))Su2 dt C+(Su2)dw q- E+ dw3.

As Kx + 6 A/’, then fl +(K +)Kx + 0. Put E2 E + C2(u2) C +(Stt2) B2

u2 K’x2 ThenB+S, A2 A+ B+K,x2 x+,

fl + (K +)S fl + (K’ + SE,)S fl + (SE,)S
where f12 is derived from C2 exactly as fl is from C. Then (3.5) becomes

(3.6) dx2 (A2x2 /2(K’)u2) dt C2(u2) dwl + E2 dw3.

This has the same form as (2.4) and so we can repeat the process. Now we can
follow the method in [3] to complete the proof.

For the process XK we were able to show that if ,, - R" and if the noise is
sufficiently large, then all second moments must be infinite. In the present case the
proof breaks down, although one would certainly expect the result to hold.

4. Existence of higher moments. It is known [3, that if there exist a function
V(x) and positive constants k, p such that

(4.1) ’u,V(x) k- pllxll ,
then the process X satisfies (2.7). If we set V(x) (x’Px) for P > 0 with q >= 1,
then just as in the proof of [3, Thm. 4.3],

u,V(x) _< q(x’Px)q- {(2q 1) tr(E’PE)
(4.2)

+ x’[(Zq 1)(A(P)+ K’F(P)K) + (A BK)’P + P(A BK)]x}.
But

(4.3)
q(x’Px)- ’x’[(2q 1)(A(P) + K’F(P)K) + (A BK)’P + P(A BK)]x-- --DO X 2q,
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Po > 0, if and only if for some Q > 0,

(4.4) (2q 1)(A(P)+ K’F(P)K) + (A BK)’P + P(A BK) + Q O.

In this case (4.2) implies (4.1) with p po/2 and with

k pl-qq(2q 1) P q-1 tr (E’PE)].
Combining this with Lemma 3.1 from [7] and setting p 2q we have the following.

LEMMA 4.1. If

(4.5) inf e,( :I’[A(I) + K’F(I)K e" ) dt < (p 1)- ,
then there exists a control u Kx such that the process XK satisfies (2.7) with
p>_2.

We observe that the same result holds for the process XK, if(4.5) is replaced by

(4.6) in e’(-(Kl)[A(I) + K’F(I)K] et(a-()) dt <(p-- 1) -1

Moreover, the methods of Ill, [3] and the previous section yield further information
in the case A =- O.

THEOREM 4.2. If m R", then there exists a control u Kx such that both
XK and K satisfy (2.7)for any p >= 2.

The proof of this theorem proceeds as in [3] for X:, and as in the previous
section for :. As the equivalent of Lemma 3.1 of [3] one needs to show that if
there is a mapping P+ of o+ (A) onto itself satisfying (4.4) on +(A), then there is a
mapping P of R" onto itself satisfying (4.4) on all of R". On 5T_(A), A A_ is
stable, and so (4.4) can be solved for P_ with Q I, K 0 (A 0). Let V(x)

x’Px =_ x’+P+x+ + x’_P_x_. Mixing notation from (4.18) of [1], we see that
the left side of (4.3)is

q(x’Px)- {(2q 1)x’+ K’+ [F(T’+ P+ T+ + fir’(T’_ P_ T_)]K + x +

+ x’+[(A+ T+BK+)’P+ + P+(A+ T+BK+)]x+

+ fix’_[A’_P_ + P_A_]x_ 2flx’+(T_BK+)’P_x_}
<-- q(x’Px)q- 1/91 x 2

if fl > 0 is sufficiently small as in (4.18) of [1 ]. Hence P satisfies (4.3) and conse-
quently (4.4).

The remainder of the proof is exactly the same as in [3] for the case p 2.

5. Further results for state-dependent noise. We shall now give some results for
the case D 4:0 analogous to Theorems 3.1 and 4.2; that is, we shall prove the
existence of controls u such that the corresponding process satisfies (2.7) without
requiring the noise to be small. Again we rely on the results of I1, 4]. We assume
that C O. The basic idea is as follows. Let U0 be the kernel of D. Suppose there
exists a matrix K such that Uo is invariant under A BK, i.e., if x is in Uo then
so is (A BK)x, and such that ,A/ is a subset of

_
(A BK) (cf. (3.3)). R" can be

split into Uo and R"/.o. Now the proof of Theorem 4.1 of [1] goes through.
(There is an extra term of the form y’Fz in (4.18) since ,Ao need not decompose
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R" relative to A BK.) The condition (4.8) of [1] is satisfied since it pertains to
A on Uo, i.e.,A_(/) 0. Finally to satisfy condition (4.9)of[1], we use Lemma 4.4
of [1], i.e., we assume that R"/o

_
(Image (B))/o.

To formulate the result precisely we proceed as follows"

{u’D(Bu) 0} and T1 is any projection of R" onto

/’2 ker (T1). Hence R" U U2. Xo -= {x’D(x) 0}.
THEOREM 5.1. Assume

(i) R"= dV @ B(dff2),
(ii) Image (DA To)

_
Image (DB),

(iii) Vo

___
span {RuT,[ToA],S_(ToATo)},

where TO is the projection of R onto dV"o along B(dV2) and where RUT,[A image
([BT,ABT,...,A-BT]). Then there exists a control u Kx such that
XK satisfies (2.7) for p 2.

Proof. From (i) and (ii) it follows that there exists a matrix K o with kernel
(Ko) B(2), image (Ko)

___
d/2, such that if u Kox + v for any v in ./V then

D(Bu) D(ATox)o Hence if K Ko + K where K1 is any matrix mapping R
into , then

D[(A BK)x] 0

for x in Uo. Thus dVo is invariant under A BK.
It follows that

(5.1) A- BKo AT + ToATo,
where T2 I- To and so if fl(.) and 7(.) are the minimal polynomials of
A BKo and ToATo respectively, then

(5;.2) 0 fl A BKo To fl ToA To To
Hence 7(2) divides 2fl(2). As Tfl_(ToATo)= fl_(O)T and fl_(0) :# 0, it follows
that

(5.3) 5_(ToA To)
_
Uo.

Using (5.2) and (5.3) one sees that _(ToATo)
_
’_(A BKo).

From (iii) it follows thatXo has the form x x + x2 where x RTIToA]
and x2 6,9_(ToATo). But (5.1) and BTa ToUT imply xa RTA BKo].
We conclude that . _

span {RBT,[A BKo,S_(A BKo)}
O_(A BK)

for suitable K [3, Thm. 3.2]. The proof is now completed as mentioned above
using Theorem 4.1 and Lemma 4.4 from [1], observing that A > 0 on

Some comments are appropriate. First, the work of the previous section
shows that the theorem is valid for any p __> 2. In addition, these results are also
true for the process . This follows readily if we observe that ATo To, and
then apply the theorem to (2.4).

Finally, for the case C 4 0, the theorem is still true if we add the assumption"
(iv) for all u, image (C(u)) =_ o.
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The overall results of the theory are now summarized. If the pair (A, B) is
stabilizable and the state- and control-dependent noise are sufficiently small,
then (2.1) has a stationary solution whose pth moment is finite no matter whether
the It6 interpretation or the Stratonovich interpretation is taken. The greater p
is, the smaller the noise must be.

On the other hand, ifD 0 or if C 0, and ifthe system has suitable structure,
then just as in the case of no multiplicative noise, there exists a control giving
rise to a stationary process with all moments finite. The result is again independent
of the interpretation of (2.1). Moreover, if the system does not have the required
structure and the control-dependent noise is sufficiently large, then no such control
exists provided the It6 interpretation is used and D 0. Finally if both state- and
control-dependent noise are present but the control-dependent noise does not
produce state-dependent noise, then a similar result holds.
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RELAXIVE HILBERT PORTS*

A. H. ZEMANIAN"

Abstract. The completely monotonic behavior of the transient responses of RC n-ports to certain
pulses of finite duration is used to characterize a more general kind of system, which we call the relaxive
Hilbert port. This generalization encompasses networks having an infinite number of lumped and
distributed elements as well as an infinite number of ports.

A primary result of this work is the generalization of Bernstein’s theorem on completely monotonic
functions to operator-valued functions. This in turn leads to a representation theorem, which states
that the frequency-domain system function for a relaxive Hilbert port is the Stieltjes transform of a
positive-operator measure. The approximation of the unit-impulse response by a finite sum of damped
exponentials is discussed. For n-ports, this provides a means of synthesizing a relaxive Hilbert port
as an RC network with perhaps ideal transformers.

Meixner’s concept of a relaxation system of the second kind is also extended to operator-valued
functions, and relaxive Hilbert ports are shown to be special cases of such systems. In fact, relaxive
Hilbert ports are precisely those relaxation systems of the second kind whose unit-impulse responses
remain bounded. Actually, the inevitable stray capacitances of any physical electrical system force
every relaxation system of the second kind to be relaxive.

An example of a relaxive infinite system is also given.

1. Introduction. The concept of a "relaxive one-port", which was introduced
in a prior work [183, extends the idea of a finite lumped RC one port with an initial
shunting capacitor to the general context of linear time-invariant passive systems.
Thus, infinite and distributed systems are included within this extension. Our
present objective is to define and investigate the analogous concept for n-ports
and more generally for Hilbert ports. The latter is a system analogous to the n-
port but with signals that take their instantaneous values in a complex Hilbert
space 14], 15].

To motivate our subsequent definition, consider the finite lumped RC
n-port N of Fig. 1, where every port has a shunting capacitor. There are n current
generators driving each port and yielding thereby an impressed current vector
u {u 1,’", u,}. The responding voltage vector is v {v 1,..., v,}, and the
polarities for these quantities are so assigned that (u(t), v(t)) is the complex power
entering N at the instant t. Here, (.,.) denotes the inner product in n-dimensional
complex Euclidean space C". Any impulse of current u a6, where a C" and 6
is Dirac’s delta function, deposits charges at the time 0 throughout a certain
capacitive subnetwork N1 of N. N1 can be obtained by open-circuiting every
resistor in N. N1 will not in general contain every capacitor in N, but it will
include every capacitor that is connected across the terminals of any port. The
charge vector inserted through the n ports is the integral of a6, namely, a. On the
other hand, the voltage v(0) generated at 0 by the inserted charge is v(0) Ma,
where M is the inverse of the open-circuit capacitance matrix of N1.

The charges in N1 induce dissipating currents in N, which produce in turn a
monotonic decay in v. Indeed, it is a fact (see [4, pp. 267-270]) that the open-circuit

Received by the editors April 18, 1972, and in revised form January 18, 1973.- Department of Applied Mathematics and Statistics, State University of New York at Stony
Brook, Stony Brook, New York 11790. This work was supported by the National Science Foundation

under Grant GP27958.

106



RELAXIVE HILBERT PORTS 107

Ul Vl r

Un Vn

FINITE

LUMPED

RC n-PORT

FIG.

impedance matrix Z ofN has the form

(1.1) Z(O

where a + ico is a complex variable, each Pj is a positive (i.e., nonnegative
definite) matrix, M ,j= Pj, and the CZg are real numbers satisfying 0 __<
< 2 < < ,,. The response v to the input u a6 is therefore

(1.2) v(t) . Pj ae-"tl +(t).
j=l

l+(t) denotes Heaviside’s unit step function. Since (Pa,a)>= O, it follows that
(v(t), a) is completely monotonic for > O. In fact, this property of (v(t), a) con-
tinues to hold for > T if u is any current vector of the form u aqS, where b is
any smooth (i.e., infinitely differentiable) function with support contained in the
interval (-, T]. Moreover, in the latter case,

(v(t), a) <= (Ma, a) dp(t) dt.

It is through these properties that we shall define our general class of relaxive
Hilbert ports in 3. It will be shown in 4 that a necessary and sufficient condition
for a linear time-invariant Hilbert port with a convolution representation to be
relaxive is that its response to the input u ab be of the form

(1.3) v(t) dP,a e-"l +(t),

where P, is a PO measure (i.e., a positive-operator measure) on [0, oc). The proof
of this result is based on an extension to operator-valued functions of Bernstein’s
theorem concerning completely monotonic functions [12, p. 160. The needed
extension is established in the next section. Moreover, the impedance Z of a
relaxive Hilbert port is characterized by a Stieltjes integral analogous to (1.1).
It follows easily from this that every Hilbert port is passive.

The approximation and synthesis of relaxive n-ports by finite lumped RC
n-ports is investigated in 5. Actually, our results are obtained in the general
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context of Hilbert ports, but, until synthesis techniques with appropriate building
blocks are devised for Hilbert ports, the results of this section have a physical
significance only for n-ports.

In 6 we extend Meixner’s class of relaxation systems of the second kind
[8, p. 282] to Hilbert ports and then show that our relaxive Hilbert ports comprise
a subset ofthat extended class. We exploit these results in 7 to develop an example
of a relaxive Hilbert port consisting of an infinite lumped RC network with an
infinite number of ports.

Our notation is identical to that used in [14]. Thus, given any two topological
linear spaces U and V, [U;V] denotes the linear space of all continuous linear
mappings of U into V, and {f, b) or alternativelyf4) is that member of V assigned
byf [U: V] to b U. U V] is supplied with the topology ofuniform convergence
on the bounded sets in U. ]]-]1 I]" denotes the norm in any Banach space B.
H is a complex Hilbert space with the inner product (.,.). R is the real line, R +

is the closed interval 0, ), C is the complex plane, C+ { C :Re > 0}, and
Co C : is not a real nonpositive number}. The kth derivative ofany Banach-
space-valued function or distribution f is denoted by fk) Df. At times, we use
the symbol Dx to show that the differentiations are with respect to x. We set

fill= (-1)f). supp f is the support off We sometimes use to denote an
equality by definition. Finally, s-lim denotes a limit in the strong operator topology
of [H; H].

2. An extension of Bernstein’s theorem on completely monotonic functions.
Let z be an H; HI-valued function on R +. We shall say that z is completely
monotonic on an open interval f c R if, for each nonegative integer k, each
a H, and each f, we have that z)(t) exists under the strong operator topology
and (z[k](t)a, a) >__ O. Furthermore, we shall call z completely monotonic on R + if
z(t) tends to a limit in the strong operator topology as - 0 + and z is completely
monotonic on the interior of R+. When H is the complex plane, this definition
becomes essentially the customary definition of scalar (i.e., numerically-valued)
completely monotonic functions 12, p. 145]. We wish to extend the following
theorem to [H; HI-valued functions.

BERNSTEIN’S THEOREM. Letfbe a scalarfunction on R +. A necessary and suffi-
cient conditionforfro be completely monotonic on R + is that

f(t)= f d#,e -"t > O

where # is a finite positive measure on the Borel subsets ofR +. #, is uniquely deter-
mined byf

We shall show that the desired extension can be obtained by replacing #n
with a PO measure P,. (For a discussion of PO measures, see [1, Chap.. 8], 3],
or [17, Chap. 2].) In the following we let [H; HI+ denote the space of positive
continuous linear operators on H.

LEMMA 2.1. Assume that z(t) is an [H; H]+-valuedfunction on the open interval
(0, ) such that, jbr all a H and as 0 +, (z(t)a, a) increases monotonically to a

finite limit. Then, there exists an F [H;H] + such that, as 0 +, z(t) F in the
strong operator topology.
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Proof By polarization (z(t)a, b) also tends to a finite limit for every a, b H.
Define E by

E(a, b) lim (z(t)a, b).
tO+

It follows that {a,b} E(a,b) is a positive sesquilinear form on H x H. Two
applications of the principle of uniform boundedness show that

]E(a, b)] lim ](z(t)a, b)] =< m all Ilbll.
tO+

Consequently, there exists a unique F [H;H] + such that (Fa, b) E(a, b). By
virtue of [17, Lemma 2.2-1], we can now conclude that z(t)--, F in the strong
operator topology.

Our extension of Bernstein’s theorem is the following.
THEOREM 2.1. Let z be an [H; HI-valuedfunction on R +. A necessary and suffi-

cient condition for z to be completely monotonic on R + is that

(2.1) z(t) dP, e-"’ > 0

where P, is a PO measure on the Borel subsets ofR +. P, is uniquely determined by z.

Note. Equation (2.1) shows that the function z(t) is a Laplace transform and
therefore analytic for > 0. Consequently, its derivatives exist in the uniform
operator topology as well [17, Thm. 1.7-1].

Proof Sufficiency. For any scalar continuous bounded function on R +, we
have the estimate

(2.2) f dP"g(n)lltu;n, <= [’P(R+) tn;m sup

With the use of this inequality it is straightforward to show that (2.1) can be dif-
ferentiated under the integral sign any number of times at each > 0. Hence, for
every a e H, > 0, and nonnegative integer k,

(2.3) (zt(t)a, a)= f d(P,a, a)ri e-" >_ 0

since P, is a PO measure. Furthermore, (2.3) shows that (z(t)a, a) increases mono-
tonically to the limit (z(O)a,a) as --, 0+, which by Lemma 2.1 implies that z(t)
---, z(0) in the strong operator topology.

Necessity. We may write

(2.4) (ztkl(t)a, a) (-- 1)kDk(z(t)a, a), > O.

By hypothesis, (z(t)a, a) is a completely monotonic scalar function on 0 <= < v.
By Bernstein’s theorem there exists a unique finite positive measure t,(a) depend-
ing on a such that

(z(t)a, a) fR d#,(a) e -"t.
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Now, let a, b e H and fl e C. Then,

fR d#(fla) e -"t (z(t)fla, fla) l12(z(t)a, a)

Il 2 " d#,(a)

By the uniqueness ofthe Laplace transformation [5, Thm. 6.2.3], we have the follow-
ing equality between measures’

(2.5) #,(fla)- lfll2#n(a).
In a similar way, we can show that

(2.6) #,(a + b) +/,(a- b)= 2#,(a) + 2#,(b).
We now define the complex measure Q,(a,b)’E,-. [Q,(a, b)](E), where E is

any Borel subset of R +, by

Q.(a, b) - 1/4[#,(a + b)- #.(a b) + i#,(a + ib)- i#,(a- ib)].

For fixed E, a-- [#.(a)](E) is a functional on H taking only nonnegative values.
This fact coupled with (2.5) and (2.6) allows us to conclude (see, for example,
Kurepa [61) that {a, b} [Q,(a, b)](E)is a positive sesquilinear form on H x H
such that

[Q,(a, a);(E)= [/,(a)](E) __> 0.

Furthermore,

I[Q,(a, a)](E)[ [#.(a)](E) __< [#,(a)] (R) (z(O)a, a)

__< z(0) lie 2.

Therefore, there exists a unique P,(E) e [H’ HI + such that (P,(E)a, b) [Q,(a, b)] (E)
for every a, b e H. Since (P,(E)a, a) [/t,(a)l(E) and [/,(a)l(" is a positive finite
measure, we can conclude that P, is a PO measure on the Borel subsets of R+.
(See 17, Thm. 2.2-1 ].)

Thus, for all > 0 and all a e H,

(z(t)a, a) f d(P"a’ a) e-"t fR dP" e-"a’ a)
By means of the polarization equation, we arrive at (2.1). The uniqueness of P,
follows from the fact that (z(t)a, a) uniquely determines (P,a, a) for every a e H.

3. Relaxive Hilbert ports. We shall always assume that the impedance
operator of the Hilbert port at hand is a continuous linear time-invariant causal
mapping of @(H) into [@; HI. As in [14], (H) is the linear space of all smooth
H-valued functions on R of compact support and is supplied with the customary
Schwartz topology. We set @(C). [; HI is the linear space of all H-valued
distributions on R. [;H] has the topology of uniform convergence on the
bounded sets in . (3 has the stated properties if and only if 3 is a convolution
operator 3 z *, where z e [(H); HI and supp z c R + (see [14, Thm. 6.1]).
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By the identification between [@(H) H] and [ [H H]] given by [1 4, Thm. 3.1 ],
we can also say that z [@; [H H]]; that is, z is an operator-valued distribution
on R. z is called the unit-impulse response, and its Laplace transform Z 2z is
called the impedance function or simply the impedance.

The domain of ,3 contains every H-valued distribution u whose support is
bounded on the left. We set v 3u z u. Moreover, for any scalar distribution

f such that suppf is bounded on the left, z * ]’has a sense as an [H H]-valued
distribution, and z * (fa) (z f)a for every a H. When b e , z 05 is a smooth
[H; H]-valued function with support bounded on the left, and

(3.1) (z qS)(t) (z(x), dp(t x)) (z(t x), qS(x)).

(See [14, Thm. 4.3].)
DEFINITION 3.1. ,3 will be called relaxive whenever the following two condi-

tions are satisfied for every nonnegative 05 e .
(i) If T sup supp qS, then z* 05 is completely monotonic on the open

interval (T, o).
(ii) There exists an M e [H;H] + not depending on b such that, for all e R,

(3.2) (z * ck)(t) <= M f, c/)(x) dx.

Whenever these conditions hold, we shall also say that the unit-impulse
response z, the impedance Z, and the corresponding Hilbert port are relaxive.

Note that condition (i) is equivalent to the assertion that, for v 3u and
for every u of the form u qSa, where b , b _>_ 0, and a H, we have that
(v(.), a)is a completely monotonic scalar function on (T, oo). Similarly, condi-
tion (ii) is equivalent to the requirement that

(v(t), a) <__ (Ma, a) ft qS(x) dx

for all u of the stated form. These are the conditions we obtained from the physically
motivated discussion in the Introduction.

THEOREM 3.1. is relaxive ifand only ifz is an ordinary [H; HI-valuedfunction
on R and z is completely monotonic on R +. When this is the case, z(0+)

s-limt__,o + z(t) is the infimum (in the sense ofpositive operators) ofall Mfor which
(3.2) holds.

Proof If Set w z * b ]ch, where b e . For every nonnegative integer
k, it is permissible to write

(3.3) wtk(t) (ztk(x), 4(t x)).

(See [14, (4.16)].) Let 4 >__ 0 and T __a sup supp 4). For > T, the support of the
function qS(t x) of x is contained in (0, oo), and therefore

w(t) [ zt(x)(t- x),ix.
upp q5

Since for each x > 0 and > T the integrand on the right-hand side is a member
of [H; HI /, so too is the left-hand side. Condition (i) is hereby established.
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Furthermore, for every R and a e H,

0 <-_ (w(t)a, a) (z(x)a, a)c/)(t x) dx

<= (z(O + )a, a) c/)(x) dx.

This proves (3.2). That z(0 + is the infimum of all possible M in (3.2) can be seen
by choosing b as an arbitrarily sharp pulse.

Only if. Assume that z * is relaxive and set

w(t) z * c(t) (z(x), dp(t x)), d? 9.

Also, let 4 >= 0 and > T. Then, for each k 0, 1,2,...,

wtk(t) <ztkl(x), q(t x)> [H; H]+

according to condition (i). So, for all a H,

0 <= (wt’l(t)a, a) ((z[kl(x), dp(t x))a, a).

Thus, with and supp c (0, oo), --, ((zt, )a,a)is a positive scalar
distribution on (0, oo) and is therefore a positive measure on the Borel subsets of
(0, oo) 10, p. 29]. Since this is so for every k, --- ((z, )a, a)is distributionally
the same as a smooth nonnegative functionfa on (0, oo) [10, p. 853. In fact, fa is
analytic on (0, oo). Indeed,

f f’ dt= f dt=((z, (k’)a, a)

(3.4)
((zt, O)a, a) >= 0

for all 0 > 0. Hence, f is completely monotonic on (0, oe). Whence, f is analytic
on (0, ) according to Bernstein’s theorem and the analyticity of a Laplace
transform.

Now, for every a, b e H, we define the analytic function fa,b on (0, o) by

L,() 1/4[L+()- L-()+/fo+,()-/L-,()], 0 < < .
It can be shown by expansion that

f f,b(t)(t) dt ((z, O)a, b)

for every 6 @ with supp c (0, ). So, for each fixed of this sort,

{a, b} f ,(t)(t) dt

is a sesquilinear form on H H, which is positive when >= 0.
Next, we choose an appropriate sequence {v} which tends to be, the

delta functional concentrated on the fixed point v 6 (0, ). Then, for any a, b, c H,
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we get

f+,(r) J f+,/ dt ((z, O)(a + c), b)

f fa,b dt+ f dt fa,b() + f,,(),

and similarly forf,,+,f,,, andf,,, where a C. This shows that {a, b} fo,()
is a sesquilinear form on H H. It is also positive since,() () 0.

Now, let K be any compact interval contained in (0, ) and let q, K be
arbitrary except that q < . Choose such that 0, supp (0, ),
and 1 on K. Then,

Ldt LOdt =((z,O)a,a) [[(z,O) a[[ 2.

Also, by the results of the preceding paragraph, {a,b}f,dt is a positive
sesquilinear form on H x H. These facts imply that there exists a mapping Q of
the closed intervals [q, r] c K into [H HI + such that

,:L,

dt (Q([q, ])a, b).

With q fixed, define g() Q([q, ]). Thus,

(3.5) L, dt (g(r)a, b).

Note that the left-hand side is an analytic function of r e K. Therefore, g is an
[H: H]+-valued analytic function of . We may differentiate (3.5) to get

(3.6) f,,(r) (f(z)a, b),

wheref(r) g((z). Since q, z, and K are arbitrary, (3.6) holds for all re(0, ),
where againfis analytic on (0, ).

Altogether then, for every 0 e with supp 0 (0, ),

((z, 0)a, b)= f f,,oO dt= f (f(t)a, b)O(t)dt

which shows that z f Hence, z is analytic on (0, ). It now follows from (3.4)
that (z(v)a, a) 0 for all > 0 and a s H. That is, z is completely monotonic on
(0, ).

We next show that limo+(Z(t)a, a) exists for every a e H. If this is not so,
then, by the complete monotonicity of z, (z(t)a, a) for at least one a. Let

{ e : O, f dt }. We can make (z(t)a, a) 4(t) as large as we wish
in a neighborhood of 0 simply by choosing e as a sufficiently sharp pulse.
This will violate (3.2) for any fixed M. We conclude that the aforementioned limit
must exist. By Lemma 2.1, s-lim,o+Z(t) also exists.
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Another thing we have to show is that z does not have any singularities
concentrated on the origin. Let w be an [H; HI-valued function on R such that
w 0 on (-,0] and w z on (0, o). Then, h =z- w is an [H" HI-valued
distribution concentrated on the origin. Therefore, for each a H,

(za, a) cfi(J) + (wa, a),
j=l

where the cj are complex numbers depending on a. (See [13, p. 98].) Now, with a
fixed, (wa, a) * is a uniformly bounded set of functions because, for any b e N,

On the other hand,

0 <= (w * c/)(t)a, a) [(wa, a) * dp] (t)

(w(x)a, a)c/)(t x) dx <= (w(O + )a, a).

@()* 4’ c
can be made arbitrarily large at any given by choosing 4) appropriately so
long as cj - 0 for some j and some a. Therefore, cj 0 for all j and all a if condi-
tion (ii) of Definition 3.1 is to be fulfilled.

Consequently, (za, a) (wa, a). With this fact and the polarization equation,
wc can show that

((z, h)a, b) ((w, 0)a, b)

for all 0 e and all a, b H. Hence, z w in the sense of equality in [2, [H H]].
Therefore, z is an ordinary [H H]-valued function on R. This completes the proof.

As was noted immediately after Definition 3.1, (v(.), a) is a completely mono-
tonic function after the termination of the pulse u (;ha, where 4) e o@, 4) _>- 0, and
a e H. We can use Theorem 3.1 to show that this property continues to hold even
when 4) is an arbitrary positive distribution of compact support. The proof is
quite similar to the argument for the scalar case [18, IV].

4. Representation theorems. Some representations for relaxive Hilbert ports
now follow readily. First, we note that the value at 0 of any relaxive z can be
altered without changing z as a distribution. Henceforth, we shall set z(0)

s-limt_,0 + z(t).
THEOREM 4.1. A Hilbert port is relaxive ifand only if its unit-impulse response z

admits the representation

(4.1) z(t) dP, e-ml +(t), R,
VR

where P, is a PO measure on the Borel subsets ofR +. This is the case ifand only if
the impedance Z has the representation

Co.(4.2) Z(’)

(Co is the complex plane with the nonpositve real axis deleted.)
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Proof The first assertion follows from the conjunction of Theorems 2.1 and
3.1. To obtain the second assertion, we take the Laplace transform of (4.1) and
then reverse the order of integration. The latter can be justified by showing that
this can be done weakly by virtue of Fubini’s theorem. This yields (4.2) for e C +,

which is a vector version of the Stieltjes transformation. That the equality in (4.2)
holds weakly (and therefore in [H; HI as well) for all Co follows from the fact
that any scalar Stieltjes transform exists for all e Co if it exists for any single
e Co [12, p. 326].

In fact, Z is an [H HI-valued analytic function on Co since, for every a, b H,
(Z()a, b)is a scalar analytic function on Co [12, p. 328]. Furthermore, (Z()a, a)
is a scalar relaxive impedance and the poles of such a function are simple with
positive residues [18, Thm. 4]. It follows that the poles of a relaxive [H HI-valued
function are also simple and lie on the real nonpositive axis, and their residues are
all members of [H; H +.

The fact that a relaxive ,3 z. is passive on (H) does not appear to be
readily obtainable from the definition of relaxivity. However, the representation
(4.2) allows us to arrive at this conclusion directly.

THEOREM 4.2. Every relaxive Z is positive* (see [14, Def. 10.11) and the corre-
sponding operator z3 z * is passive on (H).

Proof For every a H and e C +,

Re (Z()a, a) fR d(P,a, a) Re---

which shows that Z is positive*. The passivity of now follows from [14, Thm.
12.2].

Actually, the representation (4.2) shows something more, namely, that
(Z(a)a, a)is real for every a > 0. This in turn implies that Z is positive*-real [-14,
Def. 10.2] whenever H is the complexification of a real Hilbert space.

For the rest of this section we discuss the special case where H is n-dimen-
sional complex Euclidean space C". In this case the measure P, takes its values in
the space of positive n n matrices. If P, is concentrated on m discrete points of
R + we get the representation (1.1) of the impedance matrix of a passive RC n-port
containing possibly ideal transformers.

For the general case where P, is a C"; C"] +-valued measure, set z(r/)
& P([0, r/)) for r/> 0 and let #(0) be the zero matrix. Then,/(r/) is an n n matrix
/zik(q)] its elements #ik are functions of q, which are continuous from the left
and zero at the origin. Upon choosing 0 {}=1 C" with 0 0 for j 4= k,
we see that (/z(r/), ) #(q)l] 2. Consequently, #k is a nondecreasing bounded
function on R+. A similar argument with no more than two of the components
of nonzero shows that

f(a,, r/) ()loel 2 + j()kOej + j()jc + jj()lojI

is a nondecreasing bounded function of r/. Upon first setting 1, then
setting % 1, % i, and finally combining the results, we see that/, and zkj
are functions of bounded variation of R +. We can therefore conclude with the
following.
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THEOREM 4.3. If Z [Zjk is the n x n open-circuit impedance matrix of a
relaxive n-port, then each Zig has the Stieltjes integral representation

1
dlajk(ri)(4.3) Zjk(() +

where every # is a real nondecreasing bounded function on R + and every jk is a

function of bounded variation on R+. Moreover, #jk fikj"

5. Approximation in the time domain. Our objective in this section is to show
that relaxive z can be approximated under a rather strong topology by finite sums
of damped exponentials with positive-operator coefficients. For n-ports, the ap-
proximating sums will have the significance of the unit-impulse response of a
finite lumped RC n-port with perhaps ideal transformers. Thus, the results of this
section imply an approximation and synthesis method for relaxive n-ports.

THEOREM 5.1. Let z be relaxive. Then, there exists a sequence {Zq}q such
that each Zq has the form

nq

Zq(t) Cq,v e-t"’vtl +(t),
v=O

tlq

c., e [/-/;HI +, E c., z(0 +.), 0 __< 3,,o </.,, < < 3.,..
v:0

and such that {zq} converges in the strong operator topology to z(t) uniformly for
all e R +.

Proof By virtue of Lemma 2.1 and Theorem 4.1, there exists a P e [H; H]+
(possibly P1 0)such that

(5.2) z(t) P11 +(t) + fR+ dQ, e-ntl +(t),

where Q, is a PO measure on R + such that (Q,([0, x))a, a) - 0 as x 0 +. Now, for
each q 1, 2,-.., we will choose a partition 7rq of R + with the endpoints

and will set

where

Zq(t) Pl +(t) + fR dQ"s(rl’ t)l +(t),

j" exp (- flq,vt), fl,,v-1 Yl < q,v, V 1,..., nq,
t)

exp (- flq,..t), flq,.. q < .
Note that z, has the form of (5.1) for C,v Q([flq,v flq,-)), where v 1,
nq- 1,Cq,..= Q([flq,.,_, )), and co, 0 P. Moreover, ,,c,. P(R+) z(0+).
Thus,

z(t)- Zq(t)= dQn(e-"t- e-q"t)l+(t)
O,flq,1)

+ dQe- s(, 011
,1,, (cont.)
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+ | dQ.e-"tl+(t) )) exp (- flq,..)l+ (t)

Al(t) + A2(t)+ A(t)+ Aa(t).

Here, the A denote the four terms between the two equality signs in the indicated
order.

For any F 6 [H; H] + we have the estimate

(5.3) Fa (Fa.

for all ae H [17, Lemma 2.2-1]. Let us apply this to A3(t). By virtue of (2.2),

Also, (A3(t)a, a) (Q([Bq,,,, )a, a) 0 as Bq,,, . So, for every a e H,
A3(t)a 0 as Bq,,, uniformly for all e R +. Similarly, ]A4(t)al does the

same.
For A, we have A(t) IIQ(K0, B.I)) Q(R +) and (Aa(t)a,a) (Q([0,

Bq,))a, a) 0 as Bq, 0 +. Therefore, for every a e H, A(t)a 0 as Bq, 0 +
uniformly for all e R +.

Finally,

A2(t) -;m IQ(e+) sup {le-"’- s(q, t)l’Bq, q q,,0 < }.
The right-hand side can be made as small as desired simply by choosing the
partition q fine enough. This is because e -t is a uniformly continuous function
of {t,B} for B0, N q N B0,,, and 0 N < .

In tct, we can construct the desired sequence {zq} by choosing a sequence
>{q} of partitions with the following properties Bq+ , < Bq, a, Bq+

and the length of the largest interval in the partition of [flq+ ,, Bq+ ,,,] is less
than half the length of the smallest interval in the partition of [Bq, a, Bq,,,]. This
ends the proof.

Actually, Theorem 5.1 can be strengthened by showing that a sequence {zq}
can be constructed which converges under a much stronger topology than that
implied in the theorem. Indeed, with f(t) denoting an [H; HI-valued function on
R + let

70,(f) sup f(t)a a e g,
ONt<

..x(.f) sup IIfu)(t)all, ae H, x > 0, k 1,2,
xNt<

The set of all f for which all these quantities are finite comprise a locally convex
space whose topology is generated by the seminorms 7o,, and all

Now, for any relaxive z, for > 0, and for k 1, 2, ...,

z(t) dQ,

With zq constructed as in the preceding proof, we have, for and k as stated,

z(t) f dQ.s(rl, t),
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where

) fl, exp (- flq,vt), q,v-1 l < q,v, V 1,’’’, nq,
Sk(Vl t)

/,. exp (- G,..t), &,. __< < c.

Choose the partitions 7q as indicated in the last paragraph of the preceding proof.
Then, it follows through almost the same argument that, for each k > 0 and as

tkj tends to ztkj in the strong operator topology uniformly on everyq, Zq
interval of the form x, ), where x > O. Thus, z - z under the topology -.

Conversely, let {z} be a Cauchy sequence under the topology -, where
each z has the form of" (5.1). By virtue of the sequential completeness of H;H]
under the strong operator topology and the uniform convergence ofeach derivative
of {Zq}, there exists a limit function z to which {Zq} converges under -. (In this
regard, see 17, Problem 1.6-3] .) Moreover, z is relaxive since every Zq is relaxive.
Thus, we have proven the following.

THEOREM 5.2. The set of all relaxive z is the closure in Y/ of the set of all Zq
of the .form (5.1).

6. Relaxation systems of the second kind. We now introduce the vector
analogue of Meixner’s relaxation systems of the second kind 8, p. 2821 and show
that relaxive Hilbert ports are special cases of such systems. The physical signifi-
cance of this will be pointed out at the end of this section.

DEFINITION 6.1. Z is said to be a relaxation impedance of the second kind if
(sZ(s2)o, a) is a. scalar positive-real function of s for all a H. The set of all such Z
is denoted by -/2. The corresponding Hilbert port is said to be a relaxation system
of the second kind.

It is understood throughout the following that the range of the argument
function is restricted to the branch (-re, zc]. We exploit the standard result that
F is a positive-real function if and only if F is analytic and larg F(s)[ =< larg sl for
all s C + [9. A simple manipulation with ( s 2 converts this result into the follow-
ing criterion for the functions in/2.

LEMMA 6.1. Z 6 ///2 !1’ and only if Z satisfies the following conditions for every
a H. Z is analytic on Co and

(6.1) -arg =< arg (Z(Oa, a) <= O, Im " > 0,

(6.2) arg (Z(r)a, a) O, a > O,

(6.3) 0 __< arg (Z(()a, a) <= -arg (, lm < 0.

The sum of two impedances in [2 is also in /2 in view of Definition 6.1.
Therefore, the series connection of two Hilbert ports having such impedances
yields another Hilbert port of this kind. A similar assertion holds for parallel
connections, but now we must make sure that the parallel combination of im-
pedances has a sense. In the following, F-1(0 & IF(()]-1.

TttEOREM 6.1. If W and Z are members of /d2 and i[" W-(), Z-1(), and
IW-1(0 + Z- ()]-- exist .for every Co, then

(6.4) F __a (W-1 + Z-)- 2.

Proof. F will be analytic wherever Wand Z are both analytic. Hence, we need
merely investigate arg (F(()a, a). By our assumption concerning the existence of
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the inverses, for any given a H there exists a unique b H such that W-l(ff)
+ z-a()]b a. Moreover, there exist unique c, d H such that b W()c

Z()d. Consequently,

(F()a, a) (b, [W- a() + Z-a()b)

(w()c, c) + (z()d, d).

Now, for any , fle C with Im < 0 and Im fl < 0, we have that

min {arg e, arg fl} =< arg ( + fl) =< max {arg , arg fl}.
Consequently, F satisfies (6.1). The same argument establishes (6.2) and (6.3),
thereby completing the proof.

To show that every relaxive impedance is a member of //2, we shall make use
of a certain representation for ,///2 impedances, which we now establish. We start
with Schwindt’s representation [14, p. 130] for a positive* function, which we may
apply to sZ(s2) since sZ(s2) is a positive* function whenever Z e //2.

f is
(6.5) sZ(s2) sPa + Po + dQ

s- i’
s6 C+.

Here, Pa 6 IH;H]+, Po is a skew-adjoint member of [H;HI, and Q, is a PO
measure on the Borel subsets of R. Since, for any a > 0 and any a H, (aZ(a2)a, a)
is a real number and since the real and imaginary parts of the integrand in (6.5)
are even and odd functions of , we can conclude that Po 0, that
(i.e., Q(E) Q_(E) a_ Q(_ E) for any Borel subset E of R), and that

s(1 + )
sZ(s2)= sP + dQ s2 + 2

s C+.

Upon setting s2, we see that there exists a PO measure M, such that

+ r/ ’Co.(6.6) Z() P1 + dM, ----,
This is the vector analogue to Meixner’s representation for a scalar relaxation
impedance of the second kind [8, Thm. 3.2.

THEORZM 6.2. Z ,2 0 and only ! Z admits the representation (6.6), where
Pa [H H] + and M, is a PO measure on the Borel subsets ofR +.

We are now ready to relate relaxive impedances to the members of,////2.
THZORZM 6.3. Z is relaxive if and only !f Z //2 and (aZ(a)a, a) tends to a

finite limit as a for each a H.
Proof. Since the representation (4.2) is a special case of (6.6), a relaxive Z is

certainly a member of ,/2. Moreover, the existence of lim_oo (aZ(a)a, a) follows
easily from (4.2).

Conversely, from (6.6) we get

(6.7) (o-Z(o-)a, a) (Pla, a)o + fl d(M,a, a)
a( + )

NOW,

(6.8) a(1 + rl)/(a + rl)
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is a function of r/that varies monotonically from the value at r/= 0 toward the
value o" as r/ oe. Moreover, for each fixed r/, (6.8) increases toward + r/as
r --, . Since (M,a, a) is a positive measure, the integral in (6.7) either increases
indefinitely or increases toward a finite limit. Furthermore, (Pla, a)a-, o as
a oe for at least one a e H if P1 - 0. Therefore, under the assumption that
(aZ(a)a, a) tends to a finite limit, we must have that P1 0 and j" d(m,a, a)(1 +
< for each a e H. We define P,(E)a__ [.dM,(1 + rl) for each Borel subset
E of R and obtain thereby the PO measure P,, the representation (4.2), and the
conclusion that Z is relaxive.

COROLLARY 6.3a. Z is relaxive if and only !f Z is analytic on Co and, .for each
a e H, Z satisfies conditions (6.1) through (6.3) and lim_,oo (aZ(a)a, a) exists.

We can interpret Theorem 6.3 physically as follows. Some of the Hilbert
ports that are relaxation systems of the second kind will respond to an impulse of
current with an infinite initial voltage and will absorb an infinite amount of energy.
On the other hand, relaxive Hilbert ports are precisely those relaxation systems
of the second kind for which this does not happen. For the n-port discussed in the
Introduction, it is the capacitive subnetwork N1 which prevents infinite initial
voltages and infinite energy absorption. Actually, every physical electrical system
has stray capacitances which act like the capacitive subnetwork N1.

7. An example of a relaxive oo-port. By an -port we mean a Hilbert port
for which H is Hilbert’s coordinate space 12 16. Actually, we shall let 12 be the
space of all two-sided quadratically summable numerical sequences

The results of the preceding section will be used to show that the oo-port of
Fig. 2 is relaxive. All the series resistances therein are r ohms, the shunt conduct-
ances are g mhos, the shunt capacitances are c farads, and we take rg-- 3.43.
It will simplify our formulas a bit if we choose r 5.04. This oo-port can be con-
sidered to be the parallel connection of the two c-ports shown in Figs. 3 and 4.

Let us first investigate the oo-port of Fig. 3. As has been pointed out by
H. Flanders I2, care must be taken in choosing the current distribution in the
infinite resistive grid. An unreasonable set of currents, which satisfy Kirchhoff’s
voltage and current laws and for which no input currents are imposed at the
ports, is shown in Fig. 5. The only current distribution we will allow when there
is no excitation at the ports is the one where all branch currents are zero. When the
current u is imposed at the kth port and all other ports have no imposed currents,
we may apply a suitably modified form of Flanders’ analysis I21 to conclude that
a unique current exists in each resistance and each conductance. (The modification
involves the partitioning of every current distribution into equivalence classes,
two current distributions being considered equivalent if they agree on all the
branches other than the branches appearing in the ground line, that is, in the

FZG. 2
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FIG. 3

lower horizontal line of Fig. 3.) The current distribution in the resistances and
conductances can be computed by using the standard equations for lumped
iterated transmission lines 11, pp. 106, 119]. The current distribution at the
instant under an imposed current vector {Uk}-- 12 on the -port is then
taken to be the sum of the current distributions due to each uk applied one at a
time.

The aforementioned transmission line equations show that the open-circuit
impedance matrix for the -port of Fig. 3 is Z Zik], where

t T ; T: l T
FIG. 4

p-li-kl for all (, i, k -1, 0, 1, and p 5.23.... Thus, Z() does
not vary with . (Henceforth, Z denotes that fixed range value, and not the function.)
We can verify that Z 12; 12] as follows. Let a {ak}-- 12 and set b Za.
Then,

b 2= Z Zikak
i= j=

Upon taking absolute values and then changing the order of summation, we get

bll e Z laajl ZikZij

lakajIp-lk-jl(2 4- Ik j / 1),
k

6.44

g 5.44 g 2 g

FIG. 5

6.44

5.44
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where

= E P -2=’0379"’’’

Summing diagonally, we obtain

b 2 E E la,,a,,+mlD-1"l(2. 4-Iml / 1).

An application of Schwarz’s inequality to the summation on n yields

b 2=< a 2 -Iml(2/lml / 1).

Since the last summation on m converges, we can conclude that Z e [/2;/2].
Furthermore, Z is invertible. To establish this, it is enough to show that

A & I- Z satisfies 1/11 < 1. Here, I is the identity operator on 12 so that
A [Aik], where Aii 0 and Aik _p---li-kl for -- k. This time set d Aa,
where a e 12. The same manipulations as those in the preceding paragraph now
yield

d 2=< a 2 2 +4 p-lml +2 p-I’l(Im --1
m=2

[a [z(.2227 .).

Thus, A < .471 ..., which is what we wished to show.
Still more is true. Z is a positive operator on 12. Indeed, for any a e 12,

k=

We can conclude that this convergent double series is nonnegative because
is a positive definite function [7, p. 70]. So truly, Z e [/2; 121 /. As a consequence,
Z- e 12" 121 + also. In addition, Lemma 6.1 now shows that Z e ///2.

We turn now to the -port of Fig. 4. Let I4/denote its open-circuit x
impedance matrix. Clearly, I4/= [W/k, where W/i() 1/c for every and W/k 0
when i4= k. Moreover, (W()a,a)= (c’)-1_ a 2. Thus, by Lemma 6.1, We J//2.

We want to investigate the open-circuit x impedance matrix F of the
o-port of Fig. 2. This is the parallel combination of I4/and Z if it exists as an
operator. To check the latter condition, consider

F() [W-()+ Z-’] - (cI + Z-)-.
We have already noted that Z- is a fixed positive operator. Therefore, its spectrum
is contained in the real nonnegative axis. Consequently, F() exists for every
e Co. Theorem 6.1 can now be invoked to conclude that F e///[2.

To show that F is relaxive, we shall use Theorem 6.3. So, let r > 0 and
consider

-1

(aF(a)a,a) I + Z-1 a,a).C CO"
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For all a sufficiently large, we have (caZ)- < and therefore

(aF(a)a, a) c ((-caZ)--a, a).
k=O

Moreover, there exists an x > 0 for which the last series converges uniformly for
x < a < . So, we may pass to the limit under the summation sign to conclude
that (aF(a)a, a) c-1 a 2 as o -- GO. By Theorem 6.3, F is relaxive.

We have hereby established that the system of Fig. 2 is an example of a relaxive
-port.
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NUMERICAL SOLUTION OF ITO INTEGRAL EQUATIONS

N. J. RAO’, J. D. BORWANKAR AND D. RAMKRISHNA

Abstract. An algorithm is derived for solving a large class of Ito random integral equations. The
derivation of the algorithm involves approximate discretization of the given Ito equation. The Ito
integrals arising out of discretization are expressed as functions of normal random variables. The
algorithm gives a sample pathwise solution and is readily implementable on a digital computer.

1. Introduction. A wide variety of engineering dynamical systems with
stochastic inputs and/or parameter disturbances are modeled as Ito randomintegral
(or differential) equations, and consequently the study of these equations is of great
interest to the engineer. A stirred tank chemical reactor with stochastic changes in
the input concentrations and the lateral, or the longitudinal, dynamics of an air-
craft with gust disturbances are good examples of such models. The present paper
is concerned with deriving an algorithm to solve a fairly general class of Ito
integral equations. The algorithm, which involves discretization of the given
equation, is readily implementable on a digital computer and gives a sample
pathwise solution. The Ito scalar stochastic integral equation is of the form

(1.1) x(t, () x,(o3) + a(s, x(s, o)) ds + b(s, x(s, o3)) dW(s),

where x(s, ) R, o is an element of the sample space and W(t)} is a Wiener pro-
cess. Equation (1.1) is the integral equation formulation of the Ito random
differential equation

(1.2) dx(t, oo) a(t, x(t, o)) dt + b(t, x(t, )) dW(t)

with initial condition x(u, o3) xu(o3). Under fairly general conditions on a(.,.
and b(.,. unique and sample pathwise continuous solutions are known to exist
both for scalar and vector versions of the Ito equations [4], [6], [8]. The sample
pathwise solutions of a small class of Ito equations have been expressed as infinite
series [2], [3]. Linear and nonlinear equations have been studied in [1], [53 by
solving for the exact or approximate density functions from the Fokker-Planck
equations. Either way analytical solutions are difficult to come by and generally
are not in a readily usable form. An approximate algorithm will be very useful in
the study of Ito equations as well as in solving stochastic control problems.

2. Discretization of the random integral equation. The functions a(.,
and b(.,. in the scalar random integral equation (1.1) are explicitly known and
assumed to have continuous partial derivatives with respect to and x at least up to
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the third order in the interval of interest. Let T be a time interval [u, v], 0 < u
< v < , and let { W(t), T}, also written as { W}, be a standard Wiener process,
i.e., with variance parameter unity. The integrals involved are assumed to exist in
Ito’s sense [6]. Divide the interval T, over which the integral equation is defined,
into smaller intervals of duration h, i.e., u < t2 <’" < tN v, where
(ti+ ti) h. Now one may write

(2.1) X(tn+ 1) X(tn) -3t" a(t, X) dt + b(t, x) dW(t),

n= 1,2,...,N-1.

The first strategy for the development of the algorithm consists in replacing
the integrals in (2.1) by their Taylor series expansions about (t,, x,)where x, x(t,).
Terms involving (x x,) which arise in the above expansions are successively
replaced by the following expression (analogous to (2.1)):

(2.1a) x(t) x(t,) + a(t’, x) dt’ + b(t’, x) dW(t’).

The number of successive substitutions would be governed by the desired order of
error arising from truncation. Thus, for example, suppose one replaces
,+ a(t, x) dt in (2.1) by (t,+l t,)a(t,, x,) and ."+’ b(t, x) dW(t) by b(t,,
x,)’t". dW(t). This would appear to be the stochastic analogue of Euler’s scheme
for the corresponding deterministic case, giving an error of order o(h) and op(h).

However, it can be easily shown that the term

Qttn+ tb(t,, x,) C36x(t,, x,) dW(s) dW(t),

arising from the substitution of (x x,) in

8b
-x(t., x.)(x x.) dW(t),

is of order Op(h) and cannot be neglected for an error of op(h).
The present paper develops an algorithm for an error of order o(h2) and

op(h2). The development of higher order schemes involves evaluation of stochastic
integrals of an increasingly complex nature and the difficulty in evaluating them
does not appear to be commensurate with the gain in accuracy.

The following notation is followed in this paper:

8b
a, a(t,, x,), bx. -x(t,, x,),

8a 8b
at. -fff(t,, x,), bt. -fff(t,, x,), etc.

o(h2) means that limh_o (1/h2)o(h2) 0 and x is op(h2) if limb_. (1/h2)p[lxl > e] 0 for every
e>0.
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(2.2)

We consider terms up to second order in Taylor’s expansion of a(t, x) and up to
third order terms in Taylor’s expansion of b(t, x). We have

a(t, x)= a,, + (t t,,)a,. + (x x.)ax. + 1/2(t t.)2

+ (t t.)(x,- x.)a,.x. + 1/2(x,- x.)Zax.x.
+ o(t t. )+ o( x,-

and

(2.3)

b(t, x) b. + (t t,,)bt. + (x, x.)bx. + 1/2(t t.)Zbt.t.
+ (t t.)(xt- x.)bt.x. + 1/2(xt- Xn)2bx,x,,

q- -.(t tn)3btntntn + 1/2(t tn)2(Xt Xn)btnt,,x,,

+ 1/2(t- t.)(x, Xn)2bt,x,x, -+- -.(x Xn)3bx,,x,x,

+ o(It t.I 3) + o(Ix,- x.13).
It can be shown that 7]

,’"+’

[o([t t.I 2) / o( x,

and

x.12)] dt o(h2) + op(h2)

[o([t tnl 3) + O(IX Xn[3)] dW(t)= op(h2).

The function b(x, t) is expanded up to third order terms unlike a(x, t) because

[o(It + o( x,- Xn[)2] dW(t)tn[ 2)

is only op(h3/2) and not op(h2). Now equation (2.1) may be written as

x. +1 x. + [a. + (t t,,)a,. + (x x.)ax. + (t

+ (t t.)(x, x.)a,.x. + }(x, Xn)2ax.x.] dt

+ b. + (t tn)bt, + (x x.)bx. + (t tn)2bt,t,

+ (t t.)(x,- x.)g,.. + (x, x.)gx.x.

+ -(t t.)(x, x.)b,.x.x. + (x, x.)3b.x.x, aW(t)

+ o(h2) + o(h2).

(2.4)
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The lower limit of integration is t, and the upper limit is t, + in the rest of the paper
unless otherwise specified and as such will be omitted. The terms on the right-hand
side of equation (2.4)can be evaluated. We have

(2.5) f a. dt a,h,

la h2(2.6) (t t.)a,, dt - ,.

f (x, x.)a,.dt= ax. f (xt x.) dt.

(x, x.) is expanded in the form of Taylor’s series:

(x, x.)= [a. + (s t.)a,. + (x, x,)ax. + o(Is t.I) + o(Ix. x,I)] ds

+ o(Ix- xl dW(s.

(x- x.)is now expressed as [a,(s t.) + b,(W, W.)]. Now one may write:

(2.7)

ax. (x x,) dt ax. a. ds dt + (at. + ax.a.) (s t,) ds dt

(2.8)

+ a,.b. (W W.) ds dt + b. dW(s) dt

+ (b, + bx.a.) (s ,) dW(s) dt

+ bb. (W W) dW(s) d + o(h) + o,(h;);

1/2(t t.)at.dt -ia.t.h;

(t t,)(xt x,)a,.x, dt

(2.9) at.x. f (t t.)[a.(t t.)+ b.(W W.)] dt + o(h2) + o.(h2)

-a,.x.[a.f(t-t.)2dt+b.f(t-t.)(W, W.)dt]+o(h2)+o,(h2);
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(x, x.)2a.,. dt

(2.10)
*a2 x.x. f [a,(t t,,) + b,,(W, W,)] 2 dt + o(h2) q- op(h2)

-a [a. f (t- t.)clt + 2a.b. f (t- t.)(W,- W.)clt2 xnxn

(2.11) b. f dW(t) b.(W W);

(2.12) (t- t.)b,, dW(t)= b,. f (t- t.) dW(t);

f (x, x.)bx, dW(t)

bx. [a. + (s t.)a,. + (x x.)ax. + o([s t.I) + o(Ixs x.I)] ds dW(t)

+ bx [b + (s t)b + (x x)bx + 1/2(s t)b

+ (s t,,)(x, x,,)b,.,,. + -(x xn)2bx.x. -F o(Is t,I 2)

+ o(Ix x.12)] dW(s) dW(t)

b [a + (s t)a + axa,(s t) + axb(W W)] ds dW(t)

+ bx b + (s t)b + bxa(s t) + bb(W W)

+ bxb (u t)dW(u) + bxba (u t)dW(u)

+ bx.bx.b. (W. W.)dW(u)+ 1/2b,.,.(s tn)2

+ b,.x.a.(s t.)2 + b,..b.(s t.) (Ws W.)

(2.13)
2+ bx.x.a. (s t.)2 _lt_ bx.x.a.b.(s t.) (W,

] dW(s)dW(t) + o(h)+ _bx.x.b.(W2 Wn)2
_]

(s t.) ds dW(t)
(cont.)
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+ a.b. (W W.)ds dW(t) + b. dW(s) dW(t)

+ (b + ba) (s t) dW(s) dW(t)

+ bxb (Ws W)dW(s)dW(t)

+ b.(b,. + b.a.) (u t.) dW(u) dW(s) dW(t)

+ b.b.b. (W. W.)dW(u)dW(s)dW(t)

+b + 2bxa + bxxa) (s t.) dW(s)dW(t)

+ (bxb + bab.) (s t)(W W) dW(s)dW(t)

2ff’+ b.b (W W.) dW(s) dW(t) + op(h);

f t- t)2btt dW(t)= b f (t- t)2 dW(t)"(2.14) 2 tntn

(t- t.)(xt dW(t)

f (t t.)[a.(t t.) + b.( W.)] dW(t)+ op(h2)(2.15)

1/2(x, x.)2bx.,, dW(t)

-lb f[a.(t-t.)2 XnX + b.(W, W.) + b,. f’ (s t.) dW(s)

+ b.a. (s t.) dW(s) + b.b. (W W.)dW(s)

--lb2x.x.[a, f (t t.) dW(t) + b2. f (w W.)2 dW(t)

+ 2a.b. f (t t.)(W W.)dW(t)

(b,. + b..a.)2 f { f+ (s t,) dW(s)} 2

dW(t)

+ op(h2);

2

dW(t) + op(h2)

(cont.)
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(2.16)

+ 2a(b, + bxa) ( ) (s t) dW(s) dW(t)

+ 2b.(b + ba) (W, W) (s t)dW(s) dW(t)

+ 2b, b.(bt + bxoa.) f { f’ f’(W W) dW(s) (s t,,) dW(s) dW(t)

+ 2abb (t ) (W W.)dW(s)dW(t)

4- 2bnbxnb (W ]/Vn) (VV" I/Vn) dI(s) dW(t) -b op(h);

(2.17) ..-i f (t t.)3bt.t.t" dW(t)= bt.t.,, f (t tn)3 dW(t)

--| (t t.)2(xt x,,)bt.t.x, dW(t)2 d
(2.18)

+ op(he);

-’-| (t t,)(x, x,)Zb, dW(t)

(2.19) =-b,.x.x.la2 f (t-t.)3 dW(t) + 2anb f (t-t,)2(W,- W,)dW(t)

+ b2, f (t- t.)(W Wn)2 dW(t)l + op(h2);

J (Xt x.)3bx dW(t)

13, bx""’[4f (t- t,)3 dW(t)+ 3a .b.f (t t,)2(W W,)dW(t)

+ 3a,b f (t Wn)2 dW(t) + b2 f ( Wn)3 dW(t) + op(h2).
(2.20)

All the integrals that are encountered in equations (2.5)-(2.20) are of Wiener type
or of Ito type. So each one of them gives rise to a random variable. They are
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defined as follows"

Z1. f dW(t),

Z dW(s)dt,

z ( t ds (I,

Z. f (W, W.)dW(t),

Zs. f (t t.) dW(t),

Z6n f (W Wn)2 d,

Zv. f (W,- W.)2 dW(t),

Z8. J (t t.)(W, W.) dW(t),

(s t.) dW(s) dW(t)

Zlon J (W Wn)3 dW(t),

Z1 in (W W.)2 dW(s) dW(t),

z ( i w(sl ,
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Z18n

Z19

Z20

Z21

Z22

Z23n

Z24

Z25n

Z26

Z27n

f,f w w.) s t

(t t.)(w, w.) &,

Z28 ff
Z29 f
Z30 f

(u t.) dI4{u) dW(s) dW(t),

(s t.)2 dW(s) dW(t),

(t t,)(s t,) dW(s) dW(t),

(t t,)(W W,) dW(s) dW(t),

2

(s t,) dW(s) dW(t),

2

(W W,) dW(s) dW(t),

(W W,) dW(u)] dW(t),

(W W,)(s t,) dW(s) dW(t),

(t t.)3 dW(t),

(t t.):(w, w.) dW(t).

Z31 J (t tn)(W Wn)2 dW(t).

The properties of these random variables and their relationships are studied in
detail in the Appendix. One may find from these relationships that ZI,, Z2,, Z16,,
Z17,, Z s,, Z9, and Z:9 are dependent normal variables and Zs, is uncorrelated
to Za, and Z2, and it may be approximated by a normal variable. The random
variables Z4,-Za5 can be expressed in terms of ZI,, Z2, and Zs,. The random
variables Z16,-Zs 1, are op(h2). One may also observe that Zij (i 1, 2, ..., 31)
are independent for different values ofj, j 1, 2,..., N 1.

3. Algorithm. For a second order algorithm one has to account for deter-
ministic terms which are bigger than o(h2) and random variables larger than
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op(h2). As a result the terms involving h3/3!,Z16--Z31, can be neglected.
Regrouping the remaining terms, one gets

h2
x,+ x + a.h + b,Zl + -(a,. + ax.a,) + Ze,(ax.b.) + Z3,(bx.axb.)

2 2+ Z.,(b.b.) + Zs.(b. + ba,) + 7Z6,(a..b,) + ZTn(bx.x.b)

(3.1) + Z8,(bt.x.b + bx.x.b.a,) + Z9n(b.a, + bx.bt.)

+ Zo(b.x.x.b + Zll n(bx.bx.x,b + Z 2n(ax.bx.b)

+ Z3n(b.b)+ Z 3,(bx.b) + Z

By making use of the relationships (A.6(A.17) derived in the Appendix, the
algorithm may now be written as

xo+ x + ah + b.Zn + h2(at + axa a.b.b.)
2 2+ Z2.(axb b bxa + bb) + 2(Z h)bx.b

+ Zh(b, + b a bx.b) + Z3bxa.b
+ (ZlnZ2n Z3n)(ax.bx.bn + ax.x.b)

1[13+ ,1- Z:,)(bx..b + b.b.)
(3.2)

2 + Z3 Z1+ (Zlnh h2 nZ2n)(bt.x.bn + bx.x.anbn b..bx.b.) 2

2 h2 ,Z2,)(b.a, + bx b, 3+ (Zlnh Z3n Z bx.b.)

+ tl, 3Z1.Z2, + 3Z3,) bx.x.x.b +

3+ g1/1741 ZlnZ2n Z3n)(bx.b.x,b2n + bx.b.)

In this algorithm only three random variables ZI, Z2 and Z3 appear. ZI, and
Z2 are dependent normal variables and Z3 is approximately a normal variable.
Now the algorithm given by (3.2) can be very easily implemented on a computer
by simulating Z, Z2,, Z3, n 1, 2, .-., N 1.

4. Example. Consider an Ito integral equation given by

(4.1) x(t) X(to) + Cx ds + Dx dW(s),

where C and D are constants, W(t) is a standard Wiener process and the interval
of definition is [to,ty]. It is well known that the process .{x} is Markovian and
that the transition density function, p(x, t/x o, to), satisfies the Fokker-Planck
equation

(4.2) Op_ O(Cxp) Oa(D2x2p)
Ot Ox + Ox2
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The equation can be solved either for the density function or for the moments. If
ml(t) and m2(t) are the first and second moments respectively, then

(4.3) ml(t E(xo) exp (Ct),

(4.4) mz(t E(x)exp (2C + DZ)t.

The algorithm given by (3.2) gives a sample pathwise solution at discrete points
in the interval of definition. The algorithm for this example is given by

x.+, x.[1 + Ch + Z,nD + 1/2h2(C2 1/2CD2) + 1/2Z2nD3 + Zlnh(CD 1/2D 3)
2 nZ2 Z3n)CD2+ Z3.CD2 + 2(Z,. h)D2 + 1/2(Z1

qL_ ,1/3/173t-z_,In Z2n) + 1/2(CD2 1/2D4)(Z.h 1/2h2 Z3n ZlnZ2n)

-{- lil--744,6"-’1n Z3n- ZnZzn)D4]
This equation can be repeatedly solved to produce different sample paths each
time by getting different realizations ofx, Zn, Z2n and Z3,, n 1, 2, ..., N 1.
From these samples paths the moments can be easily computed. The equation
given by (4.1) is solved with the following values:

[to ,tl]--0.3secs., C= -2.0; D= 1.0, x(w)= 10.0, h=0.005.

Moments are computed with 100 samples. If an2 is the variance OfXn, then the sample
mean should lie between ml(tn) + 3an/,. The computational results are shown
in Figs. and 2.

10

0
0 0.2 0.4 0.6

x Theoretical value

o Sample man values

l(t)+ 3

m )- 3 (x t)/,f

FIG.

1.2 1.4



ITO INTEGRAL EQUATIONS 135

100

8O

6O

4O

2O

0
0 1.6

o Sample second-momento values

0.2 0.4 0.6 0.8 1.0 1.2 1.4

T ime

FIG. 2

5. Conclusions. The algorithm derived in this paper is readily implementable
on a digital computer. A large class of random integral equations, including the
equations where a(.,. and b(.,. are nonlinear in and x, can be studied. The
extension of this algorithm to the vector Ito equation, where xt is a vector but
(W,) is a scalar, is direct. Extension to the vector case, where W is also a vector, is not
immediate.

Appendix. Let (fL P, ) be the probability space, let M’, e 7’, be a monotone
increasing system of Borel subalgebras such that Mt includes all null sets for each t,
and let W e(t) and (Wt+ Wt) be independent of t. f e(Mt)indicates that f
is ##-measurable. Let ’ be the set of all functions, f, such that (i) f is measurable
in (t, w), (ii)ft(t) for almost all t Tand (iii) fw.f2 dt < for almost all wfL
where T is the interval over which ft is defined. The following lemmas are used to
derive some of the relationships between the random variables defined earlier.

LEPTA 1. If f, g 5/, then

f dW g dW ZG dW + gF dW + fg ds,

where F fo dWo and G f go dWo.
LEMMA 2. Iff, g 5/, then

f dW g ds fG dW + gF ds,

where F # fo dWo and g y go dO.
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Proofs of these lemmas are given in 6]. In what follows the upper limit of
integration is t,+ and the lower limit is t, unless otherwise specified. Consider

Zln f dW(t)= Wt 1-- Wtn"

Z1, is a normal random variable, by definition of the standard Wiener process,
with zero mean and variance h:

N(0 h)(A.1) Zl,

where d means the left-hand side has the distribution specified on the right-hand
side. Here N(0, h) represents a normal distribution with mean zero and variance h.

Z2, dW(s) dt (W W.) dr.

By the definition of the Ito integral Z2n can be expressed as the limit in the mean of
linear combinations of random variables which are jointly normal and as such
is normal:

(A.2) Z2, L N(0, h3/3).

Also one may observe that

(A.3) E[ZlnZ2n3 h/Z,

((( dW(u) ds dW(t) f Z2,(t dW(t)

Evidently Z3, is not normal, but its moments can be computed:

h4
E[Z3n O; E[Zn] 12’ E[Z,]=

61
h8"

E[Zn E[Zn e[z3n]2k+l --0.

Its characteristic function may be written as

h4 2 61 4

]/8qSz3.(t
12 2! - 1 4!

Consider a normal random variable Y with zero mean and variance h/12. The
characteristic function of Y is given by

h 2 3h8

12 2! 144 4!

h8 4

(/)Z3,,(t)- y(t) - 28 4!
+ (h8)"

Therefore for small values of h one can approximate Z3, by a normal variable
with zero mean and h/12 variance:

(A.4) Z3" d___ N(0, h4/12).
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It may also be noted that

(A.5) E[ZlnZ3n 0; E[Z2nZ3n O.

The random variables Z4, to Z15, can be evaluated using Lemma 1 and Lemma 2.
1. Let f(t) and g(t) in Lemma 1,

aw(t) aw(t) dW(s) dW(t) + dW(s) aW(t) /

Zx. ZI- Z4 / Z4 / h,

(A.6) Z4 2(z ).

2. Let f(t) and g(t) in Lemma 2,

dW(t) dt ds dW(t) / dW(s) dt,

ZI,. h Zs, / Z,

(A.7) Zs, (Z,,h Z2,).

3. Let f(t) and g(t) (W W.) in Lemma 2,

f f ff’ fdW(t) (W W.) dt (W W.) ds dW(t) + (W W.) dr,

ZlnZ2n Z3n -1- Z6n
(A.8) Z6n (ZlnZ2n Z3n).

4. Let f(t) and g(t) (W W,) in Lemma 1,

f dW(t) f(w- W,)dW(t)=- f {(W Wn)2--(t--t,)} dW(t)

+ f(W Wn)2 dW(t)+ f(w,- W,)dt,

Z 2ln-(Zln- h)--- -ZTn- 1/2Z5n + Z2n
(A.9) Z7,, 3(-Zln Z2n).

5. Let f(t) (W W,) and g(t) in Lemma 2,

f (w- W,)dW(t) f dr- f (t-t.)(w,- w.)dW(t)

+5 [(W- W.)2-(t-t.)]dt,

1/2(Z2.- h)h Zs. + 1/2Z6.- 1/4h2,

(A. 10) Zs. 2 1/2h 2y(Zl,h + Z3n ZlnZ2n).
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(A.II)

(A.12)

f

6. Let f(t) (t t,) and g(t) in Lemma 1,

f (t-t,) dW(t) f dw(t)= f (t-t.)(w,- w.)dW(t)

ff’ f+ (s t.) dW(s) dW(t) + (t t.) dt,

Z5nZln Zsn + Z9n --[- h2/2,

y(Za,h Z3n Z1Z9 2 1/2h 2 nZ2n).

7. Let f(t) (W, W,) and g(t) (W W,)in Lemma 1,

(t t.)} dW(t) + f (W W.)2 at,

2 2h(Zln- Zlon 8n 6n,(Z. h) Z + Z
4Zlon (-Zln -ZlnZ2n + -Z3n).

8. Let f(t) (W W,)2 and g(t) in Lemma 1,

f f ff’(W, W.)2 dW(t) dW(t)= (W W.)3 dW(t)+ (W Wn)2 dW(s) dW(t)

+ f (W Wn)2 dt,

Z7nZln Zlon - Zll + Z6n,
1/174 Z ,Z2n- Z n)(A.13) Z in 2,6-"1n 3

Z12 (W W) dW(s) dt

=- (W-W.)2dt

(A.14) 1/2(ZlnZ2n- Z3n h2/4 (by A.8),

(W W,) dW(s) dW(t)

(W Wn)2 dW(t) f (t t.) dW(t)

(A.15) 1-11--73 Z2n -(Zlnh Z2n (by A.9)2,3,_..,ln
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Z14 (W W.)dW(u) dW(s) dW(t)

} {(W W.)2 (s t.)} dW(s)dW(t)

(A.16) 1/2(Z,.- Zg.),

(A.17) (Zo.- Z8.).

It can be easily seen from the Chebyshev inequality that a random variable Z
will be op(h2) if the variance of Z is o(h4). Using this result it can be easily shown
that the random variables Z6. through Za . are op(h).
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the manuscript.

REFERENCES

[1] S. T. ARIARATNAM AND P. W. U. GRAEFE, Linear systems with stochastic coefficients, Internat. J.
Control, (1965), pp. 239-250; 2 (1965), pp. 161-169; 2 (1965), pp. 205-210.

[2] K. J. ASTROM, On a first order stochastic differential equation, Ibid., (1965), pp. 301-326.
[3] F. J. BEUa’LF.R, Multivariate wide-sense Markov processes andprediction theory, Ann. Math. Statist.,

34 (1963), pp. 424-438.
[4] J. L. Doo, Stochastic Processes, John Wiley, New York, 1953.
[5] A. T. FULLER, Analysis of nonlinear stochastic systems, Internat. J. Control, 9 (1969), pp. 603-655.
[6] K. I’o, Lectures on Stochastic Processes, Tata Institute of Fundamental Research, Bombay, 1960.
[7] N. J. RAo, Stochastic optimal control problems: An Algorithmic approach, Ph.D. thesis, Indian

Institute of Technology, Kanpur, India, 1972.
[8] A. V. SKOROKHOD, Studies in the Theory of Random Processes, Addison-Wesley, Reading, Mass.,

1965.



SIAM J. CONTROL
Vol. 12, No. 1, February 1974

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS
FOR THE FRITZ JOHN PROBLEM WITH LINEAR

EQUALITY CONSTRAINTS*

KENNETH R. GEHNER-

Abstract. A generalization of Motzkin’s theorem of the alternative is developed, and is then used
to obtain necessary optimality conditions for the Fritz John optimization problem with linear equality
constraints. Under certain constraint qualifications and convexity assumptions these necessary
conditions are also sufficient. An application of these results to the problem of Chebyshev approxima-
tion with interpolation is given.

1. Introduction. Consider the following general optimization problem"

minimize F(x)

subject to

(a) Gi(x t) <= 0 for all te T/, i= 1,...,1,

(P) (b) Ht(x,s)=O for allseSt, j-- 1,...,m,

(c) x e X,
where

(i) F(x) and each Gi(x, t) are real-valued functions which have continuous
partial derivatives with respect to x for each e T/, and each Gi(x, t) is
continuous in e T for each x e X;

(ii) each Hi(x, s) is a real-valued linear function in x for each s e St, and is
continuous in s S for each x X

(iii) each T/and S is a compact subset of a complete metric space;
(iv) X is an open set in R".

Since the Fritz John problem [4] is obtained from (P) by deleting the constraints
(b), we shall call (P) the Fritz John problem with linear equality constraints.
Although problem (P) can be put into the form of the Fritz John problem by re-
placing each Hi(x, s) 0 by Hi(x, s) <= 0 and -Hi(x, s) <= O, it is difficult to show
that the Fritz John necessary optimality conditions for the resulting problem [4]
are also sufficient under reasonable constraint qualifications and convexity
assumptions. The specific difficulties are made clear in 4.

In order to obtain necessary optimality conditions for (P), a generalization
of the Motzkin theorem of the alternative [5] is developed in 2. The necessary
optimality conditions in 3 together with the constraint qualifications in 4 and
appropriate convexity conditions yield the characterization conditions given in

5. These characterization results are applied in 6 to obtain characterization
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conditions for the solutions ofa Chebyshev approximation problem with additional
interpolation requirements.

2. Generalized Motzkin theorem. One of the main results needed for proving
the necessary optimality conditions is the following theorem.

THEOREM 1. Let

Then either

(2.1)

U and V be compact sets in R",

W be an arbitrary set in R".

uz < O for all u e U,

vz < O for all v e V,

wz O for all w e W,

has a solution z R" or for any u U, there exists S <= n with

(i) S vectors

(2.2)

uiU, i= 1,".,$1,

viv, i- S -k- 1,’’’, $2,

wiw, i=S2+ 1,...,S,

(ii) S + real numbers 2i, O, 1,..., S, such that

,i O for O, 1, S2

with either 2o > 0 or $1 >= such that
$1 $2 S

2oU + 2u + / + Y 2,w=O,
i= i=S1 + i=$2+

but not both.
Proof. The impossibility of both (2.1) and (2.2) follows at once, for if (2.1)

holds there would be a R" such that

Sx $2 S

i=0 i=S + i=$2+

<0 <0 - =0
which contradicts (2.2).

Suppose (2.1) does not hold. Define the following subsets of R""

Z1 ={zUV<=O forallUvU},vz<O for allv

Z2 {z]wz O for allwW}.
Both Z1 and Z2 are convex and Z Z2 .
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If Z1 - , then since Z2 4: always holds, the separation theorem for dis-
joint convex sets in R" [5] yields

(2.3)
qz >= forallz6Z1,

qz <= forallz6Z2

for some nontrivial q R" and real number . Since Z2 is a subspace, namely
W+/- = {z R"lwz 0for all we W}, qz 0 for all zZ2. Thus, qZ W+/-+/-

and by a theorem from linear algebra [6] q span W, so write q li=iwi
with w W and =< n. It is clear from (2.3) that the system

uz <0 for alluU,

(2.4) vz <= 0 for all v V,

Oiw z < 0
i=l

has no solution z

If Z , then the system

uz < O forallu.U,
(2.5)

vz<_O for allvV

has no solution.
Since (2.4) and (2.5) are of the same form, define

Q

i=1

and then the system

qz < O, q6Q,
(2.6)

vz<__O, vv,

has no solution z e R". Since both Q and V are compact, for any chosen u e U,
J

z= fliqi+ , 6vj, qi uo for some
i=1 j=l

(2.7) Z= z

/3 1,/$ => 0, 6j => 0, I, J arbitrary
i=1

is closed and convex. If 0 Z, then by the strict separation theorem for a closed
convex set and a point outside that set [5], there is a d e R" and a real number
e < 0 such that

(2.8) dz <<0 forallzeZ.

It follows from (2.7) and (2.8) that

qd<O for allqeQ,

vd<O for allveV.



FRITZ JOHN PROBLEM 143

Since this contradicts (2.6), 0 Z must hold, and so for some Io, Jo, fl) and 6 we
have

Io Jo

E fl)qi .+. Z (vj-- O,
i=1 j--1

(2.9) qi- u for somei- 1,...,I0,
1o

i=1

By replacing the appropriate qi by li= liw if it occurs in (2.9), the resulting
expression is a linear combination in terms of the original vectors in (2.1). By
repeatedly using reductions based on the linear dependence of n + or more
vectors in R", such as are used in the proof of the Caratheodory theorem 5],
the desired result (2.2) is obtained. Q.E.D.

The classical Motzkin theorem of the alternative 5] is simply Theorem
where each of the sets U, V, and W is finite.

3. Necessary optimality conditions. In order to obtain necessary optimality
conditions for problem (P), we shall first need a result concerning the linearization
of the constraints around any local minimum of (P).

LEMMA 1. Let be any local minimum of (P). Define [ {t Ti[Gi(2 t) O}
.for 1,..., 1. Then the system

VxF()z < 0,

VxGi(, t)z <0 for all 6 i for 1, l,

VxHj(,s)z-0 jbr all s 6 Sj for j 1, m

has no solution z in R"
Since the proof of Lemma is very similar to the proof given in 4], the details

are not given here.
THEOREM 2. Let be a local minimum ofproblem (P). Then there exist integers

s o and s with 0 <= So <= s <= n such that

(3.2)
there are So indices with <= <= together with so points
tk ii {t Ti Gik(, t)-- 0}

.for k 1,..., So, and

(3.3)
there are s So indices Jk with <_ Jk <= m together with s so points
sk Sj.Jbr k so + 1,..., s such that

(3.4)
there are s + real numbers ’’k with 20 > 0 or so >_ 1, and ’k > 0 for
k= 1,...,so

with the property that

(3.5) 2oVxF() + 2kVxGik( k) + 2kVxHjk(2, sk) 0.
k=so+
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Proof. By Lemma 1, there is no solution of the system

VxF(ff)z < 0,

(3.6) VxGi(,t)z<O for allte fori= 1,...,1,

VxHi(ff, s)z=0 for allsS for j= 1,...,m.

Then (3.2)-(3.5) follow from (3.6) and Theorem 1, where we let u= VF().
Q.E.D.

4. Constraint qualifications for problem (P). Although Theorem 2 gives
necessary conditions for an e R" to be a local minimum of (P), unless it can
be shown that 2o > 0 holds, these conditions are not very meaningful since
if 20 0 then the conditions say nothing about the objective function F(x) of
problem (P). The following constraint qualifications are sufficient to guarantee
that 20 > 0.

Constraint qualification (Modified interior point condition). The problem
(P) satisfies the modified interio.r point condition if each Gi(x, t) is pseudo-convex in
x for all e T for I, ..., and there exists a point 9 e R" which satisfies

and

(i) G()?,t)<0 for allteTfori= 1,...,1,

(ii) Hi(2, s)=O for allseSiforj= 1,...,m.

Constraint qualification 2 (Modified strict inequality condition). The problem
(P) satisfies the modified strict inequality condition at a given point if, where ff e X

{x e XlGi(x, t) <= 0 for all e T/for 1,--., and Hi(x,s) 0 for all se S
for j 1,..., m}, if for any choice of integers So and s with 0 _<_ So _-< s __< n,
together with

(i) any choice of So indices with __< ik =< and So points
tke ik {t e TklGk(, t) 0} for k 1, ..., So

and

(ii) any choice of s so indices j with _< j =< rn and s so
points se Sik for k So + 1, ..., s,

there is a vector y (Y l, "’", Y,)e R" such that

and

(iii) yqVxqGik(2 k) < 0
q=l

for k 1,-.. So

(iv) yqVxqHi(,s)=0 fork=so + 1,...,s.
q=l

For most problems, it is usually easier to verify constraint qualification
rather than constraint qualification 2. Moreover, under the assumption that
G(x, t) is differentiable in x, constraint qualification implies constraint qualifica-
tion 2.
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THEOREM 3. Let be a local minimum of problem (P). If either constraint
qualification 1 or 2 is satisfied at , then 20 > 0 is guaranteed in Theorem 2.

Proof. Since each Gi(x t) is differentiable in x, constraint qualification
implies constraint qualification 2. So it is sufficient to prove the result under
constraint qualification 2. By Theorem 2,

o

(4.1) 2oVxF(g) + 2kVxGik(,tk) + 2kVxHjk(,sk) O.
k=so +

If 2o 0 holds, then from (4.1) and the y R" from constraint qualification 2 we
have

so i
k=so +

2[yv/-/j(#, sb] 0

*-- <0 =0

which is a contradiction. Thus, 2o > 0 holds. Q.E.D.
Although constraint qualifications are needed to develop meaningful neces-

sary optimality conditions for nonlinear programming problems with a finite
number of variables and constraints, this is not necessary for linear problems of
the same form [5]. In contrast, for Fritz John type problems some type ofconstraint
qualification is always needed to guarantee 2o > 0, even when the objective func-
tion and all the constraints are linear. Consider the following problem which was
originally formulated in a different form and used for another purpose [7]:

minimize
Xl X2,1

subject to

(4.2)

(i) x x2t 2" 0

(ii) X -" Xzt 4 "c 0

(iii) X -[- Xzt 2 <= 0

(iv) -t x x2t <= 0

for all e [0, 1].

This problem is linear in all the variables x 1, x2, and z. By inspection of constraints
(iii) and (iv), the only feasible solutions are x 0 and __< x2 =< 0, so the optimal
solution is 1 2 0 and ? 1. By Theorem 2, there exist real numbers 2i,

0, 1, 2, 3, with at least one 2i > 0 such that

(4.3) o + 21 + ’J2 + ’’3
0 t-1 0

0 0

VF(, -) constraint constraint constraint
(i) att= (iii) att=0 (iv)att=0

Clearly 2o > 0 is impossible for problem (4.2).
Finally, it is appropriate to point out why it is necessary to develop a new

characterization theorem for the Fritz John problem with linear equality con-
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straints rather than reduce the equalities to two inequalities and then apply the
Fritz John necessary optimality conditions [4] to the resulting problem. If the Fritz
John necessary optimality conditions are obtained for the reduced problem with
only inequality constraints, it is possible that we can only conclude that (1/2)(- v)
+ (1/2)v 0, where vx 0 was one of the original equality constraints. There does
not appear to be any reasonable way in which to avoid such useless results other
than to derive explicit necessary conditions for problems with equality constraints.

5. A characterization theorem for problem (P). Under quite general convexity
assumptions on the objective function and constraints ofproblem (P), the necessary
conditions of Theorem 3 are also sufficient. Generalizing from [5], a real-valued
function G(x, t), where x 6 R", T and T is an arbitrary set, is said to be quasi-
convex at Y if for each x such that G(x, t) <= G(, t) for all T, then G((1 2):
+ 2x, t) =< G(ff, t) holds for all 0 __< 2 =< for each e T. The function G(x, t) is said
to be quasi-convex on a set F c R" if it is quasi-convex for each point x e F. Pseudo-
convexity is defined as in [5.

THEOREM 4. In addition to the assumptions for problem (P), let F(x) be pseudo-
convex on X, each Gi(x t) be quasi-convex on X, and assume that either constraint
qualification or 2 holds at . Then solves problem (P) if and only if there exist
integers so and s with 0 <= so <__ s <= n such that

there are so indices with <= ik <= together with So points

i {t . , ,(x, t)= 0}

for k 1,-.., So, and

(5.2)
there are s So indices j with <= j <= m together with s So
points s Sjk for k so + 1, ..., s such that

there are s real numbers 2 with 2 > 0 jbr k 1,...
property that

so with the

(5.4)
so

VxF(ff) -+- 2V,G,k(ff, ) + 2VHjk(X, s) 0.
k=so +

Proof. The necessity follows at once from Theorem 3.
For the sufficiency, suppose that x were any feasible point, i.e.,

x{xXlGi(x,t)<_OforalltT/,i= 1,..., 1;

Hj(x,s) 0 for all s e Sj,j 1, m}.
Then for any i= 1,..., m, VGi(2,?)(x- 2)__< 0 for any 2e X and which
satisfy Gi(,?)= 0 by the quasi-convexity and differentiability of each Gi(x, t)
from a theorem in [5]. It follows that

So

(5.5) VxO,(x, t)(x x) <= o
k=l

since each 2 > 0. By the linearity of Hj(x, s) for j 1, ..., m, VxHj(2, )(x )
0 for any e X and which satisfy Hj(2, ) 0, so

(5.6) 2,VxHj(2, t)(x ) O.
k=so +
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Applying (5.5) and (5.6) in (5.4), we conclude

(5.7) VxF(ff)(x if)>= 0.

The pseudo-convexity of F(x) and (5.7) imply that F(x) >= F(). Thus ff solves
problem (P). Q.E.D.

6. An application of the characterization theorem. The characterization
theorem developed in 5 can be applied to obtain characterization theorems for
numerous important problems in approximation theory; see I2] and [3]. In this
paper, for the purposes ofillustration, only one application is described, namely the
problem of Chebyshev approximation with additional interpolation requirements.

The problem can be described as follows. Let T be a compact subset of a
complete metric space, f(t) and {bi(t)}7= be real-valued continuous functions
defined on T, and {tJ}y’= be a set ofm chosen points in T. Then the problem
is to find an approximation .: Xti(t to f(t) such that

(6.1) Xd/)i(t f(t) for t T,
i=1

(6.2) sup f(t) x.*, cki(t)
i=1

inf sup
all xi’s tT

f(t) xidpi(t
i=1

This can be rewritten in the same form as problem (P)"

minimize r
Xr

subject to

(a) -f(t)+ xiq)i(t)- "c <= 0

(6.3)
i=1

(b) +f(t)- xidPi(t "c <= 0
i=1

(c) f(fl) Xi)i(tj) 0 for j 1,...
i=1

,m

for all e T.

If there are parameters : which satisfy (6.3c), then (6.3) satisfies constraint
qualification since by choosing a large enough both (6.3a) and (6.3b) can be
satisfied as strict inequalities for all T. Using Theorem 4 we obtain the following
characterization for Chebyshev approximation with interpolation.

THEOREM 5. Assuming that f(t) is not in the span of {qi(t)}7= 1, a vector x*
solves problem (6.2) with (6.1) if and only if the origin of R" can be represented as a
linear combination of at most n + points from the sets

(6.4)

bl(t)

e(t) le(t)l- e w

where e(t) = x*, dpi(t) -f(t)is the errorfunctionfor the approximation problem
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and Ilel SuPT Id01, and

(6.5)

b l(tj)) ,m

with at least one point from the set (6.4) and every point from (6.4) having a positive
coefficient in the linear combination.

Proof. All the hypotheses of Theorem 4 are satisfied, so by (5.1)-(5.4), (x*, 15")
solves (6.3) if and only if

so

(6.6} + /k
k=l

where for k 1, ..., So,

k={ O1

-1

(-- )ekl (tk)

)b.(tk)

0

(])1 (tjk) i
if constraint (6.3a) is active at k,

if constraint (6.3b) is active at

and 2k > 0. Since f(t) is not in the span of {i(t)}7= 1, 15" > 0, and so defining
2k ’.k/15" for k 1, ..., So and observing that

then (6.6) becomes

if (6.3a) is active at k, i.e., k O,

if (6.3b) is active at k, i.e., k 1,

-1 0
0

so l(tk l(tJu)
(6.7) + /ke(lk) + Z "k

k-- k=so+
o

?)J L,,(d) J
with2k>0fork= 1,...,s0ands__<n+ 1. Q.E.D.

Theorem 5 generalizes results previously obtained by Deutsch [1] for the case
where T is a compact subset of the real line and {bi(t)}’= is a Haar set.
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A GENERALIZATION TO DUAL BANACH SPACES OF A
THEOREM BY BALAKRISHNAN*

RICHARD B. VINTER-

Abstract. A class of optimal control problems is studied in which the controls and outputs are
taken as elements in Banach spaces, and the cost functions and constraints are expressible in terms of
the norms on these spaces. The paper is principally concerned with generalizing certain results of
Balakrishnan relating to optimal control in Hilbert space to this more general setting.

1. Introduction. Let a system be described by a bounded linear map from
the control space ’ into the output space X (’ and X both "dual" Banach spaces),
and suppose that the controls u are subject to the constraint Ilull < M, M > 0.
We set the problem of finding, from among all controls which minimize the dis-
tance of the output from the desired output xd while satisfying the constraint, a
control of minimum norm. The norms on ’ and X are chosen to give a measure
of cost of control and output error respectively. Thus we seek an admissible control
whose output approaches most closely to Xd; if there are a number of such controls
we seek" the most economical. This problem we henceforth call the basic problem.

In connection with the basic problem, Balakrishnan has supplied the following
result dealing with the case when and X are Hilbert spaces (our notation is
adopted).

THEOREM 1.1 [1, p. 120, Thm. 2.3]. Let be a compact linear bounded trans-

.formation mapping a Hilbert space into another Hilbert space X. Suppose that
for a given Xd in X it is required to minimize

u xll 2

subject to u being in the sphere C in

Ilul 2 M2.

Denote the adjoint of by *. Then either

sup IIU* + oI]-*xll M

in which case the sequence

us c,,c. + oI]-l*xa

is such that u converges (strongly) to the optimal element uo of minimal norm

lim us- xa 2 inf u xa 2 YUo, 0 ueC

or

sup [5’’5 + od]-lo:’’Xd > M,
s>O
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in which case

Uo [’2" + e0I] 12"*xa,
where o is adjusted so that Iluo M yields the unique solution to the minimization
problem.

Below, a generalization of this theorem to dual Banach spaces is provided.
The result is thereby made available to a considerably broader range of control
problems;in particular, taking as Loo or NBV, to problems involving "hard"
and "fuel" constraints on the control respectively.

Under a fairly mild condition on the input/output map 2" we shall establish
existence of an optimal control, characterize where possible the solution in terms
of a closed hyperplane in the output space and show how this hyperplane may be
obtained as the solution to an unconstrained minimization problem over the
normed dual of the output space. When such characterization is not possible, we
shall obtain the solution instead as the limit of a sequence in the manner of
Theorem 1.1 for the Hilbert space problem. Finally 11 extends certain results of
Porter [3, Chap. 4] concerning characterization of "minimum effort" controls
from the case when 2" is onto to the case when the range of 2’ is merely dense in X.

Balakrishnan has briefly examined a slight variant on the basic problem
above [2, 3]. In this treatment, however, characterization of the optimal control
is limited to the case when the optimal output x0 is not xd (this being equivalent to
the condition that ko > 0 in [2, p. 163, line 26]) and no means is provided of
determining the appropriate closed hyperplane of support at xo (though it is
suggested that this may be done through a generalization of the Pontryagin maxi-
mum principle).

2. Notations and definitions. By a dual Banach space B* is meant a space
isometrically isomorphic with the linear space of all bounded linear functionalsf
on some Banach space B (the primal space), the norm offbeing defined in the usual
way. We say that B* is the (normed) dual of B and that B is the pre-dual of B*. Only
real Banach spaces are here considered.

Suppose that M is a continuous linear map from A into B (A, B Banach spaces),
with adjoint M* :B* ---, A* (A*, B* the duals of A, B respectively). Then we say
that M is the pre-adjoint of M*. It is remarked that if B is not (norm) reflexive then
not all bounded linear maps from B* into A* have pre-adjoints.

The operation of a continuous linear functional b* on an element b in the
primal space will be written (b, b*). The norm on all spaces will be denoted by
I1(" )11, 0 will denote the null element (in the linear space determined by context).

A Banach space B will be called strictly normed if given x l, Xe e B,

Ilxx + x211 IIxll + IIx2ll implies X X2 or X2 O, 2>0.

We note in particular that Lp, < p < o, and any Hilbert space are strictly
normed.

Given any element b in a Banach space B, there exists a nonzero element b*
in the dual of B such that

(b, b*) Ilbll. IIb*ll
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(4, p. 186, Thm. 4.3-B]). We say that the two elements b, b* are aligned if and only if
this equality holds. Alignment will be indicated by writing b b*.

In the sequel, solutions to the control problems will be elements in a dual
space q/. These solutions will be characterized to within alignment with some
nonzero element in the pre-dual of q/, and to within the magnitude of their norms.
For some spaces (e.g., q/ Loo or NBV) the characterization may be incomplete
unless we place certain restrictions on the input/output map (for example assume
system "normality" in the case Loo). With no such restrictions further
analysis will be required to determine the full optimal control history.

In this section we have followed the customary usage of indicating a dual
space by *. However in the sequel we shall be working principally in dual spaces
and it is convenient to distinguish a Banach space and its dual instead by attaching
a superscript to the primal space.

DEFINITION 2.1. Let X be a topological space. The functional f’X --+ R + is
said to be lower semicontinuous (1.s.c.) on X if for any Xo X and e > 0, there
exists a neighborhood V of Xo such thatf(x) > f(xo) for all x V.

As is well known [5, p. 219] this definition is equivalent to the requirement
that the set {xlf(x) =< e} be closed in X for all real e.

We note in particular the following.
LEMMA 2.1. The norm on a dual Banach space B is a weak* l.s.c, functional.
Proof For , > 0, the set D {x BI x =< e} is weak* compact by Alaoglu’s

theorem [4, p. 228, Thin. 4.61-A] and therefore weak* closed [6, p. 424, Cor. 3].
For e =< 0, D is trivially weak* closed. The result follows from the above equivalent
definition of 1.s.c. ’ty.

3. Problem formulation. Let ’, X be dual Banach spaces with pre-duals
", X’ respectively. Let X be reflexive. ’ will be called the control space, X, the
output space. We introduce the input/out[ut map if’ "ll --. X. It is assumed"

(i) 5 is a bounded, linear map;
(ii) ’ has a pre-adjoint 5’:X --. ’.

Let Xd be some nonzero element in X and let M > 0. Then we define:
The subproblem.

minimize Xd --Ul,subject to u __<M u.
The subproblem will not be of interest in its own right but as a means to defining
the following.

The basic problem. From among all solutions to the subproblem find an
element Uo of minimum norm.

The condition (ii) above on is fairly mild:for example it is satisfied when
the space ’ is reflexive. The condition is introduced to ensure the following
continuity property.

LEMMA 3.1. The map --+ X is continuous with respect to the weak* topol-
ogies on and X.

Proof Take the basic weak* neighborhood of 0 in X:

A {x Xl(x’i, x> < , 1,2,..., n}
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forx’ieX’,i 1,2, ..., n. Then50- I(A) {ueOgl(50’x’i,u) < s:,i 1,2, ..., n};
here 50’ is the pre-adjoint of. We see that 5- I(A) is a basic weak* neighborhood
of 0 in #, whence 50 is continuous in the specified sense.

4. Existence and uniqueness of solutions.
PROPOSITION 4.1. There exists a solution to the basic problem.
Proof Let D be the subset of B {u 6 ’lllull =< M} on which the functional

Ilx-50(’)11 achieves its minimum. By Alaoglu’s theorem, B is weak* compact
and in consequence of Lemmas 2.1 and 3.1, {Ixn 50(. )11 is weak* 1.s.c. on //. But
a 1.s.c. functional on a compact set of a topological space achieves its minimum
whence D is nonempty. It readily follows from Definition 2.1 that D is a weak*
closed subset of B. Therefore 6, p. 424, Cor. 33 D is weak* compact. Now solutions
to the basic problem comprise elements u D of minimum norm; we conclude
existence of a solution from Lemma 2.1.

PROPOSITION 4.2. Ifl is strictly normed then the solution to the basic problem
is unique.

Proof This is shown by a simple contradiction argument.

5. The e-problem. Let us define the functionalfon ’ by

f(u) Ilxa -2’ull 2 for u 4/.

The solution to the subproblem is first considered. This problem can be cast as

minimize f(u*)

subject to Ilu* 2 m2 0.

We find the following.
LEMMA 5.1. A necessary and sufficient condition for f to be a solution to the

subproblem is that there exist some z > 0 such that

f() + czUIlll 2 M23 min {f(u)+ Ullull 2 m]lu }
and

e[ If[12 M23 O.

Proof Sufficiency follows from [7, p. 220, Thm. 1] and necessity from [7, p. 217,
Thm. 1] on remarking that (i) the required convexity conditions hold, (ii) the
infimum is finite and (iii) there exists some u e ’ for which Ilull < M,

The lemma makes it clear that the subproblem can be approached by solution
of the following unconstrained problem which we call the e-problem.

The e-problem.

’minimize f(u) + e[ lull 2 M23,
subject to u e #.

6. Solution ofthe e-problem. It is a straightforward matter to establish existence
of solutions to the e-problem. Further, it is possible to characterize solutions
fairly completely and also to compute them in favorable circumstances. This is
done in a more general setting in [8].
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The following proposition expresses the required control in terms of the
solution of an unconstrained minimization problem over the space X’.

PROPOSITION 6.1. There exists a solution u() to the a-problem. Let o be one of
the points on which the functional F with domain X’ (the pre-dual of X) achieves its
minimum where

r()- IIll 2 + ll’ll 2-

Then (i) If ’lio 0 we have the unique trivial solution u(e) O.
(ii)/f c’/lo - 0, u(0Q is aligned with C’lao and Ilu(00]] (200-1115’#o11.
Proof The proposition is a synthesis of Propositions 6.1, 6.2 and Theorem 3.2

of [87, specialized for the cost functional at hand in the manner indicated in 10
of [8]. (In [8], it was necessary to assume controllability to guarantee a nontrivial
characterization of the optimal control. However with a cost separable in the
control and output terms as here, the assumption may be dispensed with.)

7. A particular case. Let us specialize the results of the last section for
X, ’ both Hilbert spaces. Here, the pre-adjoint map ’, to within isometric
isomorphism, is merely the adjoint map * :X* --, * between the normed duals
of X and

F(/0 is Fr6chet differentiable on X. Thus OF takes the value 0 at/o. A simple
computation gives:

(7.1) c’Sa’ + od]#o 2oxa,

where I:X --+ X is the unit map (we loosely regard X and X’ as the same space).
Now 0 lies in the resolvent set of the positive semidefinite self-adjoint linear map
Sa’ :X X [4, p. 330, Thm. 6.2-B] whence ISac + I]- exists and is continu-
ous on its domain of definition.

We can write therefore

/lo 2o[L’4’5a’ + oI]-xa.

Application of the alignment condition of Proposition 6.1 gives the unique
solution to the 0-problem as

(7.2) u(o0 2g’[.a + oI]-xa

(7.3)

Remark 7.1. u(0)can be written equivalently as

u(e) [95"2’ + czI]- ’xa
since from (7.1) we have

[q,,c5/ + od]c.,/.Zo a,[,aca, + oi]/, 2oZ"xa.
-0 lies in the resolvent set of 5a’5a :4/--+ ’, whence SO/to can be expressed

o,’/Zo (200[c,’C + oI]-IXd.

Equation (7.3) then follows from the alignment condition.
Although (7.3) is more in line with Balakrishnan’s results, (7.2) is to be pre-

ferred since, in the common case when 5a maps a function space into a finite-
dimensional space, 5a’ is a finite-dimensional matrix whereas a’Sa is a map
between function spaces (albeit with finite-dimensional range).
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8. Properties of u(e). In this section some intermediate results are presented.
The proofs are routine and therefore confined to Appendix A.

Throughout u(e) will denote a solution to the a-problem. We first show that
the functional on (0, oo) defined by Ilu(" )11 is well-defined.

PROPOSITION 8.1. If two elements u and t solve the o-problem, then

Additional properties of Ilu(" )l are the following.
PROPOSITION 8,2, Ilu()II is a monotone, nonincreasing function of o on (0, oo).
PROPOSITION 8.3, U()ll is a continuousfunction of o on (0, oo).
The next result provides a useful characterization of basic problems which

still have a solution after removing the constraint lull _-< M.
PROPOSITION 8.4. There exists a Uo with.[’(Uo) rain {.f(u){u } !fiand only

if sup {[[u()][ 10 > 0} < oo. If such a uo exists, then

sup u() I1 > 0} =< lluoll.
Remark 8.1. It is clear from Proposition 8.2 that sup{ u()Iz > 0}

lim+o ]lu()]].

9. Solution to the basic problem, Part 1. Solution of the basic problem will
proceed along two different lines depending on which of the two conditions (C1)
or (C2) holds"

(C1) limo Ilu() > M,

(C2) lim+o Ilu()ll M,

Case (C1) is the easiest to deal with. In fact we have the following proposition.
PROPOSITION 9.1. Suppose that condition (C1) holds. Let zo > 0 be such that

U(o) M. Then U(eo) is a solution to the basic problem.
Proof Let us first show that eo with the stated properties exists. Consider the

program

minimize f(x)

subject to lull 2- M2 < 0.

We know from Proposition 4.1 that this has a solution ft. Further from Lemma 5.1,
there exists some > 0 such that

and

f(fi) + e 112 min {f(u) + z u ]2lue ’}

Suppose that 0. Then fi solves the unconstrained problem and from
Proposition 8.4 Ilfill 2 M2 > 0 contradicting the fact that solves the program.
But if > 0, then u() and Ilu()[[ M. Setting o we have achieved our
aim.

We have shown that U(o) solves the subproblem. It is a simple matter to
show that U(o) in fact solves the basic problem. For suppose to the contrary
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that there exists some u with

f(u(o)) f(u) and

Then f(u(o)) + o[lU(o)ll 2 > f(u) + ol[U[[ 2 since o > 0. This strict inequality
contradicts the optimality of U(o) and concludes the proof.

In view of Remark 8.1, the condition (C1) can be tested by taking some
sequence {,}, ,$ 0, and examining whether the monotone nondecreasing
sequence {llu(,)ll} is bounded above by M or not. The task of matching o to
satisfy IlU(o)ll m is aided by knowledge that Ilu(" )1] is a continuous, monotone
function (Propositions 8.2 and 8.3).

10. Solution to the basic problem, Part 2. We now turn to the more interesting
situation when condition (C2) holds. A more direct approach can be followed
when the system is controllable (the problem will be examined with this added
postulate in the next section). Here we make no controllability hypotheses.

To obtain a Banach space analogue of Balakrishnan’s result (Theorem 1.1),
we would hope that, for condition (C2), u() - Uo (a solution to the basic problem)
as $ 0. Making certain assumptions on ’ we will establish the desired convergence
property (the nature of convergence, strong or weak*, depending on the severity
of the assumptions). In general however we cannot assure convergence (except
for certain subsequences) since we have built no conditions into the problem
formulation guaranteeing even uniqueness of solutions to the basic problem.
However the computational significance of Balakrishnan’s result (assuming
condition (C2) to hold) is that by taking a sufficiently small positive number,
we can obtain from (7.3) a control whose "suboptimality" is arbitrarily small. It is
this aspect which has a parallel for the basic problem in its full generality.

PROPOSITION 10.1. Suppose condition (C2) to hold. Then writing Uo for a
solution to the basic problem, we have

(i) limo z-l{l[Xd- u()ll 2- [Ixd uoll 2} --O,
(ii) lim+ o [[u()l[ [[Uol[,
(iii) if the basic problem has a unique solution (in particular if ll is strictly

convex), then

u() wel*, UO as $ O.

If uniqueness fails, we still have that any sequence {ti} of real numbers with (X J 0
contains a subsequence zj} such that

U(Oj) weakly; l

where solves the basic problem.
Before embarking on proof of this proposition, we take note of the following

lemma.
LEMMA 10.1. Let K be a map from the real line into the topological space Y.

Let o be some real number and suppose that there exists some Yo Y such that,
given any sequence {0i} with X OO, there exists some subsequence {zj} such
that K(zj) --, Yo as --, o. Then

K(oc) yo as o zo.
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Proof Suppose that K(e) -ff Yo as e --, Co. Then there exists some sequence
{ei} with i--* eo and a neighborhood N(yo) of Yo such that K(ai) N(yo) for

1, 2, .... Clearly for no subsequence {j} do we have K(ej) Yo as hypothe-
sized. This contradiction establishes that lim,_,o K(e) Yo as required.

Proof of Proposition 10.1. Define the functional Af(. by

Af(u) f(u) f(uo) for u e ’.

Part (i). Since by optimality of Uo

lim inf {-1 Af(u(e))} > 0,
+0

to establish Part (i), it suffices to show that

lim sup {e-1 Af(u())} =< 0.
a+0

To this end we first remark that for 0 < 1 =< 2,
Uo 2_>_ u(l) 2 + -aA/(u(xl))

(10.1)
__> Ilu(2)ll 2 / ;a Af(u(2)).

This result follows immediately from the inequalities

Uo 2
Uo

2 +x-lA/(uo)> u(al) 2 +x-lA/(u(xl))

=> u(a) 2 + 0- Af(u(l) _>_ Ilu(2)I 2 + -1 AfKu(02))"

(We have used the optimality of Uo, U(l) and u(2).)
Inequality (10.1) assures existence of some Y < such that

lim sup u() 2 + -1 Af(u())} Y.
0

Clearly,

lim sup {o -1 Af(u(o))} Y.
a$o

Let us assume contrary to our requirement that

lim sup {a-1 Af(u())} 3c,
a+0

The positive number 3 is chosen so that

c>O.

Y < Ilu(3)ll 2 + 0- mf(u(o3)) -}- ,.
There exists a positive number 4 such that 44 < o3 and 2c < Af(u()) < 4:.
But then

y < u(3 2 + ;1 Af(u(3)) + ; u(4) 2 + ;1 Af(u(4) +
Ilu()l 2 + (4/3)21 Af(u(4) + u(4 2 + (1/4)21 Af(u(4) + :

< u(e4) 2 + 2: < [u()ll 2 + 21Af(u(4)) Y.

This contradiction concludes the proof of Part (i).
Parts (ii) and (iii). Let {i} be a sequence of real numbers with + 0. Consider

u()}. By Proposition 8.4, the sequence is contained in a closed sphere ofradius Uo
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with center at the origin in q/. There therefore exists some subsequence [4, Thms.
2.4-D and 4.61-A] which we write as {u(0,)} such that u(0,) weakly*. , where e .
Now from (10.1),
(10.2) limsup [u(e,) =< Uo

Since the set {u e l u][ _< Uo I} is weak* closed [6, p. 424] we have that fi N Uo
Now in consequence of Lemmas 2.1 and 3.1, zXf(. is weak* 1.s.c. whence

AI’() _-< lim inf {Af(u(,))}.
Since from Part (i) we have that in particular lim,_+oo Af(u(,)) 0,

l _-< IlUoll and f() __< f(uo).

The optimality of Uo is contradicted unless I]fill IlUoll and f(fi) f(Uo). It is
evident that is a solution to the basic problem. Taking as fi we have proved the
second part of(iii). The first part of Part (iii) follows from Lemma 10.1.

Again from Lemma 2.1, (.) is a weak* 1.s.c. functional on . We conclude
that

Uoll __< liminf][u(0,)]] =< lim sup u(,)ll <- Uo

(we have used (10.2)). In consequence lim,_+ [u(e,) [uol[. In view of Lemma
10.1 we have proved Part (ii). This concludes the proof of the proposition.

Remark 10.1. Note that Part (i) of Proposition 10.1 is a rather stronger
statement than" lim=,of(U(CZ)) f(uo).

Finally we point out that by imposing the condition that qg be uniformly
convex we can ensure that u(e) tends strongly (rather than weakly*) to Uo, the
unique solution to the basic problem.

PROPOSITION 10.2. Let q[ be uniformly convex. Then in Proposition 10.1 we can
replace (iii) by

(iii)’ u() Uo (strongly in q[) as O, where Uo is the unique solution to the
basic problem.

The proof of the proposition is given in Appendix B. The result is of some
interest because all Hilbert spaces and also the spaces 1,, L,, < n < oo, are
uniformly convex [10].

11. Controllable systems. As promised we now consider problems where
condition (C2) holds and the input/output map is controllable. By a controllable
map (with codomain a topological space) we mean a map whose range is dense.
The strongest results are obtained when the map is onto.

PROPOSITION 11.1. Suppose that condition (C2) holds and that is onto. If lo
is any of the points in X’ {0} (X’ the pre-dual of X) on which the functional F(/)
attains its maximum where

then u is a solution to the basic problem if and only if
u lo and qUo Xd.

A Banach space is said to be un!lbrmly convex if for each e(0, 2), there exists some (5 > 0 such
that Ilxl[ IlYll and IIx Yll > imply that II(x + y)/211 < ,5.
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It will befound that any solution to the basic problem satisfies

Iluoll (#o, Xd)/ll#oll.

Proof With 50 onto, it is clear from the problem formulation that the basic
problem therefore reduces to

minimize u

subject to xe 5%, u e

But this is precisely the minimum effort problem studied in Chapter 4 of [3. The
proposition expresses standard results in the literature.

The assumption that 50 be onto is very severe; it effectively limits treatment
to systems having finite-dimensional output spaces. It is of interest therefore to
examine whether Proposition 11.1 admits generalization to the situation, where
the range of5 is merely dense in X. Such a generalization would provide character-
ization of solutions to the basic problem directly in terms of nonzero elements in
X’ for the case that 50 is controllable and condition (C2) holds. The cumbersome
procedure of determining the optimal as a limit of solutions to the a-problem
would thereby be circumvented.

Now Proposition 11.1 identifies an optimal control Uo as being a point in
whose image under 50 lies nearest to the closed hyperplane supporting the set
at Xd; here

o {x e Xlx 50u, u <= inf vii [Xd 50V, V e

Unfortunately, such identification is not always possible when is not onto;
indeed, it is easy to construct counterexamples (see, e.g., 9]) where no closed
hyperplanes exist supporting at certain of its bounding points. We do have,
however, the following proposition.

PROPOSITION 11.2. Let 50 be controllable,and let ll be reflexive. Suppose that
condition (C2) holds. Let F be the real-valuedfunction with domain X {0} defined
by

and let

F0 sup {F()I e x’ {0}}.

Then Fo < o and either (i) F achieves its maximum at some #o X’ {0} in which
case Uo1150#o and IlUoll Fo, where Uo is any solution to the basic problem, or (ii) F
.fails to achieve its maximum on stXroy{ 0}., but there exists some sequence {,ui} c X’
such that F(pi) ---, Fo and 50’1a U’o where U’o is some nonzero element in ll’.
In this case

Uo U’o and Uo Fo.
The proof of this result is supplied in Appendix C.
Remark 11.1. The unsatisfactory (and apparently unavoidable) feature of

Proposition 11.2 is that uo is aligned not with some element in the range of 50’,
written (50’), but instead with some element in N(50’). If we relinquish the
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reflexivity of @’, the situation is even graver. In this case let us denote the adjoint
of 50 by 50* :X* @’*, where @’*, X* are the normed duals of q/, X respectively;
in consequence of the assumed existence of the pre-adjoint map 50’: X’ @" and
the assumption that X be reflexive, we have (50’) (50") (to within isometric
isomorphism). Further analysis reveals that here Uo is aligned with some element
in the orthogonal complement of the null space of 5; this we denote [V’(50)] +/-.
Since for some input/output maps

(e’) (,)s,o,

[4, p. 226, Thm. 4.6-G], we have said somewhat less about the optimal control
than in the reflexive case.

In the light of this section, we can distinguish between three different situations
when condition (C2) holds:

(i) (50) X, not necessarily reflexive. Uo is characterized through some
element/o X’ as being aligned with 50’#o.

(ii) (50)= X, q/ reflexive. Uo is characterized through some sequence
{i} X as being aligned with limi_,oo 50’i"

(iii) (50)= X, not necessarily reflexive. Uo need not be characterized
through any element or sequence in X’.

Notice that the findings of 10 are not contradicted; although u(), e > 0,
is aligned with some 50/,/t e X, the weak* limit of {u(,)} need not be so aligned.

12. Summary of results. We bring together our findings.
THEOREM 12.1. Let u() be a solution to the a-problem. Then either

lim u()ll > M,
0

in which case a solution to the basic problem is given by U(o), where o is so adjusted
that

Ilu(o)ll M,

or

lim u()ll M,
+0

in which case u(), for sufficiently small, approximates arbitrarily closely to a
solution of the basic problem in the sense of Proposition 10.1.

We recall from 7 that for @’, X Hilbert spaces,

u [50’50 4- I -150 Xcl

Noting that when ’ is reflexive we have, for the condition (C2), u(e) strnglyl, U0
(the unique solution to the basic problem) as e $ 0 (Proposition 10.2 and succeeding
remarks), we recover Balakrishnan’s results (Theorem 1.1) in full as a special case
of Theorem 12.1. In addition, Part (i) if Proposition 10.1 is a stronger statement
than the corresponding statement in Theorem 1.1 and (as observed in [2]) the
hypothesis that 50 be compact has been shown to be redundant.
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Appendix A.

Proof of Proposition 8.1. This is shown by a simple convexity argument.
Assume in contraposition that

f(u) + u[[2 f(fi) + fi]12 and []u]] 4: I]fi I.
Let , e (0, 1). Then by the convexity offand the triangle inequality,

f[eu + (1 e)fi] + [leu 4-(1 e)fill 2

elf(u) + ]]ul] 23 + (1 :)[f(fi) + ]]K]]23 e(1 e). [[]u [[112.
Since the last term is positive under the stated hypotheses,

fichu + (1 e)fi] + a eu + (1 ) 2

< :[f(u) + u 2] + (1 :)[f()+ e f(u)+ ul[ 2,

in contradiction of the optimality of u.

ProofofProposition 8.2. Assume in contraposition that there exist 1, 2 with
> > 0 for which lu() > u()[[.
By the optimality of u(), u(a),

f(u())- f(u(,)) { u(,) u() }
and

1{[[u(1)[[ 2 [lu(2)[I 2} =< f(u(2)) f(u()).

U0112"- IlU0II 2 4- o-’[f(uo)- f(uo)] >= [[u(a)][ + a-l[f(u())- f(uo).
But -l[f(u()) -f(uo)] > 0 by the optimality of Uo, whence Uo

2 >= ]]u(a) 2

providing the required upper bound.
To prove the "if" part, suppose that

sup{ u(a)llla > o} < k, k>0,

and consider the program
minimize f(u) over u ’
subject to Ilull k2 _-< 0.

By Proposition 4.1 and Lemma 5.1, the program has a solution u(a) and there
exists some a > 0 such that

f(u(a)) + [ u(a)l 2 k2] min {f(u) + eli u kZ]lu e ’}
and

[llu()ll k] 0.

Suppose that a 4: 0. Then ]]u(a)]] k. This contradicts the hypothesis and we

Since > a2, f(u(2)) f(u(Ol)) < f(u(a2)) f(u(al)). This proves the propo-
sition.

It is convenient to prove Proposition 8.4 before Proposition 8.3.
Proof of Proposition 8.4. The "only if" part will follow if we can prove the

final statement of the proposition. For any e e (0, ), by the optimality of u(),
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conclude that 0. But in this casef achieves its minimum on ’ as required for
completion of the proof.

Proof of Proposition 8.3. Given the positive real numbers e’, e" with e’ > "we first show that Ilu(e)ll achieves all values between Ilu(e’)ll and Ilu(cz")ll as e
ranges over [e", e’]: the result follows trivially if ]]u(e’)ll [lu(")ll, so we suppose
that [lu(e")l] > Ilu(e’)[I (recall that u(. )is monotone nonincreasing). Let m belong
to the interval (llu(z’)ll, Ilu(")ll) and consider the problem

minimize f(u) over u k’

subject to Ilull 2 M2 O.

By Proposition 4.1, this has a solution u l, and there exists a corresponding 1 > 0
such that

(A.1) f(ul) + 1 ul
2 min {f(u) + 1 u 2lue ’}

and

(A.2) (x1EI[/A 2 M2 0.

Suppose that 1 0. Then U solves the unconstrained problem, and by Propo-
sition 8.4,

uall >_-Ilu(") > m >__ u

From this contradiction we conclude that > 0. But then from (A.1) we have
that u u(czl). From (A.2), U(l) M. In view of Propositions 8.1 and 8.2,

, (’, "),

and the result follows.
Now since I[u(. )1[ is monotonic on (0, oe), it has left and right limits at all

points in (0, ) [11, p. 78]. Obviously a contradiction arises with the above result
unless the left and right limits are the same. We have established that u(.) is
continuous on (0,

Appendix B.
ProofofProposition 10.2. With /uniformly convex, //is reflexive and strictly

normed [12, p. 333. Take the sequence (i) with i $ 0and write (ui) for the sequence
(u(i)) in ’. From Proposition 10.1 (remembering that ’ is-in particular reflexive)

[/A /A0

and Ilull } is an increasing sequence. (Here Uo is the unique solution to the basic
problem).

Now suppose that ui
strongly. Uo. Then there exists some subsequence of {ui}

which we write as {uj} such that

llUo-Ujll >6, .j= 1,2,...,

for some 6 > 0. Since { [[uj[[ is an increasing sequence and ’ is uniformly convex,
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there exists some ; > 0 such that

Iluo / ujll < (2 e)Iluoll.

’ is reflexive, so there exists some nonzero u such that (u, uo) u; Iluo
But then

(2- 011uoll > Iluo / ujII >_-Ilu’o[I-l(u’o,Uo / uj, j 1,2,

Since uj weakly U0 we have

lim Ilu’oll-l%u’o,Uo + u> 211u -I(u;,Uo) 2 [Uo

From this contradiction we conclude that u strngly U0. But then by Lemma 10.1,
U() strongly U0 as (X $ 0, and the proposition is proved.

Appendix C. In this section, Proposition 11.2 is proved. The proof leans
heavily on duality theory. Rather than refer constantly to the duality literature
we prefer to work from the following lemma which condenses the results which
we shall require (the lemma can be pieced together.from [13] though the more
streamlined notation of [14] is employed).

LZMMA A.1. Letf and g be respectively proper convex 1.s.c. and proper concave
u.s.c. (extended-valued)functionals (see [14] for definition of technical terms) on the
Banach space A. Take the primal problem to be

(P) minimize {f(a)- g(a)la e A}.
Suppose that there exists some point a in the effective domain (dom (g)) of g

such that f is (strongly) continuous at a. Define the conjugate functionals f’ and g’
with domains all ofA* (the normed dual ofA) by theformulas

f’(a’) sup {(a, a’) f(a)la e A}, a’ e A*,

g’(a’) inf {(a, a’) g(a)la e A}, a’ e A*.
Take the dual problem to be

(P’) maximize {g’(a’) f’(a’)la’ e A*}.
Then, if inf f(a) g(a)[a A} > or,

(a) (P’) has a proper solution a’o,
(b) inf {/(a) g(a)[a A} g’(a)) f’(a’o),
(c) ao is a solution to the primal problem if and only if the following alignment

conditions hold:

(ao, a’o) f(ao) max {(a, a’o) f(a)]a A},
(ao, a;) g(ao) min {(a, a;) g(a)la e A}.

Proof of Proposition 11.2. In simple consequence of Proposition 8.4, when
(C2) holds and (5) X, there exists some fie ’, [[[[ __< M, such that xa 5a.
Therefore under the stated conditions the basic problem takes the form:

’minimize Ilull
.subject to xd 5u, u e .
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Let us change variables u fi w to give

minimize I wll
(P)

/.subject to haw 0,

(P) will be identified with the primal problem. To this end define the continuous
proper convex functional f with domain ’ by

f(w) I1 wll, w ,
Define also the u.s.c, proper concave extended-valued functional g with domain

’ by

j" 0 if w e
g(w)

oe otherwise.

(1/’(5o) denotes the null space of
Then (P) can be cast into the form"

(P) minimize {f(w) g(w)lw ’}.
Our next task is construction of the conjugate functionals f’, g’. Since by

hypothesis ’ is reflexive, the domains off’ and g’ can be taken as q/’. By definition,
for any u’e ",

Clearly,

f’(u’) sup {<u’, w> lift wll Iw }
<u’, > + sup <u’, u> Ilu lu }

=<u’,> +sup{ u -[ u’ 131 u [0, oo)}.

/<u’, >.f’(u’) 1 + c
if u’ <

otherwise.

We now turn to g’. Again by definition, for any u’ e ’,

g’(u’) inf {<u’, u>lu e

By a standard result [4, p. 226, Thm. 4.6-C] V(&a) {(&o,)}+/- (since 0g, X
are reflexive 5v’ is isometrically isomorphic with the adjoint of So). In simple
consequence of the definition of the orthogonal complement the infimum is 0 if
u e +/- { {(a,)} +/- }, and oo otherwise. But (Se’) +/- { {N(ha’)} +/- [4, p. 225, Thm.
4.6-A] whence

j" 0 if u e (5’),
g’(u’)

oo otherwise.

The dual problem

(P’) maximize {g’(u’) f’(u’)lu’
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therefore becomes

maximize -(u’, fi) over u’ e "(P’)
!. subject to ]]u’ll _-< and u’ e N(50’).

Notice that w 0 is a point in the effective domain of g at whichfis continuous.
We conclude from Lemma A.1 that there exists some proper solution u; to (P’)
and that

Uo (u, ),

where Uo Wo and Wo is any solution to (P).
Study of the steps in the computation off’ and g’ reveals that Uo satisfies the

alignment conditions of Lemma A.1 if and only if

uoll- u and xd 50Uo.
Let us show that u; O, whence the characterization of Uo is nontrivial. Let

# be a nonzero element in X’ such that -/tllxd (remember that X is reflexive).
Since 50 is controllable, the null space of 5’ is simply {0} (we have used the result
,A/(50’) {(50)}+/-) the magnitude ofkt can be chosen therefore so that 0 < 2"11
=< 1. Then 50’t satisfies the constraints on the dual problem. Further

Thus the maximum in the dual problem is greater than zero. Clearly u; - O.
Indeed since the objective functional of the dual problem is linear in u’, we have
that Iluo 1.

We have shown that the problem

(P’)
maximize ( u’, fi) over u’ e "
subject to Ilu’ll 1 and u’ e (5’)

has a proper solution u with Ilull that Uo solves the basic problem if and
only if (i) ull- u and (ii) xa 50u, and that any solution to the basic problem Uo
satisfies Iluoll -(Uo,.

Proposition 11.2 is merely an expansion of this statement, distinguishing
between the cases when Uo lies, and fails to lie, in the range of 5 (notice that we
have changed variables u -u and avoided explicit mention of fi).
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DIFFERENTIAL GAMES OF SURVIVAL WITH SPACE-LIKE
TERMINAL SET*

RONALD J. STERN’

Abstract. For differential games of survival in which the boundary may be represented as a smooth
curve, we give a method for transforming a survival game into a fixed duration game. Comparisons
between the upper and lower values of the original game and its transform are derived, and applications
of the transformation are given.

1. Introduction. The approach to differential game theory used in this paper
is that of A. Friedman [2]-[4. In this paper we give a procedure for transforming
a certain differential game of survival into a differential game of fixed duration,
and derive relations between the upper and lower values of these games. We
restrict our attention to survival games in which the capture set is space-like;
that is, its boundary can be represented as a smooth curve of the form r(x).

In 2 we give the requisite preliminaries. In the third section we give two
results concerning 6-games which are needed in what follows. The transformed
game and the main results are presented in 4. Section 5 consists of examples.

2. Preliminaries. Consider a system of m ordinary differential equations

(2.1) 2 f(t, x, y, z), o <_ _< To,

with an initial condition

(2.2) X(to) Xo.

Let Yand Z be compact subsets ofthe Euclidean spaces R" and Rq, respectively.
The controls y(t) and z(t) are Lebesgue measurable functions taking values almost
everywhere in Y and Z, respectively, defined on [to, To].

Let F be a closed subset of R + such that

(2.3) F= [Tl,ov) R for some o < T__< To.

(2.4)

Given a trajectory x x(t), define the capture time as

(x) inf {t:(t,x(t)) F}.

Consider a payoff functional

(x)

(2.5) P(y, z) g[x()] + h(t, x, y, z) dr.
to

The differential game associated with (2.1)-(2.5) is called a game of survival,
denoted G.
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Remark 1. Survival games are the most general type of two person, zero-sum
differential game, i.e.,

(i) If g 0 and h _>_ 0, then G is a game of generalized pursuit-evasion.
(ii) If g 0 and h 1, then G is a game of pursuit-evasion.
(iii) If F To, o) R", then To. We then call G a fixed duration game.
The following assumptions guarantee the existence and uniqueness of a

solution of (2.1)-(2.2) for each pair of controls (see [1] and 3])"
(a) f(t,x, y, z)is continuous on [to, To] R Y Z.
(b) There exists k(t) L l(to, To) such that

If(t, x, y, z)l =< k(t)(1 + Ixl)

for all (t, x, y, z) [to, To] R" Y Z.
(c) For each R > 0, there exists kR(t) Ll(to, To) such that

If(t, x, y, z) f(t, , y, z)l =< k(t)lx l
for all e [to, To], y e K z e Z, Ix[ __< R and Il R.

Regarding the payoff, we state the following assumptions:
(d) h(t,x, y, z)is continuous on [to, To] x R x Y x Z.
(e) g is continuous on Rm.
If (a)-(e) hold, then P(y, z)is well-defined on the space of controls. Let nbe

any positive integer, and (5 (T- to)In. Let

Ij= (tj_l,tj) fortj= o + j6, 1 <= j <_ n.

Define Y and Zj to be the classes of measurable functions on 1j which almost
everywhere take values in Y and Z, respectively.

Let F6’j be any map of Z1 Y1 Z2 Y Y-I Z into Y.
We then call the n-tuple

F=(F’1, F’")
an upper 6-strategy for y. Similarly, we define an upper 6-strategy for z, A whose
components A6’aremapsfrom Y1 Z1 Y2 Z2 "-- Zj_I Yinto Zj.

For 2 =< j <= n, let F6,j be any map from Y1 x Z x Y2 x Z2 x x Y_I
Zj_ into Y, and let F6,1 be any element of Y1. We then call the n-tuple

Fo (F,, ..., F,,)
a lower-6-strategy for y. Analogously, one defines a lower 6-strategy Aa for z.

Given a pair (A, Fa), we uniquely obtain control functions (z, ya), and a
trajectory xa. Then (za, yO) is called the outcome of (A, F). Analogously, a pair
(F, A) yields an outcome (ya, za) and a trajectory xa.

The upper 6-value of G is the number

Va(G) inf sup inf sup inf sup P[Aa, F],
A6,1 F6,1 Ad, F6, Ad,nF6,

and the lower 6-value of the game is defined by
V6(G) sup inf sup inf sup inf P[F6, A6].

F6,1 A6’ F6,2 A6’2 Fd,n A6’n

We say the differential game has value V(G) if the limits lim_o V(G) V-(G)
and limo V(G) V+(G) exist and are equal. V-(G) and V+(G) are the lower
and upper values of G, respectively.
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(2.6)

Proof of the following theorem may be found in [3]"
THEOREM 2.1. Let assumptions (a)-(e) hold. Then

V6(G) inf sup P[A6, F] sup inf P[A6, F6],
A6 F6 F A6

and

(2.7)

(2.8)

Va(G sup inf P[F6, A6] inf sup P[F6, A6].
F6 A A F6

Some further assumptions now will be stated.
(f) F has C2 boundary OF and

vo + min max vjf(t, x, y, z) < O,
Z Y j=l

v0 + min max vjf(t, x, y, z) < 0
Y Z j=l

for all (t,x) cF, where v (vo, v1,"’, v,,) is the outward normal to cF at
(t, x), and the f are the component functions of f.

max min f(t, x, y, z) p + h(t, x, y, z)}
(g) r z

min max {f(t, x, y, z).p + h(t, x, y, z)}
z g

for all p e R".
THEOREN 2.2. Let assumptions (a)-(f) hold. Then
(i) V + (G) and V-(G) exist.

(ii) Ifalso (g) holds, then G has value.
The proof (i) follows from arguments in [3], in particular 3.3, 5.2, and

Problem 3.4.3. Part(ii) is proven in [2] and [4] in case G is of fixed duration.
Extensions of the results of [4] found in [5] yield (ii) for the general survival case.

3. Two lemmas on 6-games.
DEFINITION 1. B is the class of F6 such that for any A6, the y-outcome, y6,

of (F6, A6) is a Borel measurable function. B is defined similarly.
LEMMA 3.1. Let G be a game ofsurvival satisfying (a)-(e). We then have

(3.1) V6(G) inf sup PA6, y]
AdB y

and

(3.2) Vo(G) sup inf P[F6, z].
FdeB)

(Here "sup" means the sup taken over all admissible controls for the player y;

similarly for "inf".

Proof. From Theorem 2.1, it is easily seen that

(3.3) V6(G) inf sup P[A6, y],
A6 y

and

(3.4) Va(G) sup inf P[F,, z].
F6
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We will use (3.3) to prove (3.1). Statement (3.2) will follow similarly from
(3.4).

Let e > 0 be given. Then (3.3) implies the existence of Ao such that

(3.5) v() >__ P[, y
for all controls y y(t).

Given any Lebesgue measurable function r valued in R on an interval I,
there exists a Borel measurable function, say b[r], which agrees with r almost
everywhere on I. We will use the above fact in order to modify A into Aa, which
is a member of B.

Let y= (Y l, Y2, "’’, Yn) be any control for player y. Define
(i) A_,I b(l], where A, 1,

(ii) 2(:1, Y=,2(-1,Yl) b[-2], where 2
(iii) A4( Yl,-2, Y2, "", j- 1, Yj-1) b[j], where . 4(Zl, y, z2, Y2,.., zj_ 1, yj_l), for 2 =< j =< n.

Define A (A,,A,2, ..., Aa,,). It is not difficult to see that P[A, y]
P[A, y] for all controls y. This fact and the fact that e in (3.5) was arbitrary

yield (3.3). Statement (3.4) follows similarly.
DEFINITION 2. S is the class of F such that for any A, the y-outcome, y, of

(Fa, Aa) is a step function. We define S] similarly.
LEMMA 3.2. Let G be a game offixed duration satisfying (a)-(e). We then have

V(G) inf sup P[A, y],
AaeS

(3.6)

and

(3.7) V(G) sup inf P[F, z].
F,S

Proof. Let 7 > 0 and > 0 be given. Given any Lebesgue measurable
function r valued in R on an interval I, there exists a step function sir] and a
measurable subset J c I such that

Is[r] r[ __< 7 for all I- J
and meas J < e.

We will prove (3.6), the case for (3.7) being similar. Let Ao be as in the proof
of Lemma 3.1, where e > 0 was given. Proceeding as we did there, we can define
a lower 6-strategy A with the following property" given any control y, there exists
a measurable set J c [to, To] such that

(3.8) 15a- 1 __< 7 for Mite I- J,

and

(3.9) meas J =< ne,

where ff is the z-outcome of (, y) and is the z-outcome of (, y). We claim
that

(3.10) IP(y, ,) P(y, 3)1 =< 0(7, n)

for a positive function O(., which does not depend on the control y and tends
to zero with its arguments.
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Statement (3.10), (3.5) and the arbitrariness of e, 7 and cz will yield (3.6).
Thus it remains to establish (3.10) from (3.8) and (3.9). We will show that for a
positive constant C,

(3.11) sup 126- -61 <- C(7 + n),
t[to,To]

wherea is the trajectory associated with (A, y) and x is the trajectory associated
with (Aa, y). Verification of (3.10) is then quite routine upon making use of the
continuity of h. To verify (3.11)we write

(3.12)
I6 cal If(t, 2, y,

=< If(t, 6, Y, 6) f(t, Y6, Y, .6)1 + If(t, , y, 6) f(t, , y, 6)1.

From (3.8), (3.9), the continuity of f, the fact that the family of trajectories
of G is uniformly bounded, and condition (c) of 2, we have the existence of a
positive" constant B and a positive integrable function k(t) such that

(3.13) I6 61 < B(7 + n) + (t)126- -1.
From a fundamental inequality of differential equations (see [1, p. 37]),

we then obtain

(3.14) sup 12- Il =< B(7 + ne)exp
te[to,To]

completing the proof.

(t) dt
to

4. Transformed survival games. Let G denote the game of survival introduced
in 2. Let R o denote a uniform bound on the family of trajectories for G. Let

c max If(t, x, y, z)l.
[to,To] {Ix _< Ro} y Z

We will require the following condition in much of what follows
(Fr) OF is represented by an equation r(x) where r is continuously

differentiable on {Ixl =< Ro} and is piecewise twice continuously differentiable
on {Ixl _-< Ro}. Furthermore, the gradient oft satisfies

max Irx(X)l < 1/c.
{Ixl-<Ro}

Remark 2. An elementary argument shows that (Fr) implies (f) of 2.
We now define a certain coordinate transformation (t,x) (t’,x’) which

transforms OF into the surface t’ r(xo), via the relations

(4.1) t’= + r(xo)- r(x)

and

(4.2) x’= x.

Let y(t) and z(t) be a given pair of control functions, and let x(t) be the corres-
ponding trajectory. Using the above transformation, let us write

(4.3) (t, x(t)) (t’, x’(t’)).



172 RONALD J. STERN

Define

(4.4)

Notice that

t’(t) + r(Xo)- r(x(t)).

x(t) x’(t’(t)).

LEMMA 4.1. Let G satisfy assumptions (a)-(e) and (Fr). Then the following all
hold:

(i) t’(t) is strictly monotone increasing on [to, To].
(ii) x’(t’) is uniformly Lipschitz continuous on [to r(xo) and thus is differentiable

almost everywhere on [to, r(xo)].
(iii) At almost every t’ e [to, r(xo)], we have

dx’(t’) fit’- r(xo) + r(x’(t’)), x’(t’), y(t’ r(xo) + r(x’(t’))), z(t’ r(xo) + r(x’(t’)))]
dt’ rx[X’(t’)].f[t’- r(xo)+ r(x’(t’)), x’(t’),

y(t’- r(xo) + r(x’(t’))), z(t’ r(xo) + r(x’(t’)))]

(iv) P(y, z) g(x’(r(xo)))

rxo hit’- r(xo) + r(x’(t’)) x’(t’) y(t’- r(xo) + r(x’(t’))), z(t’ r(xo) + r(x’(t’)))]
+
,o rx[X’(t’)].f[t’ r(xo)-(- r-@7’it’), dtI.

y(t’ r(xo) + r(x’(t’))), z(t’ r(xo) + r(x’(t’)))]

Proof. Let 2 > tl, where 2 and are in the interval [to, To]. We have

(4.5) Ir(x(t2))- r(x(tl))[ C max Irx(X)l(t2 l) < t2 l,
{Ixl =<Ro}

by (F). This proves (i).
Let t’l and t’2 be in the interval [to, r(xo)]. We have

(4.6)
Ix’(tz)- x’(t’)l Ix(t’2 r(xo) + r(x’(t’2)))- x(t’ r(Xo) + r(x’(tl)))l

clt’2 t’al / c max Irx(X)l" Ix’(t)- x’(t’l)l,
{Ixl_-<Ro}

and therefore

c
(4.7) Ix’(t’2)- x’(t’)l =< 1 c max Ir (x)l

{Ixl-<Ro}

This proves (ii).
We have, by the chain rule,

dx(t) d
x’(t’(t)),

d
dt dt’

-:- t’’t-
(4.8)

d
x’(t’(t)) 1-r,(x(t)).

dt _]dr’

Straightforward substitutions now yield (iii) and (iv), completing the proof.
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Define now the following functions"

f’(t’ y’X’ Z’) f(t’ r(xo) + r(x’), x’, y’, z’)
1 rx(X’ f(t’ r(xo) + r(x’), x’, y’, z’)

h’(t’,x’,y’,z’)
h(t’ r(xo) + r(x’), x’, y’, z’)

rx(X’ f(t’ r(xo) + r(x’), x’, y’, z’)"

We now will define a certain game offixed duration, G’. The dynamics of G’ are

(4.9)

with initial condition

(4.10) x’(to) xo.

The payoff is given by

(4.11) P’(y’, z’)= g(x(r(Co)))+ fr(xo)
Lemma 4.1 implies that

(4.12) P(y, z) P’(y’, z’),

where

dx’/dt’= (’(t’,x, y,z’),

h’(t’, x’, y’, z’) dt’.

(4.13) y(t) y’(t’(t)), z(t)= z’(t’(t)).

THEOREM 4.1. Let G satisfy conditions (a)-(e), (2.3), (Fr), and let G’ satisfy
conditions (a)-(e). Then

(4.14)

and

(4.15)

v-(6’) __< v+(6)

v-(6) __< v+(6’).

Proof. We will give the details for the proof of (4.14). The proof of (4.15) is
similar.

Let r/ > 0 be such that

(4.16) max [rx(X)[ <= 1/c + ft.
{Ixl =<Ro}

Let 6 (TO to)In and 6’= (r(xo) to)In’, where n’ and n are taken to be
such that

(4.17) (3 + cq)6 <= 6’.

Since the upper and lower values of G and G’ are guaranteed to exist by
Theorem 2.2, then (4.14) will hold if it can be proven that

(4.18) sup infP’[Fo,, z’] =< inf sup P[A, y].
Fe, e’, z’ A6eB,] y

Let F0, e S, and Ae B] be arbitrary. Then (4.18) will hold if there exist
controls z’ and y such that

(4.19) P’[Fo,, z’] P[Ao, y].
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Let y’ denote the y-outcome of (Fa,, z’) and let x’ denote the corresponding
path. Let z denote the z-outcome of (Aa, y), and let x denote the corresponding
path. Suppose we can construct z’ and y such that

(4.20) z’(t’(t)) z(t), [to, To],

and

(4.21) y’(t’(t)) y(t), [t o, To],

where t’(t)= + r(xo)- r(x(t)).
By Lemma 4.1, we then would have (4.19), which is all we require.
Denote the intervals of game G by Ij, j 1, n, and denote the intervals

j’ n’of G’bylj,, 1,..., .Here1j (tj_,tj) and l; (t),_ t},).
The component Fa,, of F, determines y’(t’) on I’, and this is a step function

given by

i=1

Here Oc,,, is the characteristic function of Ci,1,’i 1,..., k. The Ci,1 are disjoint
intervals Ci,1 (tl 1, i,1)such that

U Ci, I’.
i=l

Here to,1 to and t,l t’l. The ci,1 are constants.
The component Aa,1 of A determines z(t) on I. We will now construct y(t)

on I, making use of the trajectory x(t) as it evolves.
By Lemma 4.1(i), we can define the following"

t(t’i,1) the unique such that t’i,1 + r(xo) r(x(t)).
Now define the following function on 11

(4.22) y(t)

where p _< k due to

(4.23)

and (4.17).

C1,1

C2,1

Cp,1

for o

for t(t’l,1)_< <= t(t’2,1),

for t(t’p_ 1,1) tl,

]t’, t’_ 1,1] (2 + crl)]t(t’,l)- t(t’i_ ,1)]

The inequality (4.23) follows from

(4.24) t(t’i 1)- t(t’i 1,1)= t’i,1 ti-1,1 "V r(x(t(t’ 1)))- r(x(t(t’i 1,1)))
and assumption (F).

Thus y(t) has been constructed on 11 by using y’(t’) on only the first part of
the interval 1’

The map A,2 gives z(t) on 12. We continue in the above manner until y(t)
has been constructed up to time t(t,,1), which occurs in some interval Ira, m > 1.
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In the construction we made use of the maps Aa,j,j 1, ..., m, and the trajectory
x up to time t(t,,1).

We now use z(t), [t0, t(t,,1)] to define z’(t’) on [to, t,_ 1], as follows"

(4.25) z’(t’) z(t’ r(xo) + r(x(t(t’)))), t’6 1’1.

The Borel measurability of z implies that z’ thus defined is a measurable function.
Thus y(t) is constructed on 11, I2,’", Ira, and z’(t’) is constr0cted on 1’1.

We continue in this fashion until , which implies t’(t) r(xo).
The controls which have been constructed can be seen to satisfy relations

(4.20) and (4.21), completing the proof of (4.14). The proof of (4.15) is analogous
to the arguments above.

Remark 3. By Theorem 4.1, it is clear that if both G and G’ have value, then
their values are equal.

5. Applications. In the first two examples which follow, Theorem 4.1 is
applied to certain classes of differential games, and insights are readily obtained.
In the third example, a specific type of "attrition-attack" model is analyzed by
employing Theorem 4.1, and a synthesized saddle point is obtained. (See [3] for
terminology.)

Example 1. Let G be a game of pursuit-evasion. It follows that in this case,
we have

(xo) dr’
P’(y’, z’)

to 1 rx(x’ f(t’ r(Xo) + r(x’), x’, y’, z’)"
Suppose G has value. We immediately obtain the following estimate for V(G)"

V(G)
max min min h’(t’, x’, y’, z’) <_

r(xo) toY Z [to,r(xo)] {]xl-<Ro}

=< min max max h’(t’, x’, y’, z’)
Z Y [to,r(xo)l {Ixl =<. Ro}

where h’ is the integrand of P’(y’, z’).
Example 2. Let G be survival game with linear terminal set, let w denote the

gradient rx(x) of the terminal surface, where this is now a constant vector. Further-
more, assume that the game has integral payoff and that x does not appear in
f or h. In other words, the trajectory is manifest in the payoff only via i(x).
It then follows that the payoff of G’ is given by

r(xo) h(y’, z’)P’(y’, z’)
,o 1 w. f(y’, z’)

r(xo)

dt’ h’(y’, z’) at’.
to

Thus the problem G’ is dynamics free, and the value, if it exists, is given by

inf sup P’(y’, z’) sup inf P’(y’, z’).
z’ y’ y’

In the next example, we consider a game which is not of the type mentioned
in the preceeding example. Nevertheless, a dynamics free transformed game
results. This enables us, as will be seen, to give a synthesized saddle point for G
(see [3] for terminology.)
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Example 3. Consider the following game. The dynamics are given by
21 fl(Y)- pl(z) + ml d(y, z),
22 f2(z) Pz(Y) + m2

xI(O XIO

x2(O X20

and the payoff is given by
x)

P(y, z) h(Xl(t x2(t)) dt,

where is the first such that x l(t) Xz(t). This is a type of attrition-attack game.
Other attrition-attack models are analyzed in [3] and [6]. The quantities x(t)
may be’thought of as weapons on hand at time t. The quantity fis the part of a
player’s effort devoted to increasing his weapons level, while p denotes his effort
at destroying the weapons of the enemy. We will assume that xl0 > x20, and that
for any controls, the path eventually satisfies xl x2; at this time y will "sur-
render". The payoff may be thought of as the overall damage y inflicts upon z.

Notice that we allow h to take negative values. Let w

The capture time of this game is the first instant such that w. x(t) 0. Next
we will put the above game into the form of the survival games discussed in the
previous sections. Write

a2wl l d) x( t)= ka I’ 1/ka
and 2(t)=

t/ka

where a and k are positive numbers. We have . 2 a2w x -+- t.

Let ( be the game with dynamics

k 0:, z) (0)

with payoff given by

P(y, z) h((t 2(t))/a2) dr,

where is the first time the trajectory 2(t)enters F. The boundary of F is given by. 2. As easily verified, the numbers a and k may be chosen to guarantee that
condition (Fr) holds. We now apply Theorem 4.1 to the game . The transformed
game, which is of fixed duration, has a payoff given by

w.x(O) h((t’ + w. x(O)/a2)
t"(y’, z’)

o 1 f(y’) p(y’) + f(z’) + p(z’)
dr’

Thus G’, the transformed game, is dynamics free. This game obviously has value
and an open-loop saddle point which is determined as follows’at times t’ when
the numerator of P’ is positive, y chooses a vector in Y which maximizes fl + P2
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when the numerator is negative, he minimizes fl + P2, and when the numerator
is zero, he plays any control. Player z’s optimal control in G’ is similarly computed.
Denote by {y’(t’), z’(t’)} the saddle point for G’ thus constructed. By the proof of
Theorem 4.1, we have that a synthesized saddle point for the original game in
this example is given by {y’(t + w. x(O)- w. x(t)), z’(t + w. x(O)- w. x(t))}.
In the attrition-attack setting, the interpretation of this saddle point is as follows:
when the argument of h is positive, player y maximizes the sum of his attrition
and attack effort; when the argument of h is negative, he minimizes this sum,
thereby hastening the termination of the game, or the entry of the trajectory into
a region where h again becomes positive. Player z’s behavior under his rule may be
described similarly.

Acknowledgment. The author thanks Avner Friedman and Richard Scalzo
for their stimulating comments.
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LUCIEN W. NEUSTADTmlN MEMORIAM

Lucien W. Neustadt, who was managing editor of this journal from 1964
until his death in 1972, was one of the principal contributors to the vigorous
growth and development of optimal control theory in the last twenty years. This
issue of the SIAM Journal on Control is dedicated to the honor of his memory
and contributions.

Lucien Neustadt was born in 1928 in Berlin, Germany, where his father
practiced medicine. After the Nazis came to power, the family moved to France
and then to the United States. He received his high school education in New York
and his B.A. degree in mathematics from New York University in 1948. He
received his M.S. degree from the University of Wisconsin in 1950 and his Ph.D.
in mathematics from New York University in 1960. From 1948 to 1964 his studies
and research overlapped his work in industry as a mathematician at Aberdeen
Proving Grounds, Bell Aircraft Corporation, Reeves Instrument Corporation,
T.R.W. Space Technology Laboratories and Aerospace Corporation. During 1964
he was a professor of electrical engineering at the University of Southern California.
He spent the 1971-72 academic year on sabbatical leave at the Center for Dynam-
ical Systems, Brown University. Lucien Neustadt died in Los Angeles, California
on October 9, 1972 at the age of 44.

As a person, Lucien Neustadt was kind, warm, good-natured and considerate
of others. He was also very courageous. Although he suffered from leukemia for
five years or so before his death, he carried on a full and active scientific life and
maintained his good humor. In fact, some of his most important work was done in
the five years preceding his death. His death came as a shock, even to those of us
who were aware of his condition. Those of us who knew him personally sorely
miss a friend and colleague.

Lucien Neustadt made two types of important contributions to the growth
and development of optimal control theory. First, there were his own important
scientific contributions. These will be discussed later. Second, there were his
contributions connected with what could be summarized as "communication" in
the sense of disseminating scientific knowledge and communicating with other
workers in the field. Probably his best-known contribution in this area was his
work as managing editor of this journal. He was a member of the original editorial
board and became managing editor with Volume 2 in 1964. He served the journal
with extreme dedication. He insisted on high standards for all papers and for
fair and rapid service to contributors. Nevertheless, he always dealt tactfully with
authors and members of the editorial board. The present editorial board feels that
the present status of this journal is due, in large measure, to Lucien Neustadt’s
stewardship.

Lucien Neustadt also helped organize several international symposia and
conferences on optimal control theory and other areas related to optimization. He
edited or assisted with the editing of the proceedings of many of these conferences.

His circle of friends in the scientific community was large, and his knowledge
of their work was extensive. He shared this knowledge freely and warmly with all
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who were interested. He was personally responsible for establishing and developing
important and lasting contacts and avenues of communication between American
and Soviet workers in control theory. He developed strong personal friendships
with some of the leading Soviet contributors to the field. These led to ever-widening
contacts and interactions between American and Eastern European workers in
control theory. He was also a vigorous advocate of freedom of movement for
scientists and others.

In the early sixties Neustadt edited the translation from the Russian into
English of the important book, The Mathematical Theory ofOptimal Processes, by
Boltyanskii, Gamkrelidze, Mishchenko and Pontryagin. In this book, these
authors summarized their important work to date. In editing the translation,
Neustadt brought the material up to date, corrected some errors, and pointed out
the relationship of this work to other works. The translation of this book into
English was an important stimulus to the growth of interest in optimal control
theory in this country and in Western Europe.

He also edited the translation into English of the book, Necessary Conditions
for an Extremum, by B. Pshenichnyi. This book is concerned with necessary
conditions for general optimization problems, and is related to Neustadt’s own
interests from the mid-1960’s onwards.

Lucien Neustadt was also a member of the SIAM Council and the SIAM
Program Committee.

His enthusiasm for his subject and for communicating ideas extended into
the classroom, in 1967 he received a University of Southern California Associates
Award for excellence in teaching. The award was given by a vote of his students,
who paid him high tribute.

We now turn to a brief survey of Lucien Neustadt’s scientific contributions.
A complete list of his scientific publications is given at the end of this article. The
numbers in square brackets refer to this list.

His early papers were closely related to applications and were motivated by
his industrial experience. One of the most important and influential of these was
I3], in which a computational procedure for solving a minimum time control
problem is presented. It was the first general method for computing "bang-bang"
controls and was based on a geometric idea which he later exploited in solving
other optimal control problems [7]. In the early to mid-sixties he was particularly
interested in minimum effort control problems, which originated in aerospace
applications. See 6], [7], I16] and 20]. In 16] and [20] a rigorous mathematical
basis was established for fuel optimal impulsive controls.

Another important paper in this period is [14]. Here Neustadt showed that
for systems of the form

/(1) dx/dt A(t)x + h(t, u(t)), x(O) Xo,

subject to constraints u(t) f, where f is compact, it is true that the set of attain-
ability is compact and convex. Note that no assumption is made as to the convexity
of the sets h(t, f(t)). From this result one gets that the problem of minimizing

f [(a(t x(t)) + u(t))]h(t, dt

subject to (1) has a solution.
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From the mid-1960’s until his death, Neustadt was concerned with developing
a general theory of necessary conditions for optimization problems. This ranks
among his most important work. It appeared in various papers ([211-[26, [29],
[303, I31], [34], I39]) and is summarized and refined in the posthumous book [40.

By the mid-1960’s several writers had noted similarities in the techniques and
results concerned with necessary conditions in various areas of optimization.
These similarities were not always on the surface, especially in the techniques used
to obtain the results. The program that Neustadt and others--notably Halkin,
Hestenes, Gamkrelidze, and Dubovitskii and Milyutin--had embarked on was
the following’

First, formulate a very general optimization problem that would include as
special cases all optimization problems of interest, such as ordinary control
problems, control problems with bounded states, control problems with lags,
control problems with distributed parameters, nonlinear programming problems,
etc., etc.

Second, develop a meaningful set of necessary conditions for the general
problem under reasonable hypotheses. The necessary conditions must be such
that one obtains useful necessary conditions for the special problems when
appropriate specializations and id.entifications are made. One of the difficulties in
the formulation of the general problem is that the hypotheses must be specific
enough to yield necessary conditions with some structure, yet they should be
general enough to include all the special problems of interest.

Neustadt’s contributions to this unified theory have been numerous. He has
introduced or sharpened several of its key concepts, and in many technically
difficult papers he has given the detailed application of this theory to specific hard
problems. On the conceptual side, one of Neustadt’s most important contributions
was his introduction of "convex differentials". If an optimal control problem with
bounded states is expressed as a mathematical programming problem in infinite-
dimensional space, then the corresponding inequality constraints are not differ-
entiable, i.e., they cannot be approximated by affine functions. Neustadt observed
that those inequality contraints could, however, be approximated by convex
functions. The exploitation of this observation led to a better and more profound
theory of necessary conditions for optimal control problems with bounded states.
Neustadt also applied the unified theory to control problems governed by a very
general class of Volterra-type operator equations which includes certain differ-
ential difference equations, functional differential equations, and Volterra integral
equations as special cases. All this material can be found in [40]. In addition to his
own work, Neustadt encouraged and influenced others who were applying the
theory to problems involving hereditary systems.
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OPTIMAL CONTROL PROBLEMS WITH MIXED CONTROL-PHASE
VARIABLE EQUALITY AND INEQUALITY CONSTRAINTS*

KAROL MAKOWSKI- AND LUCIEN W. NEUSTADT

Abstract. In this paper, necessary conditions are obtained for optimal control problems con-
taining equality constraints defined in terms of functions of the control and phase variables. The control
system is assumed to be characterized by an ordinary differential equation, and more conventional
constraints, including phase inequality constraints, are also assumed to be present. Because the first-
mentioned equality constraint must be satisfied for all (the independent variable of the differential
equation) belonging to an arbitrary (prescribed) measurable set, this problem gives rise to infinite-
dimensional equality constraints. To obtain the necessary conditions, which are in the form of a maxi-
mum principle, an implicit-function-type theorem in Banach spaces is derived.

1. Introduction. This paper is devoted to a study of necessary conditions for
optimal control problems with mixed control-phase variable equality constraints.
Specifically, we shall consider optimal control systems whose evolution is de-
scribed by an ordinary differential equation of the form

(1.1) (t) f(x(t), u(t), t), t =< =< t2,

where x is an n-dimensional "phase" variable and u is an m-dimensional "control"
variable. We shall suppose that x and u are further constrained by equalities of the
form

(1.2) pi(x(t), u(t), t) 0 for almost all 11, 1,..., l,

11 being some given measurable subset of It t2]. Additional, more conventional
constraints of the form

(1.3)
xi(x(zl )’’’’’x(%))=O fori= 1,...,k,

Zi(x(zl),..., x(z)) < 0 for k / 1,..., k + k l,

(1.4) qi(u(t), t) <__ 0 for 1,..., r and almost all e It 1, t2]
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as well as phase inequality constraints of the form

,(x(t), t) =< 0 for all e Ii, i= 1,..., 11,

will also be allowed in our problem (zl, ..., % are fixed points in It1, t2] and
I’1, ..., I’ are given closed subsets of It1, t2]).

The constraint (1.2) is unorthodox in that it represents an "infinite-dimen-
sional" equality constraint on the problem. We shall investigate the problem by
viewing it as a mathematical programming problem over a Banach space with
generalized inequality and equality constraints. These constraints are defined
in terms offunctions which take on their values in appropriate infinite-dimensional
Banach spaces.

The fact that the equality constraint takes place in an infinite-dimensional
space causes very serious complications in the analysis. In order to obtain necessary
conditions for mathematical programming problems with nonlinear equality
constraints, it is generally necessary to invoke implicit function theorems (or
fixed-point theorems) in the space which contains the range of the function defining
the equality constraint. When the equality constraint is finite-dimensional, then
this space is Euclidean k-space (for some positive integer k), and the Brouwer
fixed-point theorem has turned out to be the appropriate fixed-point theorem to
use for optimal control problems (see, e.g., ], [2]). Here, with equality constraints
of the form (1.2), (1.3), it is necessary to use not only the Brouwer theorem,
but also an implicit-function-type theorem in L/(I1) (the space of all essentially
bounded functions from 11 into Euclidean/-space). The latter implicit function
theorem is based on the fixed-point theorem for contraction mappings in a
Banach space.

As is to be expected, we shall have to make certain "regularity" assumptions
on the constraints (1.2). Roughly speaking, we shall have to suppose that the
equality constraints (1.2) are independent with respect to the control variable (at
least to first order, near the optimum control and trajectory) as well as compatible
with the control inequality constraints (1.4). This means that the functions pi
must all depend explicitly on u, which makes it appear that we are excluding from
consideration pure phase equality constraints of the form pi(x(t), t) 0. However,
it turns out that pure phase equality constraints can often be transformed to
equality constraints of the form we require if we simply differentiate the phase
equality constraint with respect to t.

In the language of the classical calculus of variations, in our proofs, it will be
necessary for us to make both "strong" and "weak" variations in the controls,
whereas weak variations generally are redundant in problems with finite-dimen-
sional equality constraints.

Our necessary conditions will be in the form of a maximum principle, much
like the Pontryagin maximum principle. Results similar to ours have previously
been obtained, primarily by Hestenes [3], [7] and Virsan [4], [5], but under more
restrictive assumptions and in a somewhat weaker form. Virsan’s approach to the
problem had much in common with ours, but Hestenes used a finite-dimensional
implicit function theorem to reduce the problem to one with finite-dimensional
equality constraints. A detailed discussion comparing our results with earlier ones
is given in 15.
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Problems in which the equality constraints (1.2) are supplemented by similar
inequality type constraints of the form

pi(x(t), u(t), t) < 0 for almost all 11
are touched upon in 14. In fact, we shall show that such inequality constraints
can be formulated in such a way that they become equality constraints, but at the
expense of creating additional constraints of the form of (1.4).

2. Problem statement. Let there be given positive integers n, m, k, k 1, l, l, r,
and a, where =< m. Let R denote the real line, and let R (for each integer j > 1)
denote Euclideanj-space. Further, let there be given a compact interval I It1, t2],
an open interval I, a Lebesgue measurable subset 11 of I, closed subsets
I1,’", I1 of I, a finite subset {zl, "", :} of I such that t -:1 < :2 <""
< z, 2 and open sets G and U0 in R" and R", respectively. Finally, let there be
given functions f’G U0 IR",p (p,...,p)’G U0 IR
Z (Z, gl, Zk+kl)’(G)" Rk+’+l (where (G) denotes the direct product of
G with itself a times), q=(q,...,qr)’Uo IRr, and 2=(,’",1)"
G R’.

Let q/o denote the set of all measurable functions u" I R" such that (possibly
neglecting a subset of I of measure zero) the closure of the set {u(t)’t I} is a
compact subset of Uo. Let //denote the set of all functions u #0 such that

(2.1) qJ(u(t), t) <= 0 forj 1,..., r and almost all e I.

The elements of ’ will be called admissible controls.
Let a denote the set of all continuous functions x’I G.
We shall be concerned with ordinary differential equations of the form

(2.2) 2(t) f(x(t), u(t), t),

where u e o- By a solution of (2.2), we mean an absolutely continuous function
x e such that (2.2) holds for almost all e I. The absolutely continuous functions
x ef which satisfy (2.2) for some admissible control u, i.e., some u e q’, will be
called admissible trajectories.

Our problem consists in finding a pair (x, u)e c such that

(2.3)

(2.4)

(2.5)

(2.6)

x is a solution of (2.2),

g(x(r), ..-, x(r,)) 0 for 1, k,

Zi(x(r), x(r")) <= O fori=k+ 1,..-,k+kl,
p(x(t), u(t), t) 0 for almost all te 11 and each i= 1,..., 1,

2i(x(t),t)<O for allteIiandeachi= 1,...,1,
and which, in so doing, achieves a minimum for )O(x(’lT1), X(’Co.)).

In 14, we shall also investigate problems where I is replaced by I in (2.5)--
I,..., I being given Lebesgue measurable subsets of Ias well as problems
where there are additional constraints of the form

p(x(t), u(t), t) <= 0 for almost all e I and each i.

We shall show that such problems can be reduced to the problem just described.
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In order to obtain meaningful results for this problem, we shall have to make
certain smoothness and continuity assumptions on the functions f, p, X, ’, and q.
These are as follows:

A1. The function ; is continuously differentiable.
A2. The function ) is twice continuously differentiable.
A3. For each I, the functions (x, u) f(x, u, t) G x Uo --, R", (x, u)

--. p(x, u, t) G x Uo R, and u q(u, t):Uo R" are continuously differ-
entiable.

A4. The continuity of the function (x, u) --, f(x, u, t) G x Uo R" is uniform
with respect to e I, and similarly for f replaced by p, f, f,, Px, and p, (where
f,, etc., denote the evident matrices of partial derivatives). Also, the continuity of
the functions u q(u, t) and u --. q,(u, t) is uniform with respect to e I.

A5. For each (x,u)G x Uo, the functions t--,f(x,u,t):!R",tp
(x, u, t) I Rl, and q(u, t) I R are measurable.

A6. For each compact subset C of G x Uo, there is a number ( > 0 such that,
for all (x, u)e C and almost all e I,

(a) If(x, u, t)] + ]fx(X, u, t)l + [f,(x, u, t)l ,
(b) ]p(x, u, t)[ + [px(X, u, t)] + [p,(x, u, t)] ,
(c) Iq(u, t)] + ]qdu, t)l <- ,

where the vertical bars are used to denote Euclidean norms for vectors and matrix
norms for matrices.

Assumptions A3-A6 ensure that, for any u e o, equation (2.2) has a unique
local solution for any given initial value x(tl) G.

Note that if A3 holds, and if, in addition, the functionsf, p, q, fx, f, Px, P, and
q, are continuous in all of their arguments, then A4-A6 automatically hold.

For each positive integer j, let cgj (resp., L, L) denote the linear vector
space of all continuous (resp., essentially bounded, integrable) functions from
I into RJ. We shall define the following norms on cgJ, L, L, respectively"

Ilxll max Ix(t)l for x e J, ]]yl] ess sup ]y(t)] for y e L,
tl tl

t2

Ilzll Iz(t)[ dt for z 6 L

With these norms, J, L% and L become Banach spaces. The spaces 1 L L]
will simply be denoted by cg, Loo, L. If I is replaced by a Lebesgue measurable
subset I’ of I in the preceding definitions, then the corresponding spaces will be
denoted by cgJ(I’), L(I ), etc.

Note that is an open set in " and thato is an open set in Lo. In the sequel,
unless the contrary is specified, N and ’o are to be considered as sets in " and
L, respectively.

For ease of notation in the subsequent developments, we shall define the
functions pi.N x o -* Loo(I) for 1, l, Xo’( R, X " Rk, X2"

R,I, Qi.q/o Loo for/= 1,..., r, and ji. __. for/= 1,... lasfollows"
(2.7) U(x( ), u(. )) is the function pi(x(t), u(t), t)" I R,

(2.8) Xo(x(’)) Xo(X(:), "", x(:,)), where Xo X,
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(2.9)

(2.10)

(2.11) Qi(u(. )) is the function

(2.12) i(x(.)) is the function

Also, let us denote (px, pt) by P,
(Xo, X1, X2) by X.

gl(X(" )) 1(X(,1),... X(’lo.))

g2(x( )) 2(x(-l), ..’, x(’a)),

where 1 (Z1, Zk),

(zk+ k+kl)wherez2 ,’"

--, qi(u(t), t)" I - R,

--, z(x(t), t).I -, R.

.., Q") by Q, .., z’) by J, and

Further, let us define the following sets (each of which is easily seen to be
convex)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

R { ( k,).i < 0 for each kl}
y {y (yl, yl,).y cgl,, yi(t) =< 0 for all I

and eachi= 1,...,11},

Yo {Y (y, yl,).y cgt,, yi(t) < 0 for all t I’

and eachi= 1,...,11},
W {w (w, wr)’we LL,ess sup wi(t) <__ 0

teI

for eachi= 1,...,r},
Wo= {w=(w,...,wr)’weL2,esssupwi(t)<0

tsI

for each 1, ..., r},
W {W (W 1, W)’W e L2 ess sup wi(t) < 0

tl,

for each/= 1,...,r},
W2 {w (w1, wv)’w L2, ess sup wi(t) <= 0

tel

for each/= 1,...,r}.
Note that Y, W, and W2 are all closed, and that Yo int Y, Wo int W, and

W int W2 where int denotes interior. Further, R2 is open and

(2.20) cl R2 { (’,..., ’)" i 0 for each 1, ..., k },
where cl denotes closure. Also, u’u qlo, Q(u) W}.

Our basic problem may now be restated as follows" Find a pair (x, u)
such that (i) x is a solution of (2.2), (ii) Q(u) I4/, (iii) x l(x) 0, (iv) X2(x ecl R’_
(v) P(x, u) 0, and (vi) (x)e Y, and which, in so doing, achieves a minimum for
Xo(x).

It easily follows from Assumptions A3 and A4 that the map P is Fr6chet
differentiable at each (x, u)e a3 x o, with partial differentials at any (x, u)e
x q/o--which we shall denote by DiP(x, u’.), i= 1, 2--given by the following
formulas"

(2.21)
D P(x, u" fx) is the function Px(X(t), u(t), t)bx(t)’I - R

for all 6x cg,,
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D2P(x u;(}u) is the function p,(x(t), u(t),t)bu(t)’I R
(2.22)

for all 6u L.
Further, A3 and A4 imply that Q is Fr6chet differentiable at each u e //o with
Fr6chet differential (at any u e go) given by

OQ(u’6u) is the function -, q,(u(t), t)bu(t)’I R
(2.23) for all 6u L.
Finally, A1 and A2 imply that Xo, X, X2, and are Fr6chet differentiable at
each x aj, with Fr6chet differentials (at any x e () given by

DX2(x" fix) Z2,(x(z), x(z,))fx(’ci)
(2.24)

i=1

for all fix cg, and j 0, 1,2,

D’(x; fx) is the function x(X(t), t)fx(t)’I R
(2.25)

for all 6x cg,.

3. Admissible control variations. Let (, fi) be a solution of our problem. Our
aim is to find necessary conditions which (, fi) must satisfy.

Let us denote by f the function --}f((t), (t), t)’I R" (so that f eL ), and
similarly define the functions p, q, fx, fu, Px, u, and /,. Further, we shall denote
DiP(,fi;’), for i= 1,2, by DiP(.);DXj(’. ), for j 0, 1,2, by DXj(.)’DX(’.)
by DX(.)" and DQ( ;.) by D((.). Also, let Z,((zl), "’", (z)) be denoted by
fx, for each 1, a.

Let q/denote the set of all u q/such that P(, u) 0; i.e., consists of all
admissible controls which, together with the optimum phase trajectory , satisfy
the problem constraint P 0. Note that fi .

We shall largely confine our attention in what follows to controls u q/which

satisfy the following condition"
Condition C1. For almost all 6 11, the matrix p,(ff(t), u(t), t).(p,((t),

u(t),t))where T denotes transposition--is nonsingular, and the function
l:[p,(.(t), u(t), t)(p,((t), u(t), t))r] 1"11 R is in Lo(I1).

In order to obtain our necessary conditions, we shall have to suppose that fi
satisfies Condition C1 (as well as Condition C2, which is described later in this
section). As we shall see, the strength of these necessary conditions is directly
related to the number of controls in q7 which satisfy C1 and C2.

The first part of C1 is equivalent to the assertion that the matrix p,((t), u(t), t)
has, for almost all I1, maximum rank, i.e., rank 1. Consequently, C cannot hold
for any u ’, if, for example, some component of the function p is independent
of u. Thus, it appears that if we require fi, as well as a reasonable number of other
controls in q/, to satisfy C1, then we shall have to exclude from consideration
many interesting types of equality constraints. However, it turns out that, by a
suitable reformulation, we can often transform our problem from one in which
C1 is violated to one in which C1 holds. For example, suppose that 11 is a sub-
interval of I and that p is independent of u, so that we can write (2.5) in the form
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p(x(t), t) 0. Then, differentiating this last equation with respect to and using
(2.2), we see that it is equivalent to the equations

(3.1) pl(x(t), u(t), t) 0 for almost all e 11,

(3.2) p(x(), "[) O,

where P is the function defined by

pl(x, u, t) p,(x, t)f(x, u, t) + p,(x, t), xG, uUo, tel,

and is an arbitrary point of 11. Thus, we may replace constraints (2.5) by the
equivalent pair of constraints (3.1) and (3.2). Evidently, (3.1) is of the same form as
(2.5), and (3.2) may be adjoined to (2.3). Further, if p is twice continuously differ-
entiable, and A1-A6 hold, then these same assumptions hold with p replaced by
Pl. Hopefully, when p is replaced by Pl in C1, then this condition will be satisfied
by a broad class of functions in ’, including ft. Ifp also turns out to be independent
of u, then the just indicated procedure may be repeated.

If only some components of p are independent of u, then the procedure which
we have described must be applied to only those components.

Let us return to C1. If u satisfies C1, then we may consider (for almost
every 11) the m x matrix

(3.3) (pu((t), u(t), t))r[pu((t), u(t), t)(pu((t), u(t), t))r] -1

This matrix is commonly referred to as the pseudo-inverse of p,(ff(t), u(t), t) because,
if the matrix (3.3) is premultiplied by pu((t), u(t), t), the result is the identity
matrix.

For each u q7 satisfying C1, let us define the continuous linear operator
DzP(, u" )’L(11) L as follows" For any z L(ll), let DzP(, u" z) denote
the function 6u in L defined by

6u(t) {0 for e I11,
(p,((t), u(t), t))r[p,(2(t), u(t), t)(p,(Y,(t), u(t), t))r] lz(t) for e 11

Clearly, D2P(, u) behaves like a pseudo-inverse of D2P(Y,, u) in the sense that
(see (2.22)) D2P(,, u)o D2P(2, u) is the identity operator on L(I1).

For the special case where u , we shall refer to the function (3.3) as
i.e.,

(3.4) (t) (,(t))r[,(t)(,(t))r] -1 for e 11.
For convenience, let us extend the function/3 to I by setting

(3.5)

Note that

(3.6)

and that

/3(t)=0 forte 1\11

,(t)(t) the x /identity matrix for almost all e 11,

D2P(, t" z)(t) p(t)z(t) for all e I and z e L(I1).
Not only shall we confine ourselves to admissible controls u such that

P(ff, u) 0 and which satisfy C1, but we shall impose yet another requirement on
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the controls that we shall consider. To describe this requirement, we must intro-
duce some new sets. For each u if, let us define the set 2(u) as follows"

(3.7) (u) {bu’bu L%, [Q(u) + DQ(u" 6u)] W,}.
It is easily seen that, for each u if, 2(u) is an open convex set in Lo and a(u)
c (u) for all , 0 < a __< 1. Let 2(u) denote the cone spanned by (u), i.e.,

(3.8) (u) {iu’a > 0, ,u

Since .(u) is open and convex, 2(u) is an open convex cone, which implies (as is
easily seen’) that

(3.9) (u) + c .(u)= (u).

Finally, let

(3.10) A0 {6u’bu L%, 6u(t) 0 for almost all I\I1}
and

o(U) .(u) f) Ao.
It is easily verified that 20(u) and A0 are also convex cones.

We now state our second requirement on the admissible controls u which
we shall consider.

Condition C2. {DzP(., u" 6u)"6u 22o(U)} L(I1).
We shall denote by q2 the set of all u e q/which satisfy Conditions C1 and C2,

and shall confine our attention to controls in q/. Indeed, when constructing
"strong variations" of t7 in the derivation of our necessary conditions, we shall
only allow variations to functions in q2, so that the maximum principle--which
will be the form that our necessary conditions will take-- which we shall obtain
will be valid only for such u. (We shall also allow "weak variations" of from
().)

Remark 3.1. Note that if U and u2 belong to and if u3 ’ is such that, for
some measurable subset I’ of I, u3(t) u(t) for all I’ and u3(t) Uz(t) for all

I\I’, then also u3 6 .
We shall suppose that fi satisfies C2 as well as C1, so that fi .
Conditions C1 and C2 should be interpreted as regularity conditions or as

compatibility conditions--to "first order" in u-- of the constraints p 0 and
qJ =< 0 for j 1, r. They replace conditions found, for example, in [6] and [7]
on the linear independence of the vectors p(2(t), u(t), t) for j 1,..., 1, and
q(u(t), t) for those j 1, r for which qJ(u(t), t) O.

We close this section with two lemmas regarding the sets (u) which we shall
need in the sequel.

LZMMA 3.1. For every f ql and any 6f 2(f), there is an : > 0 such that
(fi + 6u) ll whenever 0 <= e < , 6u Ao, and [16u difil[ < .

Proof. If fieq2 and 6fi e(fi), then 6fi 6t7 for some > 0 and some
6 e 2(fi). Since o is open, there is an eo > 0 such that (fi + efu)e llo for all
e, 0 < e < eo, and all 6u e L such that Ilfiu ,11 < o, By definition of
(see (3.7) and (2.18)), there is an r/> 0 such that

(3.11) ess sup [QJ(fi)(t) + DQJ(fi 67)(t)] < r/ for j 1, ..., r.
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Because DQ(fi;.) is the Fr6chet differential of Q at fi, it easily follows that, for
every cSu L and j 1, -.., r,

QJ(fi + efu)- QJ(gt)
DQJ(fi 3u),

eO

with the convergence uniform with respect to 6u in any bounded subset of L%.
From this, we can easily deduce that there is an el (0, 1) such that el < e0 and

(3.12)
Q(fi + e3u) Q()_ DQ(.6) < forj 1,..., r

whenever 0 < e < and
If we write

QJ(fi + 6u) I.Q(fi + efi-u) Q(fi)
DQ(fi

+ e[QJ01)+ DQJ(;bO)] + (1 e)QJ(fi),

and take into account (3.11), (3.12), and the fact that 0 6 ’ (so that QJ(O)(t) <= 0
for almost all I and each j), we quickly conclude that, if 0 < e < e, bu Ao,
and IIiu broil < e, then (0 + ebu)e @’o and

QJ(fi + 6u)(t) <= 0 for almost all e I and each j,

QJ( + e6u)(t) QJ()(t) <= 0 for almost all e I\I and each j,

i.e., (fi + e3u)6 ql for all e and 6u as just indicated. Setting min {e, /},
we arrive at our desired conclusion.

Using a standard compactness argument, we can strengthen Lemma 3.1 as
follows.

LEMMA 3.2. For any fi ll and any compact subset c of (fi), there is an o > 0
such that (fi + ebu) ql whenever 0 <= e < eo, 6u Ao, and II,u ll < o for
some gt .

4. Linearized equations. For each finite subset H {(fl, u), (fl, u)}
of R+ q/where R+ denotes the set of nonnegative numbers--let us define
the function Afn L" as follows"

Afn(t) flJf(ff(t), uj(t), t) f(ff(t), (t), t)], 1.
j=l

The set of all such functions Afn, as H ranges over all finite subsets of
will be denoted by M. Evidently, M is a convex cone in L, and 0 M.

We shall consider linear inhomogeneous differential equations of.the form

(4.1) 6(t) f(t)5x(t) + f,(t)6u(t) + Af(t), e I,

where 6u L and Af M. Equation (4.1) may be viewed as a "linearization"
of the basic equation (2.2) about (if, ). Let us denote by Z the set of all pairs
(fix, 3u) cg, Lm such that 6x is absolutely continuous and fix and 6u satisfy
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equation (4.1) for some Af M. Since M is a convex cone, it follows at once that
Z also is.

For each z L(I1) let 6xz cg, denote the function which satisfies the linear
inhomogeneous ordinary differential equation

(4.2) 3z(t) f,(t)3xz(t) + f,(t)(t)[z(t) ,(t)6xz(t)] a.e. on I

with initial value

(4.3) 6x(t O.

(In (4.2), z(t) is undefined for 1\11 but this does not matter because/3(t) 0
for 1\11 by definition--see (3.5).) Equation (4.2) may be looked upon as a
differential equation with a "feedback law" expressed by the term in brackets.
Indeed, if we denote this term by 6uz, i.e., 6u L is defined by

(4.4) 6uz(t) p(t)[z(t) x(t)fxz(t)] t I,

then we have (see (3.6)) that

(4.5) x(t)6xz(t) + ,(t)6Uz(t) z(t) for almost all 11

or, equivalently, that

(4.6) D P(6xz) + DzP(fUz) z for all z Ll(11).

In fact, the feedback law was specifically designed in order that (4.5) (or (4.6))
hold.

Note that 6Xz satisfies the linear inhomogeneous differential equation

(4.7) 6YCz(t) f(t)fxz(t) + f,(t)6u(t), I; 6Xz(tl) O,

where 6u is defined by (4.2)-(4.4), so that (6x, 6Uz) Z. Also note that (see (4.4),
(3.5), and (3.10)),

(4.8) 6u Ao for all z Ll(11).
LEMMA 4.1. The map z (6xz, 6Uz)’L(I1) Z is linear and continuous.

Proof Since 6x is defined by the linear inhomogeneous differential equation
(4.2) with zero initial value (see (4.3)), the map z 6x’L(ll) cg, is evidently
linear. Using the variations of parameters formula for the solution of (4.2), (4.3),
we at once see that this map is also continuous. Because the map (z, fXz)

6uz’Ll(I1) x "L defined by (4.4) is evidently linear and continuous,
our lemma follows at once.

COROLt,AR 4.1. Ifzo denotes thefunction in Ll(I1) which vanishes identically,
then 6Xzo 0 and 6Uzo O.

We observe that equations (4.2) and (4.3) have a solution not only for every
z L(11), but also for every z Lt(I1), and the resulting function 3Uz given by
(4.4) is then in L’. Further, the map z (6Xz, fU)’L(11) qY" x L"; is con-
tinuous.

5. The basic theorem. We can now state our main theorem, on the basis of
which we shall obtain our necessary conditions.
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Let
Z {(ax, (u)’(x u. (_n, au u. fo(l), X2() -+- DX2(fix) R2,

(2) + D.(2;bx)e Yo, DXo(bX) < 0},
(5.2) Z2 {(6x, au)’axeCg",aueLo,DP(ax) + D2P(au)= 0},

Z3 Z Z2 ["] Z.

Roughly speaking, Z3 consists of those perturbations of (if, fi) which, to first
order, satisfy all of the problem constraints except (2.3), and also yield a lower
value for the cost functional Xo. Note that Zi is convex for l, 2, 3 because
o(fi), R, Yo, and Z are.

Our main theorem is the following.
THEOREM 5.1. The origin is not an interior point (in Rk) of the set

(5.4) K {Dl(aX "((x, (U) e Z for some 6u e L }.
In {} 11, we shall employ Theorem 5.1 to appeal to a series of separation

theorems on the basis of which we shall obtain our necessary conditions. Note
that K is convex because Z3 is.

Theorem 5.1 essentially asserts that, to "first order," there is no perturbation
of (if, fi) which satisfies all of the problem constraints while at the same time
yielding a lower value for Xo.

We shall argue by contradiction. Indeed, we shall prove that if 0 int K, i.e.,
if to "first order" one can improve X0 while satisfying the problem constraints,
then one can improve Xo, even including higher order terms, while satisfying the
problem constraints (again including "higher order" terms), which violates that
(, fi) is a solution of our problem.

6. An auxiliary iemma.
LEMMA 6.1. If 0int K, then there are a simplex S c R with vertices

Vl, Vk+ and with 0 int S,functions All Ak+ if in M, elements (6xi,
for 1, ..., k + 1, in Z with 6u o(fi), and a number eo > 0 with thefollowing
property"

yi 1}Foreach7 (,},,1, ", k+l)_sk {,}) 7eRk+,,7, _>_ Oforeachi, Z+=x
and each z L(I) satisfying z[[ < eo, there are pairs (6x=,, 6u=,) Z such that
(for all such z and )

k+l

Y if, a.e. onI,(6.1) 62z,, LaXz, + f,aUz, + Z iA
i=1

k+l

(6.2) 6Xz,(tl) Z 2iaxi(tl)
i=1

k+l

(6.3) Dl((Xzo,),) 2 ])ivi’
i=1

where zo is the origin in Lloo(I),

(6.4)

(6.5)

D1P(axz,r) + D2P(auz,)= z,

X2(.) + D’X2(aXzo,r) eRk2 and Y,() + D(;aXzo,r)e Yo,

(6.6) DXo(bXzo, < O,
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k+l

(6.7) fiXz,-- (Xz -[- 2 itxi’
i=1

k+l

(6.8) uz, 6uz + i6ui,
i=1

(6.9) ( + efUz,) e ql whenever 0 <- e < eo,

(6.10) fiUz,r Ao.
Proof If 0 e int K, then there is a simplex S c K such that 0 e int S. Let the

vertices of S be Vl, .", vk+ 1. Since each vi e K (see (5.1)-(5.4)), there are functions
Air e M and (6x, 6u) e Z with 6ui e.o(fi), for 1, ..., k + 1, such that, for
each i,

DXl(axi) vi,

62i fxfxi + f,fui + Aif a.e. on I,

X2(ff) + O2(6x)e Rk2, )(ff) + O(; xi)ff Yo, Oo(ixi) < 0,

D1P(fxi) + D2P(fui) O.

For each z L(I1) and 7 e S, let 6xz, and 6Uz,r be defined by (6.7) and (6.8).
Taking into account the properties of 6Xz and lug discussed in 4 (in particular,
see Corollary 4.1 and relations (4.3) and (4.6)-(4.8)), we easily deduce that (6.1)-
(6.6) and (6.10) hold. (Recall that Yo and R2 are convex.) Thus, it only remains
to show that, for a suitable eo > 0, (6.9) holds for all 3 S, so long as Ilzll <
But, since {v +1 k+/A=I "))itui ’))"--(1 ). Sk} is a compact subset of A(), the
existence of such an to follows directly from (6.8) and Lemmas 3.2 and 4.1.

Lemma 6.1 essentially asserts that if 0 e int K, then there is a simplex S c Rk,
having 0 in its interior, with the following property" For any e S (with barycentric
coordinates 71, ..., k + 1), there is a "perturbation" (6x, 6u) of (, fi) (fix should be
chosen as 6Xo, and 6u as ,SUzo,r, where (1, ..., + 1)) such that, to "first
order," at the perturbed x and u, (i) the basic differential equation is satisfied,
(ii) X takes on the value , (iii) the problem inequality constraints are "strictly"
satisfied, (iv) the equality constraint P 0 is satisfied, (v) the perturbed control
is admissible, and (vi) X o takes on a lower value than it does at ft. Further, there is
a neighborhood of 0 in L(I1) such that, for any z in this neighborhood, we can
make an additional small perturbation (6Xz, 6uz) of (if, fi) which, "to first order,"
will achieve P z while only slightly perturbing the values of Xo, X1, X., and.,, will still satisfy the basic differential equation, and will result in an admissible
control.

In what follows, we shall show that, for each e eS (where e is some sufficiently
small positive number), (, fi) can be perturbed in such a way that (i) the perturbed
u is admissible and, together with the perturbed x, satisfies the basic differential
equation (2.2) as well as the equality constraint P 0, (ii) the perturbed x satisfies
the problem inequality constraints and assigns to X o a value less than X0(),
and (iii) the perturbed x assigns to X1 (with a "small" error) the value . All these
assertions are true exactly, not just to first order.
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Armed with the preceding intermediate result, we shall, in 10, use the
Brower fixed-point theorem to show that we can find a perturbation of (if, ) which
has properties (i) and (ii) described in the preceding paragraph, and, in addition,
assigns 0 to X 1. But then this perturbation satisfies all of the problem constraints
while giving a lower value to Xo than ff does, which contradicts the fact that (if, fi)
is a solution of our problem. As a result, we shall be able to conclude that 0 int K.

The next two sections are devoted to the construction of some suitable
"perturbations" of our optimal control ft.

7. Chattering controls. Continuing with our contradiction argument, let

A f, ..., A+f be the functions in M whose existence is asserted in Lemma 6.1.
By definition of M, this means that there are functions u l, .", u and non-
negative numbers fl (i 1,..., k + ;j 1, ..., s) such that

Af(t) [t[f((t), uj(t), t) f((t), (t), t)],
j=l

tel, i= 1,...,k+ 1.

Thus, equation (6.1) for 6x, can be rewritten as follows"

62,(t) f(t)6x,(t) + f.(t)6u,(t)

+ flJ(y)[f((t),uj(t), t) f((t), f(t), t)],
j=l

where, for each 7 (71,

so that

.., k+l) S,
k+l

i=1

k+l

0 __< flJ(y) =< fli for all 7 Sk and j 1,..., s.
i=1

Now, for any e _>_ 0 and ), e Sk, consider the differential equation

2(t) f(x(t), fi(t), t)

(7.1)
+ e flJ(y)[f(x(t), uj(t), t) f(x(t), (t), t)] a.e. on I

j=l

with initial condition

k+l

(7.2) x(tl) Y(tl) + e. 7i6xi(tl),
i=1

where the 6x are as indicated in Lemma 6.1. For e 0, ff is the solution of (7.1)
and (7.2). It follows directly from conventional theorems on the differentiability
of solutions of ordinary differential equations with respect to parameters that
there is an > 0 such that (7.1) and (7.2) have a unique solution defined on the
entire interval I for all e [0, ) and 7 S, and that, if we denote the corresponding
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solutions by 2,, then

(7.3) Yc,-

_
6x uniformly with respect to e Sk,

where 6xr, for each /e Sk, is the solution of the linear inhomogeneous differential
equation

k+l

6Ycr(t) L(t)fx(t) + 7iAif(t) a.e. on I,
i=1

(7.4)
k +

(X(t 1) Yitxi(t 1)"
i=1

Now, in general, 2, will not be an admissible trajectory because there is no
reason to expect the existence of a function u e @’ such that

f(x, (t), t) + ()If(x, uj(t), t)
j=l

f(x, (t), t)] f(x, u(t), t) for all x e G and e I.

However, 2,e may be approximated by an admissible trajectory in the following
way. (The idea of this approximation is due to Gamkrelidze in [2] who coined
the term quasiconvexity in connection therewith.)

Without loss of generality, we shall suppose that is sufficiently small that
(i) I1:,- 211 < Po for all ; e S and e e [0, fz), where Po > 0 is such that x e G
whenever x e R" and Ix (t)l <- 2po for some e I, and (ii) fl(7) =< 1Is for all j
and 7 e Sk. For each e e [0, ), we perform the following construction. We first
partition (in a manner to be specified later) I into a finite number of subintervals
J], ..., Jt). For each , e Sk, we then partition each J into s + subintervals
J;, J.’[,, J5these subintervals are indexed in such a way that J;i is
immediately to the left of J;i/ for all i, jsuch that, for each i,

[J;)l=(1-e /J(Y))IJ’I and
j=l

for each j 1,..., s,

where vertical bars here denote lengths of intervals. Now set

v()

(7.5) Ij,,r= UJ; for everyj=0,...,s, e[0,), andTS,
i=1

and define the function u, q/as follows"

(7.6) u,(t).= ej,,r(t)uj(t), where uo
j=O

and where, for each j, e, 7, ej,, is the characteristic function of Ij,,, i.e.,

(7.7) ej (t)
0 for e I\I,,,

[ for e Ij,,r.
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Since u,(t) uj(t) for all Jff for each i, u, is often referred to as a "chat-
tering combination" of , ul,..., us, or as a "chattering" control. Note that
U,o fi for all 7 e sk" Also, by Remark 3.1, u, e 2 ’ for all ?,, e, so that
(by definition of )
(7.8) PC, u,) 0 for all 7, e.

We show in the Appendix that if, for each e, the partition of I into subintervals
is sufficiently fine, i.e., if maxi IJ] is sufficiently small, then, for each 7, the equation

(7.9) 2(0 f(x(t), u,(t), t)

with initial condition x(tl) 2,(tl) has a solution on the entire interval I such
that, if we denote this solution by x,, then

(7.10) IIx, 2,11 < e2 for all e Sk.

We shall suppose that such a partition of I has been made for each e e [0, g:). By
definition,

(7.11)
2,(t) f(x,(t), u,,(t), t) a.e. on I,

k+l

x,(t 1) Y,,(t 1) (t 1) + e yi6xi(t 1).
i=1

Thus, x,, is an admissible trajectory for all y S and e [0, D. Also, note that, for
all e [0, ;:) and 7 Sk,

(7.12)
[Ij,,[ e,flJ()[l[ for each j 1,..., s;

[I0,,,I 1-e L /3J(Y)Ill,
j=l

so that (see (7.6) and (7.7))

(7.13) ]{t’t I, u,(t) (t)}l -0; 0 uniformly with respect to e Sk.

Combining (7.3) and (7.8), we conclude that

(7.14) x, x
bx, ,0 uniformly with respect to /e Sk.

8 eO+

8. Perturbed admissible controls. In the preceding section, we described one
way to "perturb" (or make a variation in) the optimal control fi--by constructing
a chattering control. Note that the chattering control coincides with fi Uo except
for in a set whose measure is proportional to e (see (7.6), (7.7), and (7.12)). However,
at those where the chattering control differs from , this difference is in no sense
"small of the order of ." Thus, chattering controls correspond, in the language
of the calculus of variations, to strong variations of .

We shall also admit another kind of perturbation offithe addition of a term
of the form e6u, where 6u Ao. This, of course, is a "weak variation." Further, we
shall consider combinations of the two kinds of perturbations, i.e., we shall first
add a term of the form e6u to fi, and then shall replace fi + e6u by a chattering
control, with a term of the form 6uj added to uj (where 6u and 6uj 6 A0). The
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resultant control functions, which, for sufficiently small e > 0, will be in ’, will
be called perturbed admissible controls.

Note that, in our chattering controls, the functions uj are not only in //,
but also in . The reasons for this will now become apparent.

Perturbed controls will be constructed for each ? e Sk, e [0, ), and z L(I1)
with l}zll < eo, where eo > 0 is specified in Lemma 6.1 and g is some sufficiently
small positive number. Let

Bo= {z’zeL(I1), Iz <eo}.
We begin by constructing functions 6Uz,,j L (for each ? e Sk, z e Bo, and

j 1, s) such that (see (6.4))

(8.1) D1P(ff, uj; bXz,) + DzP(X, uj; (Uz,y,j)-’- DP(dXz,) + DzP(fiu=,)- z,

(8.2) (uj + ebuz,,j) ll for all e > 0 sufficiently small,

where 6xz, and 6u., are the functions specified in Lemma 6.1.
To do this, we define the continuous linear operators Pj’" x L L for

j 0, 1, ..., s by the relations

P(bx, 6u) D2P(., uj; D 1P(6x) D 1P(ff, ui; 6x) + DzP(au)),

(8.3)
j= 1,...,s,

Po(ax, au) au,
and set

(8.4) afi=,,j=P(axz,,auz,) for allzeBo, yeSk, andj=0,...,s.

Note that, by...definition of D2P and (6.10), for every z, , and j, 6z,,j Ao Since
D2P(, uj)o D2P(, uj) is the identity operator on L(I1) for each j, we have

D2P(:, Uj" Pj((X, agO) + D1P(, u; 6x) D lP(ax) + D2P(au)
(8.5)

for allaxecg", 6u L, j= s,

so that, in particular, (8.1) holds with 6Uz,,a replaced by diz,,j. Inasmuch as there
is no reason to expect that (8.2) also holds (with this substitution), we must modify
(l

z, ?,j

Since (for each j) uj all, so that uj satisfies C2, we can find a function
fiUo,je-o(uj) such that D2P(,uj; 6Uo,j)= 0. By Lemma 3.1, there is an j > 0
such that (uj + a6u) ql whenever 0 <_ < ,j, 6u Ao, and II,u &o,jll < j,

Now it follows from the conclusions of Lemmas 4.1 and 6.1 and from (8.3)
and (8.4) that the set

{bOz,r,j’z 6 Bo, T e Sk, j 1, s}

is bounded; say 115z,7,jl] < for all z, , j. If we set (for all z, ?)

(8.6)

for j 1,...,s,
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then it is easily seen that (for all z, 7, J) (8.1) holds and 6uz,,j Ao. Hence, if we
set min I{g:/#:j 1, ..., s} U {Co, }], we easily conclude, recalling (6.9),
that (setting Uo )

(8.7)
whenever 0 =< e < g, for allyeSk, zeBo,

and j 0,... ,S.

Note that (see (6.7) and (6.8)) the maps 7 6uz,," S Lo are continuous
for each z e Bo and j 0, ..., s, and that this continuity is uniform with respect
to z.

We can now define the perturbed admissible controls. Namely, for each
S, [0, g), and z Bo, let the perturbed admissible control uz,, L be

defined by

(8.8)

where (see (7.7))

(8.9) 6uz,,(t) ej,,(t)6uz,,j(t), e I.
j=0

Observe that (see (7.12) and 8.6))

(8.10)
,0I{t e I, 6u,v,(t) =/= (Suz,v(t)}l -,o+

uniformly with respect to z e Bo and 7 e sk.

Further, it is evident that (see (7.6))

(8.11) u,,(t) ej,,(t)[uj(t) + e6u,,j(t)] (where Uo),
j=O

so that, by (8.7), u,, is a chattering combination of functions in ’, and is there-
fore itself in /l, for all z Bo, Sk, and e e [0, g).

Note that u,,o -- fi for all z e Bo and ), e Sk, and that

sup {lluz,, "z
(8.12)

sup 116u=,,ll =z

It is also worth noting that, by virtue of (8.9), (7.6), (7.7), (8.1), (2.21), and
(2.22), we can conclude that

(8.13) DIP(X u,a; 5xz,,) -4- D2P(ff, u,,a; (uz,,,)
It follows directly from the continuous dependence Theorem A.1 in the

Appendix, by virtue of (7.13) and (8.12), that the differential equation

2(t) f(x(t), u,,,(t), t)= f(x(t), u,,(t) + e6u,,,(t), t) a.e. on I

with initial value
k+l

X(tl)
i=1
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has a solution in (for all Sk and z Bo) so long as s _>_ 0 is sufficiently small
(for convenience, and without loss of generality, we shall say for all e., 0 __< e < g),
and that, if we denote this solution by Xz,,, then

(8.14) xz,,, fill _6; 0 uniformly with respect to z and .
In the same way (see Remark A. in the Appendix) we can also conclude--recalling
the construction of the sets Ij,,--that

uniformly with respect to z e Bo and for each e e [0, g).

Note that xz,,o for all z and 7.
It follows from Theorem A.2 in the Appendix that, if we denote by

the solution of the equation

62(0 fx(Xe,(t), ue,(t), t)6x(t) + f(xe,(t), ue,(t), t)6Uz,e,(t), 8x(t) O,

then

(8.16) Xz,, ,s X,, 6,. , 0 for all 7 e S and z e Bo.
8 e-+O+

It is a consequence of the mean value theorem of differential calculus in Banach
spaces (see [8, Thm. (8.5.4), p. 155]), as well as Theorems A.1 and A.2 in the Appen-
dix, that the convergence in (8.16) is uniform with respect to z and 7. On the other
hand, it follows from the continuous dependence Theorem A.1 in the Appendix
(see (7.13), (8.10), and (8.12), and note that, because of (7.14), [[x, [[ 0 as
e ---, 0 uniformly with respect to 7 e Sk) that, if we denote by 6YCz, the solution of
the equation

(8.17) 6(t) f(t)6x(t) + f,(t)6u,(t) a.e. on I, 6x(tl) O,

then

162,, 6z,ll _+’ 0 uniformly with respect to z, /.

Note that, by (7.4), (6.1), (6.2), and (8.17),

(8.19) 6x=, 6x +
Combining (8.16), (8.18), (8.19), and (7.14), we conclude that

(8.20) x,, x

8
,7 t_+O

9. An implicit function type theorem. For each 7 e S and e e [0, ), we shall
consider the mapping

Z --+ P(xz,y,e, Uz,,,e)’B o -+ g/m(I1).
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Let us denote this map by P,, so that

(9.1) P,(z) P(xz,r,, u,,), z Bo.
Note that

P,o(Z) P(x,r,o, u,,o) P(ff, fi) 0 for all z and 7.

Continuing our contradiction argument, we shall prove the following result,
which is a special kind of implicit function theorem.

THEOREM 9.1. If 0 int K, then, for every p
and functions zo,r L(I) defined for each 7 S such that

(i) [[Zp, <__ p for all
(ii) P,o(Zp,) 0 for all 3’ Sk,

S " is continuous,(iii) the mapping 3’ Xz
(iv) 0<<p.
Note that the pairs (Xzo,,,r,o, Uzo,,,r,) of Theorem 9.1 are admissible and

satisfy equation (2.2) as well as the equality constraint P 0.
Our proof of Theorem 9.1 will be carried out by showing thatfor an arbi-

trary p e (0, eo)for every e > 0 sufficiently small, the mapping (for any 3’ e S)
Pr, Bo Ll(11) defined by

(9.2) Pr,(z) z -Pr,(z), z e Bo,

has a fixed point in {z’z LQ(I), z[[ -< p}. To do this, we shall use the fixed-
point theorem for contraction mappings.

(Actually, to first order in e, the mapping (9.2) vanishes identically. In fact, the
functions x,r, and u,.,r, were specifically constructed to achieve this. Indeed (see
(9.1), (7.8), (8.20), (8.8), (8.13), and (6.4)),

P,,(z) n(xz,,,, Uz,r,) P(,

P( + efx, +..., u, + eau,,) P(, u,)
e(DP(aXz,r) + DzP(au,r)) + ez +... for all 3’ e S,

where three dots denote terms of higher than first order in e.)
Proofof Theorem 9.1. For each 7 e S, let us define the map V’Bo cg, x L

as follows"

(9.3) V(z) (6Xz,,, 6Uz,,).

Further, for each 3’ 6 S and e 6 [0, ), let Hr, be the function from " L into

L defined by (see (8.3))

(9.4) ",,(6x, 6u)= E2,, u + eP2(fx, 6u) + e,fu jI + Eo,,,( + e6u),
j=l j ’]

where, for each j 0, ..., s, e [0, ), and 7 Sk, Ej,, is the continuous linear
function from L into L defined by (see (7.7))

(9.5) (Ej,,u)(t) ej,,(t)u(t), I, u L.
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Also, let Fr,, be the map which assigns to each u 0 such that equation (2.2),
with initial condition X(tl) (tx) + e +=11 7i6xi(tl), has a (necessarily unique)
solution defined on all of I, this particular solution. We point out that (see (8.4),
(8.6), and (8.11)) n,o V(z)= u,r, and that F,(u,,)= x,, for all

7 sk, and z Bo, from which it immediately follows that (see (9.1))

(9.6) P,(z) P(F,o H,o V(z), H,o V(z)) for all z, 7, e.

Note that the maps Vr and Hr, are continuous and affine (see (6.7), (6.8),
and Lemma 4.1), and therefore Fr6chet differentiable with constant differentials.
Further, it follows from Theorem A.2 in the Appendix that F, is Fr6chet dif-
ferentiable, and we have seen in 2 that P also is. Hence, P, is Fr6chet differentiable,
and by the chain rule of differentiation, its differential at any z e B0 is given by

(9.7)
DPr,,(z) D 1P(xz,r,, Uz,r,) DFr,(Uz,,) DHr, DVr

+ DP(xz,,, Uz,,)o DHr, DV for all z, 7, e.

Let us evaluate each of the differentials in the right-hand side of (9.7), in
order to, obtain estimates for OPr,(z)l In fact, we shall show that both I[OP,(z)
and [IPr,(0)ll tend to 0 as e 0 +, for all 7 Sk and z Bo, which implies that, for
e > 0 sufficiently small,/, is a contraction mapping on Bo. We shall thus be
able to conclude, by the fixed-point theorem for contraction mappings, that
/r,--for all 7 Sk and e > 0 sufficiently small--has a fixed point in B0, i.e. (see
(9.2)), that P, has a zero in Bo.

Recall that D1P and DzP are given by (2.21) and (2.22), and (see (9.3), (6.7),
(6.8), and Lemma 4.1) DVr is the map 6z --. (6x, 6uz), independent of 7. Also,
since the maps Pj and Ej,, are linear (see (8.3) and (9.5)), DH, is given by

(9,8) DHr,
j=0

Finally, DF,(Uz,r,) is the map which assigns to each 6u Lm the function fix cg,
which is a solution of (see Theorem A.2 in the Appendix)

(9.9)
6So(t) f(Xz,r,.(t), Uz,,(t), Ofix(t) + f.(Xz,r,(t), u,,(t), t)bu(t),

(X(tl) 0.

It follows from our continuous dependence Theorem A.1 in the Appendix,
by virtue of (8.14), (8.8), (7.13), and (8.12), that the solutions of (9.9) tend, as
e 0 +, to the solution of

(9.10) 6c(t) f(t)bx(t) + f.(t)6u(t), 6x(t,) O,

uniformly with respect to I, 7 6 Sk, z B0, and 6u L with llbull =< 1. This
means that, if we denote by Fo the linear continuous map from Lo into cg, which
assigns to each 6u 6 L the fix defined by (9.10), then

(9.11) DF,(Uz,,. Fo o- 0 uniformly with respect to 7 Sk and z Bo.
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Further, since DH,, is given by (9.8), it is a consequence of (9.5), (7.7), (7.12),
and (8.3) that

[{t’t I, DH,,(6x, 6u)(t) 4: e6u(t)}[ -o ,0

uniformly with respect to 7 e Sk,

from which we conclude that

(9.12) -Fo DH,,((3x, 6u) Fo(6U

uniformly with respect to 7 Sk, 6ue L, and

zBo,

Combining (9.11) and (9.12), we obtain that

DF,,(uz,,, DH,,t O Fo D2
(9.13)

uniformly with respect to e S and

where (for any 7) D2V denotes the map (z 6uz’L(I1) - L.Also, by virtue of (2.21) and (2.22), Hypothesis A4 on the function p, and
(8.14), and because uz,, u,][ 0 as e 0 + uniformly with respect to 7 e S
and z e Bo (see (8.8) and (8.12)), we have

{{DiP(xz,,., uz,,) DiP( uy,){{
(9.14)

uniformly with respect to 7,z for 1,2.

It follows from (9.7), (9.13), and (9.14) that

]! -1D2P(:, u,,.) DH,,o D V,{DP,(z) D 1P(, u,) Fo D2 V
(9.15)

uniformly with respect to7S and zBo.

But, for any 6z e L(II) and 7 e S (see (9.10) and (4.7)),

(9.16) Fo D2 V(bz) Fo(bUz 6xz,

and, for any e[0, g) and 6zL(ll), (1/e.)DzP(,uy,e)o DH,o DV(6z) is the
function (see (2.21), (2.22), (9.8), (9.5), (7.6), (7.7), and (8.5))

p(2(t), u,,(t), t) e,,,(t)[((6xa, 6ua))(t)]
j=O

e,,(t)p,((t), uy(t), t)[(Py(Xz, 3u0))(t)]
j=O

ej,,,(t)[(D2e(x, uj; Pi(6x, bu)))(t)]
j=O (cont.)
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ej,e,(t)[(DllS((xo) -t- D2(6uz) DP(, uj; 6xz))(t)
j=o

(DlP(bx6z) + D2P(bUz D1P( u,; bx))(t)" 11

-D2P( u,,)o DH,,o DV(z) DIP(xaz + D2P(uaz DIP( u,,; xaz
(9.17) for allTS, ee[0,), and 6zL(I).

Combining (9.15)-(9.17), and taking into account (4.6), we see that

DP,(z) E 0-0 uniformly with respect to 7eS and zeBo,

where E denotes the identity operator on L(I), or (see (9.2))

IIDP,(z)II o;’0 uniformly with respect to 7 eSk and ze Bo.

Hence, there is an il e (0, ) such that IIDP,(z)[[ < 1/2 for all z e Bo and Sk,
as long as 0 < e < 1. Applying the mean value theorem of the differential
calculus (see I8, Thm. (8.5.4), p. 155]), we conclude that

[[PV,e(Z1) PV,e(Z2)[[ < 1/2[[Z Z2[ for all zl, Z2 t Bo, 7 e S, and e t (0, gl).

Let us arbitrarily fix a number p e (0, eo) for the remainder of the argument,
and let us show that, for all e > 0 sufficiently small,

(9.18)

Now (see (9.1) and (9.2))

P (o) -P(Xo , Uzo,,)
(9.19)

where zo 0.

But (see (8.8), (7.8), (8.13), and (6.4))

P(xzo,y,,Uzo,y,)

Xzo,,,e(9.20) P + e6Xzo, + e,

P,(0)[[ < p/2 for all V S*.

for allzBo,7S and eel0 )

X
bXzo,r U,e + e,bUzo,,e

P(:, u,) a[DiP(ff ur,; bXzo,r + D2P(ff u,; (}Uzo,r,)].
It follows from Assumptions A3 and A4 (also see (2.21) and (2.22)) that the map P
is continuously differentiable and that, because cl {u,,(t):t I, S, [0, g)} is
a compact subset of Uo (by definition of //), the map (x, u) --. DiP(x, u) (for
or 2) is uniformly continuous on the set {(if, u,):7 e S, e e(0, )}. Appealing to
an evident corollary of the mean value theorem of the differential calculus (see
[8, Thm. (8.6.2), p. 156]) and recalling (8.12) and (8.20), we see that (9.19) and (9.20)
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imply that

P,(0) ;0
e-.0

uniformly with respect to 7 sk,

so that we may choose an ep (0, 1) such that ep < p and such that (9.18) holds
whenever 0 < e __< co.

We may now apply the fixed-point theorem for contraction mappings--see
[8, Thm. (10.1.2), p. 261]--to the maps Pr,o (for 7 Sk), and conclude that, for each
7 sk, there is a unique element zr L(I1) such that I[zll < p and such that
P,p(zr) z, i.e. (see (9.2)), such that Pr,p(zr) 0. Since the elements zr depend
on p, we shall write zo, in place of z.

It only remains to prove that the map 7 xzo,,r," S cg,, is continuous.
Let us examine the map

(z, 7) P,o(z)" Bo x S -. L(Ix).
Unfortunately, this map is not continuous. However, if we consider the L(I1)-
topology on Bo (rather than the LQ(I1)-topology), and similarly for the elements
P,o(z), then this map is continuous’i.e., the map

(9.21) (z, 7) -* P,,p(z)’Bo S UI(I1)
is continuous when Bo is considered to be a subset of Ul(ll). Indeed (see (9.2),
(9.6), and (9.3)), it is sufficient to show that the maps

(9.22) (z, 7) ((SXz,,, 6Uz,,)’Bo x S cg,, x L’,
(9.23) (fix, 6u,

(9.24) (u,

(9.25) (x, u) P(x, u)’( x {Uz,,,o’z e Bo, 7 e Sk} Ltl(I1)
are continuous when Bo and {uz,,o "z Bo, 7 sk} are considered to be subsets
of Ltl(I1) and LT, respectively, and {(6Xz,, 6Uz,)’z Bo, 7 sk} is to be considered
a subset of cg, x

But the map (9.22) is continuous by the remarks at the end of._..._, 4 and by
(6.7) and (6.8). Further, by (8.3), (2.21), (2.22), and the definition of D2P(, uj), the
maps Pj, when considered from cg, x L1 into L are continuous, so that, by (9.4),
(9.5), (7.7), the construction of the sets Ij,,, and the boundedness in the L-
norm of the sets

,S

the map (9.23) is continuous as well. Finally, we observe that, in any subset ofL
which is bounded (in the L-norm), convergence in measure is equivalent to
convergence in the Lloo-norm, and similarly with Lo and LI replaced by L(I1)
and L(l), respectively. This is easily seen to imply, by virtue of (8.12) and
Assumptions A4 and A6 in 2, that the map (9.25) is continuous and, by virtue of
the continuous dependence Theorem A.1 in the Appendix, that the map (9.24) is
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continuous as well. Thus, (9.21) is continuous when Bo is considered to be a
subset of UI(I 1).

Now the elements z,,, which are fixed points of the contraction mappings
P,p, may be constructed through a Picard iteration process as follows (see
I8, pp. 260-261])’

zO) 0
p,),

(J)zO+l) (Zp,), j O, 1,..,-P,7

and zp, limj_+ zJ!, where the limit is to be understood in the L/oo(/1)-norm.
Arguing as in [8, pp. 260-261], we can show that the continuity of the map (9.21)

S B is continuous, when Bo is considered aimplies that the map 7--’ zp, o
subset of L1(I1). Since the map (z, 7) x:,y,o’Bo S -+ (_n (with Bo considered
a subset of L(I1)), which is the composite of the maps (9.22)-(9.24), has already

"S -+ (-tff isbeen shown to be continuous this means that the map 7 ---’ x=,,,,
continuous, as was to be shown.

10. The completion of the contradiction argument. We shall now complete our
contradiction argument for the proof of Theorem 5.1. Indeed, we shall show that,
for some (0, eo) and some ; Sk, when we denote x=,,, by 92 and Uz,,, by
7 (so that 92 ff and q/, and 92 and satisfy equation (2.2)), then X1(92) 0,
P(92, z7) 0, X2(92 Rk2, 5;(92) Y, and Xo(92 < Xo(ff), contradicting the fact that
(if, ) is a solution of our problem.

Since X 1(if) 0, we have that (for all z Bo Sk, and e (0, ))

-Xl(Xz,7,e) DX(6Xz,,

Ixz,,- Xl(Xz,,O- x()- ox(xz,,- )

+ DX Xz,y,e X
(Xz,

so that, by (8.20) and the definition of DI, and because the set {6Xz,r’z Bo,
7 e Sk} is bounded (see Lemma 4.1 and (6.7)),

(10.1)

X (Xz,),,e) 0 ;DX,(fXz,,)

uniformly with respect to z Bo and

In the same way, we can prove that

(10.2)

Xi(Xz,y,e)- Xi(,
e.O ’DXi(fXz,,) for 0,2

uniformly with respect to z, ,
Y,(Xz,,O

,__,o+ ’D’2( fXz,,) uniformly with respect to z, 7.
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Since (see (6.7)) the set {6Xo," 7 Sk} is compact, it follows from (6.5) and
(6.6), because Rk2 and Yo are open, that there is a number o > 0 such that

(10.4) D,o(6Xzo,r) < -o for all y S,
(10.5) R’2 whenever e R and 1 X2(:) O2(fXzo,e)l < o

for some , e S,
(10.6) y e Yo whenever y and [[y (:) D(; Xo,)l < o

for some , e Sk.

Let S be the simplex in R with vertices v l, ..., l)k+ whose existence was
asserted in Lemma 6.1. Since 0 e int S, there is a 0o > 0 such that the 0o-neighbor-
hood of 0 in R is contained in S. Let 3 e (0,/30) be such that (see (10.1)-(10.3))

0o(10.7) 1Xl(Xz,,) D, l(6Xz ) <
2

X(xz,,) Xi()
(10.8) DXi(6Xz) < Z for i= 0 2

(10.9) X(xz,,) X() D;(

for all z e Bo and 7 e S whenever 0 < e < , and, in addition, such that (see
Lemma 4.1)

(0.0) Iox(6x)l < 00/2,

(10.11) IO(x=)] < o/2 for 0,2, and IlO(" Xz) < o/2

whenever Ilzl] , Without loss of generality, suppose that 3 =< 1.
Note that (see (6.7) and Corollary 4.1),

(10.12) 6Xz, 6Xz + 6Xzo,e for all z e Bo and 7 Sk"

It now follows from (10.7), (10.10), (10.12), and (6.3) that
k+l1X l(Xz,/,e) 2 il)i

/3 i=

< 0o whenever Ilzll P,

(1 k+ 1) S and 0 </3 < p
Further, it follows from (10.8), (10.9), (10.11), and (10.12) that

(10.14) gi(xz,,e)- gi(
DXi(6Xzo,,) <o fori=0,2,

X(x,,)- x(x)
DX(Y.; 6Xzo,,)

whenever Ilzll P, S, and 0 </3 < p. But (10.14), (10.4), and (10.5) imply that

(10.16) Xo(xz,,) < Xo(),
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X(x,,)- x() g(10.17) + X2(ff)

(10.20)

(10.21)

(10.22)

(10.23)

Since X2()Gcl Rk_ and (1 e)cl Rk2] + eR Rk_ whenever 0 < e =< 1, (10.17)
implies that

(10.18) X2(Xz,,)
Similarly, we can show that, if 0 < < 1, then (see (2.14) and (2.15))

(10.19) )(xz,,) Y.

Hence, (10.13), (10.16), (10.18), and (10.19) hold whenever [[z =< t3, ,Sk,
0<e<p.

Appealing to Theorem 9.1, we can conclude that there are a number

e (0, ) and functions z,, L(I1), defined for all /= (71, ..., 7
k+ 1) Sk, such

that, if we denote xz.,, by x, and similarly define u (for each y), then

]--X k+l

I(X)- i=12 ’’/)i < 00’

Xo(x) < Xo(),

X2(x) e R and )(x) e Y,

P(x, u) 0

for all e Sk, and such that the map

(10.24) y X l(X?)" S R

is continuous.
Now let us consider the map F which assigns to each point r/e S, with bary-

centric coordinates ;1, "", 7k+1, the poiiat It/-(1/e)Xl(X) in Rk, where

7 (71, 7
k+ 1). Since the map (10.24) is continuous, F also is. By (10.20), F

maps S into itself, so that, by the Brouwer fixed-point theorem, F(O) for some
e S, i.e.,

(10.25) Xl(x) 0 for some

But, by (10.22), (10.23), and (10.25), x and u satisfy all of the problem equality
and inequality constraints. Since also x if, u qg, and x and u satisfy equa-
tion (2.2), (10.21) contradicts that (2, fi) is a solution of our problem, which
completes the proof of Theorem 5.1.

11. A multiplier rule. In this section, we shall show that Theorem 5.1 leads to
a generalized multiplier rule. In 12, we shall expand this multiplier rule to obtain
a maximum principle.

THEOREM 11.1. Let (2, fi) be a solution of our optimal control problem subject
to Assumptions A1-A6 on the problem data, and suppose that satisfies Conditions
C1 and C2. Then there exist a vector (o,1,..., k+k)6 Rk+k+l, and
continuous linear functionals I’ 6(L)*, I" 6(L(I1))*, and 1’" 6(qYt)* (where the
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asterisk denotes dual space), not all zero, such that

ft. DX(tJx) + (1’o DO + I"o D2P)(fiu + l"o DiP(fx) + 1’"o DJ(; 6x) __< 0
(11.1) for all (fix, 6u) Z with 6u A0,

(11.2) flJ <_ 0 for j= O,k + 1, k + k 1,

(11.3) (ilk+ ,..., ilk+k,). X2(ff 0,

(11.4) l’(w) > 0 for all w W2,

(11.5) t’"(y) >= 0 for all y Y,

(11.6) l’o Q(fi) l’"o x(x) 0.

Proof. By Theorem 5.1, 0 int K. If 0 K or if int K =p , then by the separa-
tion theorem in finite-dimensional spaces (see [9, p. 162, Lemma 2] and recall
that K is convex), there is a nonzero vector a (, ak) R such that

(11.7) a. DXI(bX =< 0 whenever(bx, cSu)Z3 forsomebuL.
If 0 K and int K , then K lies in a linear manifold in R of dimension less
than k, and there is consequently also a nonzero vector R such that (11.7)
holds--even with equality.

Now consider the set

g {(DlP(6x + DzP(6u), . Ol(6X )’(6x, 6u)G Z 1"] Z, ) > 0}.
Since Z and Z are convex,/ is a convex set in L(I1) R. By (11.7), (5.2), and
(5.3),

/ E{0} x R+] ,
where R+ denotes the set of positive numbers. Note that because (fi), R2, and
Yo are open and DXj(. (j 0, 2) and DX(’. are continuous, Z (see (5.1)) is
open in the relative topology of" x A0 (see (3.10)). Recalling that Z and Ao are
convex cones, and taking into account (4.6), (4.8), and Lemma 4.1, we at once
conclude that/ is open.

Hence, by the principal separation theorem for convex sets in linear topo-
logical spaces (see [10, Thm. V.2.8, p. 417]), there is a nonzero continuous linear
functional ie(L(l) x R)* such that i(z, () __< i(0,),) for all (z, )e/ and > 0,
i.e., there are a continuous linear functional i"e (L(I))* and a number 0, not
both zero, such that

"l"o DP(fx) + i"o D2P(fu + .D,x(6x <_ 0 for all (6x,fu)eZ (-i Z.

By definition of Z1 (see (5.1), (3.7), (3.8), and (3.10)), this means-that the
convex sets

(11.8)

and

(11.8’)

{(Q(fi) + DQ(bu), X2(ff + D2(bx), J(ff) + DJ(ff; 6x), Do(bX),
"l"o DIP(6x) + i"o DzP(6u) + aa D(6x))’(6x,6u)eZ,6ueAo}

W x RJ x Yo x R_ x R+
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(where R_ denotes the set of all negative numbers) in L x Rk’ x cg, x R x R
have an empty intersection. Also, observe that because 0 e Z and (2, ) satisfies
the problem constraints, (Q(fi), x2(ff), J?(ff), 0, 0) belongs to the set (11.8) as well
as to the closure of the set (11.8’). Since the set (11.8’) is open, we may again appeal
to the principal separation theorem for convex sets in linear topological spaces,
and conclude that there are continuous linear functionals l’ (L)* and l’" (qY’)*,
a vector/ (/1,...,/k) e R, and numbers flo and/o, not all of them zero, such
that, ifwesetfli ]9eeifori 1, ..., k, fl+1 =/ifori 1, ..., k,fl (//o,//1,
.., fl+), and l"= i" (so that l"e(L(I1))* and fleRk+’+l), then (11.1)
holds, l’, l", l’", and fl are not all zero, and

(11.9) l’(w) >= l’o Q() for all w e W2,

(11.10) /. >_/. X2(: for all e cl R2,

(11.11) l"’(y) >= l’" J(ff) for all y e Y,

(11.12) //070 _>_ 0 for all 70 < 0.

Since 1/2Q(fi) and 2Q(fi) both belong to W2, (11.9) implies that l’o Q() 0 and that
(11.4) holds. Similarly, (11.10) and (11.12) imply that (11.2) and (11.3) hold, and it
is a consequence of (11.11) that (11.5) holds and that l"’o X(2) 0, so that (11.6)
holds.

THEOREM 11.2. The linearfunctionals l’ and l" in Theorem 11.1 may be extended
to U and to L/(I1), respectively, in such a way that the extensions belong to (L)*
and to (UI(I))*, respectively.

Proof For each j 1, ..., 1, let zj denote the function in L(I1) whose jth
component is identically equal to one on I and whose other components
identically vanish. Since fi satisfies C2, there are functions 6uj and 6uj’ (j 1, ..., l)

for eachj I.in () f-I Ao such that D2P(fuj)= z and D2P(bu)= -z
If z (z 1, z) e L(I 1), then clearly

z Z
j=l

where (for each j) z+(t) max {0, zJ(t)} and z_(t) max {0, -zJ(t)} for all te 11.
Let us extend the functions z and zJ_ to I by setting them equal to 0 on I\I.
Then (see (2.22))

j=l

For each z (z, z) e L(I 1)’ let

(11.14) 5t7 (zJ+6u) + zJ_Suy).
j=l

It is not difficult to verify that there is an > 0 such that Q(fi) + DQ(fz)e W2

(see (3.7), (3.8), (2.18), and (2.19)), so that, by (11.4) and (11.6),

(11.15) l’o DQ(bOz) >= O.
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Now let 67 be the solution of

(11.16) 66 fxbx + Jb/z, bX(tl) 0,

so that (6z, 6tTz) Z. Also, 6tTz Ao. Hence, (11.1) and (11.13)-(11.15) imply that

l"(z) <= --ft. DX((X) l"o D IP((2) l’"o DX(X; 6z)
(11.17) for all z LI(I1).
By the variations of parameters formula for the solution of (11.16)and by (11.14),
the map z 6z’L(I1) --, cg, is continuous, even with the Lll(I1)-topology on
L(II). Also, 6YCzo 0, where zo 0. Hence, (11.17) implies that l"(z) 0 as
z 0, z L/(I1), where z --, 0 is to be understood in the Ll(I)-topology. Thus,
l" is continuous on L(Ia), when Z/oo(Ix)is viewed as a linear manifold in LI(I).
Hence, by the Hahn-Banach theorem, l" can be extended to L](I) in such a way
that the extension belongs to (L(II))*.

We now turn to l’. Let 6uo be an arbitrary fixed function in (fi) f-) Ao, so
that there is a constant 0o > 0 such that Q() + DQ(fuo) + oW W2, where w
is the function in L all of whose components are identically equal to 1. For every
w L, let Iwl denote the function --, [w(t)[’l R. Note that, for every w L,
IwlQ() W2 (since Q(fi) w2), so that, by (11.4), I’(IwIQ(O))>= O. On the other
hand, if w L and w 4: 0, then evidently

---Iwl(2() + (2() e w,
w

from which it follows, by virtue of(11.4) and (11.6), that l’(IwlQ()) =< 0, so that

(11.18) I’(IwIQ(O)) 0 for all we LL.
Further, for each w e L, let c52 be the solution of

(11.19) 6)t(t) f(t)6x(t) + f,(t)lw(t)lfuo(t), 6x(t) O,

so that (62w, Iwluo) z and Iwluo Ao for all w e L.
Now, for every w e L,

Iwl [Q(O) / OQ(buo) + 0oW1] ---IwlQ(0) / OQ(Iwluo) / olwlw W2,

-olwlwl + 0oW W2.
Hence, by (11.4) and (11.18),

-ol’(w) <= 1’o OQ(Iwluo).

Appealing to (11.1), with 6u Iwl/uo and fix 62w, we obtain that, for all
wL

-ooi’(w) <= -. O,(f2w) l"(O2P(lwlfUo) +
( .20)

,,,o D27(.

As before, examining equation (11.19), we conclude that the map w
is continuous, even with the L-topology on Lo. On the basis of (11.20) and the
previously derived continuity property of 1" with respect to the Lq(I1)-topology
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on L(I1), we then obtain that l’(w) 0 as w --. 0, w e L, where w 0 is to be
understood in the L-topology. Appealing to the Hahn-Banach theorem as
before, we obtain our desired conclusion.

12. The maximum principle. In this section, we shall expand the necessary
conditions of Theorem 11.1 by taking into account the special character of the
problem data X, P, etc.

Indeed, using the standard representation theorems for L, (L1(I1))*, and
we conclude, on the basis of Theorems 11.1 and 11.2, that there exist functions
2 (2, 2’)’I R’, / (g,..., g)e L, and v (v , v)e L with
the properties that (i) 2 is of bounded variation and is continuous from the right
in (t, t2), (ii) 2(t2) 0, and (iii) v(t) 0 for almost all e l\la, together with a
vector fl (flo, fl, ..., fl+,) e R+, + such that (see (2.21)-(2.25) and (2.8)-
(2.12))

[J" 2xi(X(T,i) Av #(t). t,(t)6u(t)dt + v(t). [,(t)6u(t) + x(t)6x(t)] dt
i=1

+ 2x((t), t)6x(t) d2J(t) =< 0 for all (Sx, ,u) e Z with 5u e A0,
j=l

(12.2) g(t) w(t) dt >= 0 for all w e W2 and g(t) O(t) dt O,

yJ(t)d2J(t)_>_ 0 for all y (y, y)e Y
j=l dt

and

k+kx
(12.4)

j=k+l

j=l

JzJ((T’I), "’", (To’)) O,

(12.5) fl _< 0 for j 0, k + 1,..., k + k l,

and such that fl, 2, #, and v do not all vanish.
It easily follows from (12.3) and (2.14), because 2J((t), t) <= 0 for all Ij

and each j, that (for each j) 2 is nonincreasing on I and is constant on any sub-
interval of I which does not meet the set

(12.6) {t’t e I, 2J((t), t) 0}.
Further, (12.2) and (2.19) are easily seen to imply that, for each j 1,..., r,
p(t) __< 0 a.e. on I and/J(t) 0 a.e. on 1\11, and, because /J(t) _< 0 a.e. on I, that
gl(t)lu(t) 0 a.e. on I.

Recall that Z {(6x, 6u)" 5x e cg", 6u e L, 6x and 6u satisfy equation (4.1)
for some Af e M}. By the variations of parameters formula, the solutions of (4.1)
can be written in the form

(12.7) 6x(t) O(t)cX(tl) + gO(t) O-l(s)[f,(s)6u(s) + Af(s)] ds, I,
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where is the absolutely continuous (n n)-matrix-valued function defined on 1
which satisfies

(12.8) b(t) f(t)(t) a.e. on I,

Using (12.7) in (12.1), we obtain that

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

(tl) the identity matrix.

ft. fx,(i) + ft. fx,(i) -l(s)[f,(s)bu(s) + Af(s)] ds
i=1 i=1

+ [kt(t). /,(t) + v(t). ,(t)]au(t) dt + v(t). x(t)(t) dt{

+ v(t). x(t)*(t) *-(s)[f(s)u(s) + Af(s) ds dt

+ (2(t), t)O(t)d2J(t)
j=l

+ 2{((t), t)*(t) *-(s)[f,(s)6u(s) + Af(s)] ds d2(t) 0

for all6R, 6U Ao, and Af 6 M.

Let us define the n-vector-valued functions , 1, 2, 3, and on I as follows"

1(S) fl" xi(Ti)- I(S)
j=i+l

for T S < Ti+ and 1,.-., a 1,

(t) . o,

O(s) v(t) x(t)(t) dt- (s), s e I,

O(s) 2((t), t)*(t) d2(t)* (s), s e I,

i=1

If we interchange the order of integration in the double integrals of (12.9),
we easily conclude that this inequality holds if and only if (recall that r t)

(.5 (t -.2,

(12.16) [(s). f,(s) + (s) O,(s) + v(s) ,(s)]u(s) ds 0 for all u e Ao,

(s)f((s), u(s), s) ds (s)f((s), (s), s) ds for all u e .(12.17)
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Integrating by parts in (12.13), and taking into account that 2(t2) 0, we
obtain that

(12.18) /3(s)-[- (S)" x((S),S)-- //4(S),

where
t2 d

(12.19) ,(s) 2(t). [x((t), t)O(t)] dtO-(s).

Further, if we differentiate the identity O(t)- (t) the identity matrix, and take
into account (12.8), we obtain

d
d(- (t)) -- ’(t)L(t) a.e. on I,

(12.20)
(t) the identity matrix.

Ifweset t t_ t 2

__
ff4,and takeinto account (12.8),(12.10)-(12.12),(12.19),

(12.20), and the fact that ff and satisfy equation (2.2) a.e. on I, we quickly
conclude that, on each ofthe intervals tl, r2), It2, r3), "’", [r- 2, %-), r- ,t2],

is absolutely continuous and satisfies the linear inhomogeneous ordinary
differential equation

(t) -(t)L((t), (t), t) + (t)px((t), (t), t)
(12.21)

v(t)p(2(t), O(t), t) almost everywhere,

where is the function from G Uo I R’ defined by

(12.22) (x, u, t) x(X, t)f(x, u, t) + (x, t), x G, u Uo, I

(in (12.21), , 2, and v are to be regarded as row vectors), and that, in addition
(see (12.14), (12.15), and (12.18)),

(12.23) @(tl) -fl’x, + 2(tl)x((tl), tl),

(12.24) @(t2) ft. ,
(12.25) @(zg)- @(z)= -fl.x, for/=2,...,a- 1.

Further, (12.17) and (12.16) take the forms

[@(t) t)]f((t), u(t), t)dt2(t)x((t),
(12.26)

N [O(t) 2(t)2((t), t)f((t), (t), t)dt for all u e ,
f, {[(t) + (t)q,(t)+ v(t)p,(t)}6u(t)2(t)(ff(t), t)]f,(t) dt

(12.27)
0 for allbu6Ao.

But (12.27)can hold only if

(12.28)
[(t) 2(t)fx((t), t)]f,((t), (t), t) + lt(t)q.((t), t)

+ v(t)p,((t), 0(t), t) 0 a.e. on I.
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Let us show that/3 and 2 cannot both vanish. Indeed, suppose that 2 and/
are both zero. Then (see (12.10)-(12.13) and (12.18)) 1 3 4 0, and

(12.29) (t) fl(t)2(ff(t), t) (t) (t) v(s)p(s)(s) dsdO-(t), e I.

Since satisfies C2, there is a function 6u e o() such that

v(t)/Iv(t)l if V(t) 0, G I1,
(12.30) p,(t)fUl(t)

0 if v(t) 0, e I2.
Hence, (12.28)-(12.30) imply that

(12.31)

t2

[v(t)l v(S)x(S)(s) ds-(t)fu(t)6u(t)

(t)u(f)tHl(t) a.e. on I.

Since the functions Px, , -2, f,, and 6u are all essentially bounded on I, it
follows from (12.31), the properties of # and the definition of o(fi) that, for some
7>0,

t2

Iv(t)l lv(s)l ds a.e. on I,

which is possible only if v 0 a.e. on I. But then (12.31) implies that /(t) 0
a.e. on Is, i.e.,/3, 2, #, and v all vanish, which is a contradiction.

Thus, we have shown the following theorem.
THEOREM 12.1. Let (, F) be a solution of our optimal control problem, subject

to Assumptions A1-A6 on the problem data, and suppose that F satisfies Conditions
C1 and C2. Then there exist a vector (flo, 1, "’’, [k+kl) Rk+k+ and func-
tions 2 (22, ,211).i Rl, # (#2 #r)6 L, v (v , vt) Ll, and

I R", all of them to be considered row-vector-valued, such that
(i) I/1 / 12(tl)1 > 0;
(ii) on each of the intervals It1, r2), It,_ 2, %- 1), [%- 1, t2], ff is abso-

lutely continuous and satisfies (12.21), where is defined by (12.22);
(iii) b satisfies the boundary (transversality) conditions (12.23) and (12.24) as

well as the ’jump" conditions (12.25), where x, Z,(ff(rl).z, (%))for each i"

(iv) satisfies the maximum condition (12.26), where ll consists ofallfunctions
u such that p((t), u(t), t) 0 a.e. on Is and which satisfy Conditions C1 and C2;

(v) relation (12.28) holds;
(vi) for each j 1, 11,2 is nonincreasing on I and continuous from the

right on (t t2), satisfies 2J(t2) 0, and is constant on any subinterval of I which
does not meet the set (12.6);

(vii) I(t)l [v(t)l O for almost all II1;
(viii) for each j 1, ..., r and almost all I lfl(t) -< 0 and lJ(t)qJ((t),t) 0;
(ix) fl satisfies (12.4) and (12.5).

13. The pointwise maximum principle. We shall now show that if we

strengthen Assumptions A3-A5 by requiring that the functions jl P, q, and p, be
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continuous, then the maximum principle (12.26) in Theorem 12.1 can also be
written in a pointwise, rather than in an integral, form.

For each x G and I1, let o9(x, t) denote the set of all v Uo such that
(i) qJ(v, t) <= 0 for j 1,-.., r,
(ii) p(x, v, t) O,
(iii) p,(x, v, t)[p,(x, v, t)] 7" is nonsingular,
(iv) {p,(x, v, t)6v" 6v R q(v,t)6v < 0 for each j 1, r such that

qJ(v, t) 0} Rt.
Note that fi(t)e o)(ff(t), t) for almost all 11 because satisfies C1 and C2.

If e is any function from I into R, then t0e I will be called a regular
(or Lebesgue) point for e if, for every neighborhood O of e(to),

meas (J f"l e-1(O))
lim 1,

J--* 0 meas J
where J is an arbitrary subinterval of I such that to e J. (A regular (or Lebesgue)
point for a function u I ---, R" is similarly defined.) If e I R (resp., u I Rm) is
measurable, then almost every point of I is a regular point for e (resp., u) (see [11,
pp. 255-256]).

Now, for each o I, let U(to) denote the set of all v Uo for which there
exists a function u og such that (a) U(to) v and (b) to is a regular point for u.

Note that, if u q/, then u(t) U(t) for almost all I.
If the function q is independent of I, then evidently

U(t) {v’v e Uo, qJ(v) <= O for j 1,..-,r} for every teI.

More generally, it is not difficult to verify that, if q is continuously differentiable,
then, for every I,

U(t) {v’v a Uo, qJ(v, t) <= 0 for j 1,..., r, there exists a
by R such that q{(v, t)bv < 0 for all
j l, ..., r for which qJ(v, t) 0}

{v "v Uo, qJ(v, t) <= 0 for j 1, r, the vectors q{(v, t),
for those j 1, ..., r for which qJ(v, t) 0, are linearly independent}.

THEOREM 13.1. Suppose that the hypotheses of Theorem 12.1 hold, and that, in
addition, thefunctions. p, q, and p, are continuous. Then the conclusion in Theorem
12.1 that (12.26) holds can be replaced by the conclusions that

(13.2)
where

(t)f(Y(t), Y(t), t) max (t)f(X(t), v, t)
eo(.(t),t)

.[or almost all e I1,

((t)f(Y(t), (t), t) max (t)f((t), v, t)
vU(t)

for almost all I\ I1,

(t) (t)- 2(t),,(g(t), t),

Proof We first point out that, since each component of 2 is monotone, 2
has at most a countable number of points of discontinuity. Since q is continuous
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at all I except possibly "152, 270._ 1, and x and are continuous, the set of
points of discontinuity of form a set of measure zero.

Let us show that (13.1) holds. We argue by contradiction and thus suppose
that, for some to I1 which is a point of continuity of as well as a regular point
for and for el (the characteristic function of I1) and for some Vo o(2(to), to),

(13.3) (to)f((to), Vo, to) > (to)f((to), (to), to)-

Consequently, vo e Uo and

(13.4)
qJ(vo, to) <= 0 forj 1,
p((to), Vo, to) O,

(13.5) p,((to), Vo, to)" [P,(ff(to), Vo, to)] w is nonsingular,

and there is a vector 6Vo R such that

(13.6) pu(f(to), Vo, to)bVo O,

(13.7) q(vo, to)bVo < 0 for eachj 1, ..., r such that qJ(vo, to) O.

First let us suppose that qJ(vo, to) 0 for somej 1,..., r. Then we must
have that m > and that 6Vo 4: 0. If m + 1, let us consider the system of
+ m equations (for v e Uo, with 0 a real parameter)

pi((to), v, o) O, 1,..., l,
(13.8) (v %). SVo 0 0,

towhich, for 0 0, have the solution v Vo. Because the vectors p,(x(to), Vo,
i= 1, ..., l, and fro are linearly independent in R" (recall that p,((to), Vo, to)
has rank l, and see (13.6)), we may appeal to the conventional implicit functions
theorem (see, e.g., I12, Thms. (9.3) and (9.8), pp. 122-125]), and conclude that
there is a continuously differentiable function from some neighborhood N of
0 R into Uo such that (0) Vo, and such that 0 pi(ff(to) (0), to) ((0) Vo)
6Vo 0 0 for all 0 N and each 1, ..., I. Differentiating the last set of

equalities with respect to 0, and setting 0 0, we conclude that p,((to), Vo, to)’(0)
0 and ’(0) 6Vo 1, which means--since p,(x(to)i Vo to) for 1, and

6Vo span Rm, and (13.6) holds--that ’(0) obVo for some o > 0.
Ifm > + 1, then we choose any m vectors 6v 1, ..., 6v,,__1 which

span the orthogonal complement in R of the (l + 1)-dimensional linear manifold
to) 1, l, and adjoin to (13.8)spanned by fro and the vectors pu(x(to) Vo, ...,

the m- l- equations

(V l)O)" (l) 0 for 1,.--, rn 1.

In the same way, we can then conclude that there is a continuously differentiable
function from some neighborhood N of 0 R into Uo satisfying the relations
(0) Vo, p((to), (0), to) 0 for all 0 N, and ’(0) ofVo for some o > 0.

Consequently, by virtue of (13.3)-(13.5) and (13.7 and the continuity off
and pu, we can conclude that there is a 01 > 0 such that Vl (01) Uo has the
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following properties"
(13.9) qJ(v 1, to) < 0 for eachj 1,..., r,

(13.10) p(2(to), v o) O,

(13.11) (to)f(2(to), v l, to) > (to)f(g(to), (to), to),

(13.12) p,((to), vl, to)" [pu(ff(to), vl to)] r is nonsingular.

Note that (13.12) implies that p,(2(to), vl, to) has maximum rank, i.e., rank I.
If qJ(vo, to) < 0 for every j 1,..., r, we simply set v Vo, in which case

(13.9)-(13.12) are immediately seen to hold.
Because the functions p, q, pu, and are continuous in all of their arguments,

we may again appeal to the implicit functions theorem, and conclude that there
are a negative number 0, a closed interval Io containing to, and a continuous
function fi from Io f"l I into a compact subset of Uo such that (i) fi(to) v l, (ii)

(13.13) p(2(t), fi(t), t) 0 for all Io f3 I,

and (see (13.9)) (iii)
(13.14) qJ(fi(t),t)< 0<0 for allteIo ["1 I and each j= 1,...,r.

Further, because of the continuity of p,, 2, and fi, and because the matrix

(13.15) p,((t), (t), t). [p,(X(t), fi(t), t)]

is nonsingular for o (see (13.12)), we may suppose that this matrix is non-
singular for all Io f-’l I, and that the elements of its inverse remain in some
bounded set as ranges over Io ("1 I.

For any function z e L(I1), let us define the function 6vz L(Io f3 11) as
follows"

6Vz(t) [p,(f(t), fi(t), t)]’r{p,(f(t), fi(t), t). [p,((t), fi(t), t)]r} lz(t), Io f3 11
Evidently, then

pu((t), fi(t), t)6Vz(t) z(t) for all e Io 11.
Finally, by (13.11) and the continuity of the function f and of the functions fi,

2, and at to, and because to is a regular point for both fi and ex,, we can conclude
that, for some subset Jo of Io f-) 11 of positive measure,

(13.16) (t)f(2(t), f(t), t) > (t)j(2(t), (t), t) for all Jo.
If we now define the function fi L by the relation

’fi(t) for tJo,
(13.17) (t)

fi(t) for I\Jo,
then it follows directly from what we have shown (see (13.13)and (13.1-4)) that, and that satisfies Conditions C! and C2, i.e., that . But (13.16) and
(13.17) imply that

(13.18) (t)f(2(t), (t), t)dt > (t)f((t), (t), t) dt,

which then contradicts (12.26). Consequently, (13.1) holds.
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To prove that (13.2) holds, we again argue by contradiction, and thus sup-
pose that there are a point to e I and a function e ’ such that (i) o is a regular
point for fi, and e\l (the characteristic function of 1\11) as well as a point of
continuity of , and (ii)

(to)f((to), ft(to), to) > (to)f((to), (to), to).

Hence, there is a subset J0 of I\I of positive measure such that (13.16) holds.
Defining ff by (13.17), we immediately obtain that te J and that (13.18) holds,
again contradicting (12.26). Thus (13.2) holds. The proof is complete.

Recall that (t)eco((t),t) for almost all e 11, and note that (for each
(x, t) e G x 11) the set of all v e Uo that satisfy conditions (iii) and (iv) in the defini-
tion of co(x, t) is open. Hence, (13.1) may be interpreted as follows" For almost
every e 11, there is a neighborhood O of fi(t) such that h(t) solves the problem of
maximizing the function v (t)f((t), v, t)’O--, R subject to the constraints
q(v, t) <= 0 for j 1,..., r and p(2(t), v, t) 0. Thus, conclusions (v) and (viii)
of Theorem 12.1 show that, for almost all 11 #l(t), #r(t), v(t), vt(t)
may be interpreted as Lagrange multipliers for this finite-dimensional constrained
maximization problem. If, for some e 11 for which (12.28) holds, the vectors
/iu(t), i= 1,..., r, and #iu(t), i= 1,..., 1, are linearly independent, then (12.28)
uniquely determines #(t) and v(t). If, in addition, and fi are continuous at t,
[,, p,, and q, are all continuous functions, and e int 11, then / and v are also
continuous at t.

The requirement in Theorem 13.1 that the functions f, p, q, and p,, are con-
tinuous can be relaxed. For example, the theorem remains in force if there is a finite
subset Ig. of I such thatj;p,q, and p, are continuous at all (x, u, t)e G x Uo x (I\I.).
(Of course, A3-A6 must still hold.)

14. Some generalizations. The problem wherein the equality constraints
(2.5) are replaced by the more general constraints

p(x(t),u(t), t) 0 for almost all e I, 1,..., l,

where I, .-., Il are given Lebesgue measurable subsets of I, is also of interest,
and can, by a straightforward reformulation, be included in the problem studied
in the earlier sections of this paper.

Let us indicate how to do this. For simplicity, let us suppose that 2. Let
|1 I1 [-J I2, and let us adjoin to u (ul, u’) two new scalar "control"
variables um+ 1, u,,+ 2. Let u (u, um+ 1, urn+ 2), let U0 U0 x R2, and define the
functions f:G x Uo x I-+ R", p:G x Uo x I--+ g2, and q: Uo x I--+ R as
follows"

(14.2)
r(x, u, t) f(x, u, t)

pJ(x, U, t) =PJ(x’ U, t)
[.hi

+

and q(u,t)=q(u,t) for all (x, u, t),

for all (x, u) and all e Ia U (I\11),
for all (x, u) and all e 11 Ij for j 1,2.

It is easily seen that the generalized problem reduces to our original problem with

11 u, Uo,f, p, and q replaced by 11, etc., and that if./, p, and q satisfy A3-A6, then
f, p, and q also do. Further, if u e @’ satisfies Conditions C1 and C2, modified in
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an evident manner, then (u, 0, 0)also satisfies theseconditions with p replaced
by p.

Appealing to Theorem 12.1, as applied to the "expanded" problem, we can
easily convince ourselves that the necessary conditions of this theorem carry
over to the problem where (2.5) is replaced by (14.1)--provided that we replace
11 by U j=II Ij, redefine in an evident manner in conclusion (iv), and add the
conclusion that vJ(t) 0 for almost all I\I, for each j 1, ..., I.

As another generalization, suppose that the equality constraints (2.5) are
replaced by equality and inequality constraints of the form

(!4.3) (iva) pi(x(t), u(t), t) <= 0 for almost all te 11 and each 1,..., l’,

(ivb) pi(x(t), u(t), t) 0 for almost all e I and
(14.4)

l’eachi + 1,...,l,

where l’ is some positive integer with l’ =< (and we replace the restriction that

=< m in the problem statement by the inequality l’ =< m).
We shall show that the problem in which (2.5) is replaced by (14.3) and (14.4)

can, by a simple reformulation, also be included in the problem which we investi-
gated in the preceding sections.

We first introduce some notation. Let /91 (pl pl’) and P2 (p’+l
"", pt), and define P1 (p1, pl’), P2 (p/’ + l, P), where the pi are
defined by (2.7). If (if, fi) is the solution of the problem for which we wish to obtain
necessary conditions, let

{u’u

(14.5) and each 1,..., 1’, pi((t), u(t), t) 0 for almost all

and each l’ + 1,-.., l}
and, for each u e , let

,(u) {6u’8u L, ess sup [pi(y(t), u(t), t)
(14.6)

+ p,(x(t), u(t), t)6u(t)] < 0 for/= 1,..-, 1’},
(14.7) (u) {6u’ > O, 6u (u)}.
Corresponding to Conditions C1 and C2 we introduce the following conditions"

ConditionCl’. Foralmost all 6 11 the(/- l’) (1 /’)matrix p2u(ff(t), u(t), t)
[p2u((t),u(t),t)] is nonsingular, and the function [p2,((t),u(t),t).(p,
((t),u(t),t))r]-l"I1 R(l-l’)2 is in L-r)2(ll).

-’(I1) where -0(u)Condition C2’. {DePz(, u 6u)" fu o(U I’ (u))} L
is given by (3.7), (3.8), and (3.10).

Conditions CI’ and C2’ should (as were Conditions C1 and C2) be interpreted
as regularity conditions, or as compatibility conditions--to "first order" in
for the constraints (14.3), (14.4), and (2.1).

Now let us reformulate our problem. We adjoin to u (u 1, u’), l’ new
scalar "control" variables um+ 1, um+l’ Let u (u, u"+ 1, um+’), let
U0 Uo Rl’, and let the functions f’G x Uo x I R", p’G Uo x I--, R,
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and q’Uo I Rr+’ be defined as follows"

fx, u, t) flx, u, t),

pi(x, U, t) if(X, U, t) + l,tm+

pi(x, u, t) pi(x, u, t)

qi(u, t) qi(u, t)

qr+ i(u, t) Um+

for/--l,..-,/’,

for/--/’+ 1,-.-,1,

for i-- 1,-.., r,

for 1,...,/’,

for all (x, u, t)e G Uo I. It is then easy to see that the problem in which (2.5)
is replaced by (14.3) and (14.4) is equivalent to the original problem, provided that
we therein replace m by (m + l’), r by (r + l’), and u, Uo, f, p, and q by u, Uo, etc.
Further, if./, p, q, and Uo satisfy A3-A6, then f, p, q, and Uo also do.

Let us consider the set /defined in terms of p, q, etc. in the same way that @’
was defined in terms of p, q, etc. Then one may convince oneself without too much
difficulty that u (u, um+ 1,..., um+l’). f if and only if (i) u e q, (ii) for each
i= 1, ..., l’, um+iGLoo, um+i(t) 0 for almost all tel\Ix and um+i(t) + pi
((t), u(t), t) 0 a.e. in Ix, and (iii) u satisfies Conditions CI’ and C2’. If l’,
so that the constraints (14.4) are absent, then (iii) is to be replaced by" (iii’)
(u) N (u) .

Appealing to Theorem 12.1 for the reformulated problem, we can quickly
obtain the following theorem.

THEOREM 14.1. Let (Y, ) be a solution ofour optimal control problem with (2.5)
replaced by (14.3) and (14.4), where <= l’ <- l, and suppose that Assumptions A1-A6
hold. Further, suppose that satisfies Conditions CI’ and C2’ if l’ < l, and that
.(u) N -’Ntu) - if 1’ 1. Then there exist a vector fl (rio, fix, k+kl)
e Rk+k,+ andfunctions2=(2 2l’)’I R’, # (lax, #)e L v (v
.., vl) L, and O’I R", all of them to be considered row vectors, such that

conclusions (i)-(ix) of Theorem 12.1 hold, except that, in (iv) (i.e., in (12.26)) //is to
be the set ofall u which satisfy Conditions CI’ and C2’ ill < l’ and the set ofall
u o such that (u) N (u) :/: (25 ill l’ (see (14.5) and (14.6)), and, in addition,
(x) for each j 1, ..., l’ and almost all 6 I, vJ(t) -< 0 and vJ(t)pJ((t), (t), t) O.

In order to obtain here a pointwise maximum principle which is analogous to
Theorem 13.1, we introduce the set cox(x, t). Indeed, for each x G and I1, let
COl(X, t) denote the set of all v Uo such that

(14.8)
(14.9)

(i) qJ(v, t) 0 for j 1, ..., r;
(ii) pJ(x, v, t) < 0 for j 1, ..., I’;

(iii) p/(x, v, t) 0 for j l’ + 1, ..., l;
(iv) p2u(x, v, t) (p.u(x, v, t))T is nonsingular
(va) {peu(x, v, t)bv’6v e Rm, q(v, t)bv < 0 for each j 1, ..., r

such that q(v, t) O, p(x, v, t)6v < 0 for each j 1, ..., l’
such that p(x, v, t) 0} Rl-l’ if l’ < l,

(vb) {6v’fveRm, q(v, t)6v < 0 for eachj 1,..., r
such that q(v, t) 0, and p(x, v, t)bv < 0 for each
j 1, ..., l’ such that p(x, v, t) 0} :/: if l’ I.
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If we define o(x, t) in terms of p, q, and Uo in the same way that o9(x, t) was
defined in terms of p, q, and U0, then it is easy to see that v (v, v"/ 1, ..., vm/l’)
tO(X, t)if and only ifv6091(x,t and v’’+j -pJ(x,v,t) forj 1, ..., l’.

Appealing to Theorem 13.1 for the reformulated problem, we arrive at the
following pointwise maximum principle.

THEOREM 14.2. Suppose that the hypotheses of Theorem 14.1 hold and that, in
addition, thefunctionsf, p, q, and Pu are continuous. Then the conclusion that (12.26)
holds can be replaced by the conclusion that (13.1) and (13.2) hold, but with 09

replaced by O01 in (13.1).
As before, relation (13.1)--with 09 replaced by Ogl--together with conclusions

(v), (viii), and (x) of Theorem 14.1 allow us to interpret (for almost every
]21(t), r(t), vl(t), vl(t)as Lagrange multipliers for the problem ofmaximiz-
ing the function v (t)f((t), v, t)’O R (where O is some neighborhood of
(t)) subject to the constraints of qJ(v, t) <_<_ 0 for j 1, ..., r; pJ(2(t), v, t) <_ 0 for
j 1, ...,/’;and pJ((t), v, t) 0 for j l’ + 1, ..., I. The statements made in
13 regarding the uniqueness and continuity of the functions t and v carry over

here essentially unchanged.
The two types of generalizations of our basic problem which we described

in this section may of course be combined, but we shall leave the details of the
analysis to the interested reader.

15. Comparison with earlier results. Optimal control problems of the type
examined in this paper were first studied by Gamkrelidze (see [13] and [6]).
Gamkrelidze primarily investigated the problem with constraints of the form
(2.1)-(2.3) and (2.5), and confined himself to the case where I1 is a closed interval,
where f, p, and q are independent of (in which case Assumptions A4-A6 auto-
matically hold), and where g has a particularly simple form. He also assumed that
the solution (if, ) of the problem was such that was piecewise-continuous and
piecewise-smooth, and that, for each 11, (t) (7)(.(t), t), where (for each (x, t))
(x, t) differs from our n(x, t) in that conditions (iii) and (iv) (in our definition of o)
are replaced by the much stronger requirement that the vectors

p(x,v), j 1,..., l, and q(v) for allj 1,..., r such that qJ(v) 0

are linearly independent. All this implies, as is not hard to see, that the function
satisfies our Conditions C1 and C2. The necessary conditions obtained in [6]

and [13] under these stronger assumptions are essentially the same as those in our
Theorem 13.1, except that the maximum condition (13.1) was shown to hold only
for all v 6(E(t), t)(rather than for all v in the larger set o(E(t), t)). Gamkrelidze
also investigated the problem with constraints of the form (14.3) by using essen-
tially the same device as we used, but under the previously indicated stronger
assumptions on the problem data. Finally, he also considered the problem with
constraints of the form of (2.6), but only for the case where :(E(t), t) 0 on some
subinterval of I’, in which case he could reduce this constraint to one of the form
of (2.5), by using the procedure we described at the beginning of 3.

Hestenes, in [3, pp. 256-260] (also see [7]), considered problems with
constraints of the form of (2.2)-(2.5), wherefand p are continuously differentiable.
He also confined himself to piecewise-continuous control functions u. (An exten-
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sion to the case of more general f and p--much as indicated in A3-A6--and to
measurable u was made by Guinn in [14].) Finally, he supposed that 11 I and
that the function Z had a particularly simple form. Under the additional assump-
tion that, for all e I, o(ff(t), t) {v:v Uo, p(2(t), v, t) 0} (which implies that fi
satisfies our Conditions C1 and C2), he obtained necessary conditions essentially
the same as those in our Theorem 13.1. In [3, pp. 260-262], the problem with
constraints of the form (2.2)-(2.4) and (14.3), (14.4) was also considered, and
necessary conditions which are the same as those in Theorem 14.2 were obtained,
under the very strong assumption that, for all e I and all v e Uo that satisfy
(14.8) and (14.9) with x if(t), the vectors p((t), v, t), for thosej 1,..., such
that pJ((t), v,t)= 0, are linearly independent. This assumption implies that
ol((t),t {v:ve Uo,p((t),v,t) <__ 0 for j 1, ..., I’ and p((t), v, t) 0 for
j l’ + 1,..., l} and that satisfies Conditions CI’ and C2’, but the converse is
far from true.

Virsan in [4] considered problems with constraints of the form (2.2), (2.3), and
(2.5), under the assumption that f and p are continuous and continuously
differentiable in x and u and that 11 is a subinterval of I. He also confined him-
self to piecewise-continuous controls. Under the additional assumption that
(t) (o((t), t) for all 11 (which implies that satisfies Conditions C1 and C2),
he obtained necessary conditions essentially the same as those in our Theorem
13.1. Virsan’s approach to the problem had much in common with ours. Namely,
he viewed the constraints (2.5) as an equality constraint in the function space
L](I1), and brought to bear the tools of functional analysis much as we did in 11.

In [5], Virsan extended his results to measurable controls under the addi-
tional assumptions that ! 11, that the functions f and p are independent of t,
that, for each e I, (o((t), t) {v:v e Uo, p(2(t), v, t) 0}, and that the sets
og(.(t), t) are uniformly bounded. His approach in this paper was even closer to
ours than it was in [4].

Dubovitskii and Milyutin, in [15], considered a problem containing both
equality and inequality constraints of the form (14.3) and (14.4), under assump-
tions much like our Conditions CI’ and C2’ in 14. However, their necessary
conditions did not include the maximum principle (12.26) (or (13.1)) but only the
"local" maximum condition (12.28). Earlier, in [16-], they had obtained similar
necessary conditions for problems without the equality constraints (14.4).

Appendix. We first prove that, in the notation of 7, if maxi IJ?l is sufficiently
small (for each e [0, :)) then Ilx,+- 97,+:11 < 2 for all 7 Sk. Let us denote the
compact set {x :x R", Ix N(t)l <- 2po fe.r some I} by Gc. By definition of Po,

G+. c G, and by choice of ;, I1,+ 11 < po for all ? Sk and e [0, g:). Let us

arbitrarily fix e [0, +) for the remainder of the argument.
For each ? S, let us define the function 6f(.,. y):G x I --+ R" as follows:

6f(x, t; y) f(x, u,(t), t) f(x, (t), t)

e /J(y)[f(x, uj(t), t) f(x, (t), t)].
j=l
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It follows from Assumption A6 of 2 that there is a number > 0 such that
(see (7.1))

for all x G and ), S and almost all I, independent of the way in which the
J are chosen.

For each ?,, equation (7.9), with initial condition x(tl)= ,(tl) Gc, has a
solution which takes on its values in Gc--at least for in some neighborhood of
l. Let us denote this solution by x,. Then, for all in this neighborhood of t,
we have (see (7.9) and (7.1))

(A.1)
Ix,(t) ff,(t)l -< f(x,(s), u,(s), s) f(,(s), u,(s), s)l ds

+ Sf(Y,,(s), s’7) ds

But

(A.2)

s) f(2,e(s), u,(s), s)] dsIf(x,(s), U,,e(S),

<= (max f(x, u,,(s), s)l)lx,,(s) 2,,(s)l ds
xGc

t__< lx,,(s) :,(s)l ds.

Also, if we denote by , some step-function approximation to 9,, we similarly

obtain

Combining inequalities (A.1)-(A.3), we arrive at the inequality

(A.4)
Ix,(t)- ,(t)l C]x,(s)- c,(s)l ds

6f(c,(s), s; 7) ds

Note that inequality (A.4) holds for every 7 e sk, for every step function k, taking

on its values in Go, for any choice of the J, and for every e I such that x,(s) G,;
for all s e It1, t]. Applying the Gronwall inequality to (A.4), we can conclude

that, for every 7 e sk, X, is defined and takes on its values in Gc for all e I and
satisfies the inequality Ilx,- ,ll < 2, provided that we can show that, by a

proper choice of the step functions, (depending on 7) and of the J (independent
of 7), we can make the last two terms in the right-hand side of (A.4) arbitrarily

small in magnitude, for all I (and 7 sk)
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But II, 2, can evidently be made arbitrarily small by a suitable choice
of ,. We may evidently suppose that , takes on its values in G Further
(since I:,(t)l _-< C for all 7 and almost all t) for a given upper bound on I1, )Z,
we may even choose the points of discontinuity of the ., to be the same for every
]) Sk.

According to a lemma of Gamkrelidze (see [2, Lemma 4.1]), for any (0 0,
there is a choice of the J such that

for all t’, t" I, Sk, andxGc,

which means that the last term in (A.4) can be made arbitrarily small by a suitable
choice of the J, which completes our proof.

Let us denote by , the set of all functions F’G I R" (where G is an open
set in R" and I is the compact interval It1, t2]) such that (i) for almost every 1,
the function x--+ F(x,t)’G R" is continuously differentiable, (ii) for each
x R", the function F(x, t)’I -+ R" is measurable, and (iii) for every compact
subset G of G, there is a number > 0 such that, for almost every 1, IF(x, t)l
+ IF,(x, t)l for all x Gc. Thus we have the following continuous dependence
theorem for ordinary differential equations.

THEOREM A.1. Let and Yc(. ) cg, be such that Yc(. is absolutely con-
tinuous and satisfies the differential equation c(t) (2(t), t) a.e. on I. Then there
is a compact subset G ofG with the following property" For every e > O, there is a
b > 0 such that, whenever F and o R" satisfy the inequalities

(sup- ff(x,s)l)ds a, Io- 2(t1)l < 6,IF(x,s)
XGc

the differential equation 2(0 F(x(t), t), with initial condition X(tl)= o, has a
solution defined on all of I satisfying Ix(t) 2(01 < e for all I.

Proof Choose 61 > 0 such that the compact set G,. {x’xe R",lx-
< b for some t I} is contained in G, so that, for some > 0, Ii,(x, t)[ =< ( for
all x G, for almost all I. If F o. and Io 2(tl)[ _-< 61/2, then the equation
2(0 F(x(t), t), with initial value x(tl) 0, has, at least in some neighborhood
of l, a solution satisfying Ix(t) 2(0[ _-< 61. For each t I such that Ix(s)
_-< 61 for all s It1, t], we then have

Ix(t)- (t)l o 2(tl) + [F(x(s), s) .(2(s), s)] ds

-<-Io (t)l + IF(x(s),s)- F(x(s),s)l ds

+ Ig(x(s), s) g0Z(s), s)l as

t2= 1o 2(t1)l -+" (sup IF(x, s) (x, s)l) ds
xGc

+ (lx(s) )7(s)l ds,



OPTIMAL CONTROL PROBLEMS 227

and our desired result follows at once from the Gronwall inequality.
Remark A.1. In the preceding theorem, 6 depends on only in that is a

function of .
We also have the following differentiable dependence theorem.
THEOREM A.2. Let I, G, Uo,f, (, o, and Yl be as described in 2, and suppose

thatfsatisfies Assumptions A3-A6 of 2. Suppose that (. ) ( and ( ) ll satisfy
the differential equation )(t) f((t), (t), t) a.e. on I, with absolutely continuous.
Then there is a neighborhood N of in L such that, for all u N, the equation
2(t) f(x(t), u(t), t), with initial value x(tl) 2(tl), has a solution which is defined
on all of I, and (denoting this solution by xu to emphasize its dependence on u)

x, Yc + 6x, + o(u- ),

where (for each u Yl) 6x, denotes the solution of
6(t) fx((t), a(t), t)6x(t) + f,((t), a(t), t)(u(t)

and

6x(t) 0,

o(u)
0 in the "-norm.

Proof Let us denote by T the mapping from ff 0 into " defined by

(T(x, u))(t) 5c(t) + f(x(s), u(s), s) ds, e I, x e , u e 1[o.

Then the differential equation :t(t) f(x(t), u(t), t) with initial value X(tl) (t)
is evidently equivalent to the equation x T(x, u), so that T(, ). It easily
follows from Assumptions A.3-A.6 that T is continuously (Fr6chet) differentiable.

Our result now follows directly from the conventional implicit function
theorem in Banach spaces (see [8, Thm. 10.2.1, p. 265]).

Acknowledgment. The authors wish to acknowledge some fruitful conversa-
tions with Leonard M. Silverman. Indeed, the construction of the functions
and 6Uz in 4 are based on suggestions made by him.
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IMPLICIT FUNCTIONS AND OPTIMIZATION PROBLEMS
WITHOUT CONTINUOUS DIFFERENTIABILITY OF THE DATA*

HUBERT HALKIN’
Abstract. Let b be a function from a normed linear space X into a finite-dimensional Euclidean

space Y and let A be a continuous linear mapping from X onto Y. We assume that b is continuous in
a neighborhood of some point X and that b admits A as its differential at the point . In this paper
we prove that under those conditions there exist a neighborhood U of : and a mapping from U
into X such that 4(x + (x)) b(2) + A(x ) for all x e U and such that lim,_.o+ suptx_t<_nl((x)l/q

0. Besides the above "correction function theorem" this paper contains related implicit and inverse
function theorems. The correction function theorem is applied to the proof of the multiplier rule for
mathematical programming problems with equality and inequality constraints without assuming the
continuous differentiability of the data in a neighborhood of the optimal solution.

1. Introduction. If b is a function from a normed linear space X into a
normed linear space Y and if a continuous linear mapping A from X into Y is the
differential of th at a point X, then by definition we have

(.) 4,(x) 5(,t) + Ix ) + g(x),

where lim,_,o/ suPlx_,l__<_n Ig(x)l/ O. In other words, the relation

(.2) (x) ()+ A(x )

is "almost" correct and to obtain the "really" correct relation (1.1) we have added
to the right side of relation (1.2) a "little" term g(x). Instead of making the above
classical correction we might try a correction of another type by shifting the argu-
ment x in the left side of relation (1.2) by a "little" amount ((x) in order to obtain
a relation of the type

The fact that such a correction is possible whenever is continuous in a neighbor-
hood of , Y is a finite-dimensional Euclidean space and A maps X onto Y consti-
tutes the "correction" function theorem stated below as Theorem F and proved in
2 of this paper.
THZOM F. Let X be a normed linear space and let Y be a finite-dimensional

Euclidean space. Let be a mapping from X into let X and let A be a con-
tinuous linear mapping ofX onto Y such that

(i) is continuous in a neighborhood of ,
(ii) A is the differential of at the point .
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to the logical order of construction of the proofs given in 2. In the Introduction we state Theorems F,
C, E and G in that order for "motivational" reasons. Theorems A, B and D are stated only in 2.
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Then there exist a neighborhood U of 2 and a mapping of U into X such that
() dp(x + (x)) dp(2) + A(x 2) for all x U and
() lim,_0 + suPlx_ _<, I(x)l/r/ 0.
In 2 we first prove a string of theorems including the two implicit function

theorems stated below as Theorems C and E, and then we use Theorem E to prove
Theorem F.

THEOREM C. Let X be a metric space, let Y be a normed linear space, let Z be
a finite-dimensional Euclidean space, let be a mapping from X Y into Z, let
(2, .9) X Y and let B be a continuous linear mapping of Y onto Z such that

(i) b is continuous in a neighborhood of (2, ),
(ii) q5 admits B as its differential with respect to the second variable at the

point (2, f), i.e.,

lim sup 14)(2, .9)+ B(y .9)- d(2, y)l/rl O.
--, o / ly-l __<,

Then for any neighborhood V ofp there exist a neighborhood U of2 and afunction
O from U into V such that

() 0()= ,
() c/)(x, O(x)) c/)(2, .9)for all x e U, and
(7) 0 is continuous at the point 2.
THORFM E. Let X and Y be normed linear spaces, let Z be afinite-dimensional

Euclidean space, let 4 be a mappingfrom X x Y into Z, let (2, 9) e X x Y, let A be
a continuous linear mappingfrom X into Z and let B be a continuous linear mapping
from Y onto Z such that

(i) b is continuous in a neighborhood of (2, ),
(ii) (A, B)is the differential of 4) at the point (2, .9), i.e.,

lim sup 14(2, .9) + A(x 2) + B(y ) 4(x, Y)l/rl O.
,r-, o / Ix-l /{y-l__<,

Then there exist a neighborhood U of 2, a mapping of U into Y and a continuous
linear mapping Cfrom X into Y such that

() 0()= ,
() 4)(x, O(x)) 4)(2, )for all x e U,
(7) C is the differential of 0 at the point 2, and
() A + BC =0.
In 2 we also apply Theorem E to the proof of the following inverse function

theorem.
THEOREM G. Let X be a finite-dimensional Euclidean space, let dp be a map-

ping from X into X, let 2 X and let A be a linear mapping ofX onto X such that
(i) q is continuous in a neighborhood of 2 and
(ii) A is the differential of dp at the point 2.

Then there exist a neighborhood U of dp(2) and a mapping from U into X such that
() (4,(:z))= :z,
(fl) 4((Y))- Y for all y U, and
(7) admits A-1 as its differential at the point Oh(2).
The implicit and inverse function theorems stated above, Theorems E, C

and G, are closely related to their "classical" counterparts (see, for instance,
Dieudonn6 [1, p. 265]) in which the given functions are assumed to be continuously
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differentiable and in which the resulting functions are themselves guaranteed to
be continuously differentiable. There does not appear to be any "classical" cor-
rection function theorem stated explicitly in the literature. We give below the
statement of such a theorem which can be proved as an easy corollary of the
"classical" implicit function theorem.

CLASSICAL CORRECTION FUNCTION THEOREM. Let X and Y be Banach spaces,
and let T be a closed linear subspace of X. Let X Y, let X and let A be a
continuous linear mapping of X into Y such that

(i) q5 is continuously differentiable in a neighborhood of,
(ii) A is the differential of dp at the point and
(iii) A maps T one-to-one onto Y.

Then there exist a neighborhood U of and a continuously differentiable mapping
of U into X such that

() dp(x + (x)) dp() + A(x ) for all x U, and
(fl) lim,0+ suplx_l_<_" I((x)l/r/ 0.
In 3 we apply Theorem F, the correction function theorem, to the proof of

the multiplier rule for a mathematical programming problem with equality and
inequality constraints without assuming the continuous differentiability of the
data in a neighborhood of the optimal solution. If the data is assumed to be con-
tinuously differentiable in a neighborhood of the optimal solution, then this
"classical" multiplier rule (which combines the results of Carath6odory [2, p. 177]
and John [3]) can be found in Mangasarian [4]. In Mangasarian [4] the classical
multiplier rule is derived from the classical implicit function theorem. The proof
of the classical multiplier rule would be greatly simplified by patterning it on 3
of the present paper, i.e., by using the classical correction function theorem instead
of the classical implicit function theorem.

The proofs of 2 are based on the Brouwer fixed-point theorem.2 The result
of 3 is a particular case of some general necessary conditions in mathematical
programming (Halkin-Neustadt [5], Halkin [6]). Those necessary conditions are
all derived by a specific application of the Brouwer fixed-point theorem. This type
of application of the Brouwer fixed-point theorem to optimization problems was
introduced in Halkin [7].

2. Proofs of the implicit, correction, and inverse function theorems.
THEOREM A. Let X be a metric space, let Y be a finite-dimensional Euclidean

space, let dp be a mappingfrom X x Y into Y, let (, ) X x Y and let B be a linear
mapping of Y onto Y such that

(i) b is continuous in a neighborhood of (, f),
(ii) b admits B as its differential with respect to the second variable at the point

(, ), i.e.,

lim sup Ib(, ,9) + B(y 9) ck(, y)l/rl O.
rt---, 0 + ly-Pl -<rt

Thenfor each neighborhood V of p there exist a neighborhood U of and afunction
from U into V such that dp(x, (x)) (, p)for all x U.

The key use of the Brouwer fixed-point theorem is in the proof of Theorem A. The assumption
offinite-dimensionality of space X in Theorem G, of space Y in Theorems A, B, D and F and of space Z

in Theorems C and E is conditioned by that use of the Brouwer fixed-point theorem.
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ProofofTheorem A. We may assume without loss of generality that 33 b(2,
=0. Foranye >0let

N() {xx X, ,/x, ) _< },
where d(.,. is the metric on X, and let

B {y’y Y, lYl <= }.
Let > 0 be such that Bo c V and such that 4 is continuous over No(2) x B.
Let e e (0, be such that

I(, y)- N(y)I /(21B-11)
whenever y e B, and let 3 e (0, a] be such that

I@(x, y)- (2, Y)I /(2IB-*l)
whenever x e N(2) and y e B. For all x e Na(2), let h be the mapping from
into Y defined by

h(y) y- B- (x, y).

The mapping hx is continuous and maps B into itself since for all y e B=, we have

Ihx(Y)l lY B-(2, Y)I + IB-aO(2, Y)- B-O(x, Y)I /2 + /2
Let O(x) be the fixed point of h given by the Brouwer fixed-point theorem. For
all x e N(2) we have then O(x) e B c V and O(x) B- 4(x, O(x)) O(x), i.e.,

4(x, O(x)) 0.

This concludes the proof of Theorem A.
THEOREM B. Under the assumptions of Theorem A then for any neighborhood

V of p there exist a neighborhood U of and a function Ofrom U into V such that
() ()= ,
(fl) (x, O(x)) (2, ) for all x U, and
(7) is continuous at the point .
Proof of Theorem B. Let , 1, 2,..., be a sequence of neighborhoods of

p such that K +1 for all 1, 2,... and such that for all e > 0 there
is an n < + with V, B. For every 1, 2,... we know by Theorem A that
there exist a neighborhood U of 2 and a function from U into such that
4(x, Oi(x))= 4(2, P) for all x Ui. We may assume without loss of generality
that U+ Ui for all 1, 2, and that for all e > 0 there is an n < + with
U, N(2). Let U U, let (2) p and let O(x) Oi(x) whenever x Ui Ui +
for some i= 1, 2,.... The function satisfies conditions (e), (fl) and (7). This
concludes the proof of Theorem B.

THEOREM C. Let X be a metric space, let Y be a normed linear space, let Z be
a finite-dimensional Euclidean space, let be a mapping from X x Y into Z, let
(, ) X x Y and let B be a continuous linear mapping of Y onto Z such that condi-
tions (i) and (ii) of Theorem A hold. Then the conclusions of Theorems A and B are
still valid.

Proof of Theorem C. Let T be a finite-dimensional linear subspace of Y and
let B- be a linear mapping from Z onto T such that BB-lz z for all z Z.
This is possible since B maps Y onto Z and Z is finite-dimensional. The spaces

This is possible since 4 is continuous and B, is compact.
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T and Z are thus finite-dimensional Euclidean spaces of equal dimension and
may be considered as the same space. We conclude the proof of Theorem C by
applying Theorems A and B to the restriction of the function to the domain
XT.

THEOREM D. Let X be a normed linear space, let Y be a finite-dimensional
Euclidean space, let qb" X Y - Y, let (, ) X Y, let A be a continuous linear
mappingfrom X into Y and let B be a linear mappingfrom Y onto Y such that

(i) q5 is continuous in a neighborhood of (22, .9),
(ii) (A, B) is the differential o.1’4) at the point (22, 9), i.e.,

lim sup 1b(22, .9) + A(x 22)-+- B(y .9) d/)(x, y)l/rl O.
rt--, 0 + Ix-l + ly--:fl __<n

Then there exist a neighborhood U of 22, a mapping p of U into Y such that
I) )= ,
(fl) di)(x, O(x)) c/)(22, p) for all x U, and
(7) admits -B-1A as its differential at 22.
Proof q[ Theorem D. We may assume without loss of generality that 22 0,

.9 0 and b(0, 0) 0. By Theorem B we know that there exist a neighborhood U
of 22 0, a mapping of U into Y such that conditions (00 and (fl) hold, and such
that g, is continuous at 22 0. It remains to prove that this function satisfies
condition (7). For all x e U we have Ax + BO(x) + g(x, O(x)) 0, where g(x, y) is
a function such that

lim sup ]g(x, Y)l/q O.
n--,o / Ixl /lyl_-<.

We have then

6(x) B- lax B- g(x, q(x)) whenever x U.
It remains to prove that

lira sup IB- g(x, P(x))l/q 0.
,-o/ Ixl =<.

This will be done by first proving that p is Lipschitz continuous at 22 0. Let
o- > 0 be such that {x:lxl _-< r) U and Ig(x, Y)I =< (IxI / lyl)/(21/3-1) whenever

Ixl and IYl =< o-. Let (0, a] be such that I,(x)l _-< r whenever Ixl _-< . We then
have

IP(x)l _-< IB-1AI Ixl / IB-II Ig(x, ,(x))l =< (IB-aZl / 1/2)lxl / 1/21,(x)l,

We then have

I(x)l (1 + 21B-1AI)Ixl whenever Ixl ,

lim sup IB- g(x, t(x))l/r/-<_ lim sup IB- g(x, y)l/tl O.
n--,o+ Ixl_-<n r---,o+ Ixl+lyl_<2(1 +IB--AI)r/

This concludes the proof of Theorem D.
THEOREM E. See the statement given in the Introduction.

Proof of Theorem E. From Theorem D one obtains immediately Theorem E
in the same manner as Theorem C was obtained from Theorems A and B.

It is possible to prove Theorem E directly, i.e., without first proving Theorems
A, B and D. The direct proof of Theorem E given below combines, but also
obscures, several aspects of the proofs given above.



234 HUBERT HALKIN

Direct proof of Theorem E. Let T be a finite-dimensional linear subspace of
Y and let B-1 be a linear mapping from Z onto T such that BB-lz z for all
z Z. This is possible since B maps Y onto Z and Z is finite-dimensional. Without
loss of generality we may assume that 2 0, .9 0 and q5(2, .9) qS(0, 0) 0. For
> 0 let

g(t)= sup IAx+By-dp(x,y)l.
Ixl /lyl_-<t

Let e > 0 be such that 4 is continuous on {(x, y)’[x[, [Yl }. Let r/e (0, e) be such
that for all x X with Ixl _-< we have

where

IB-11El(Ixl) and E2(lxl) E(lxl),

E(Ixl) 2g(2(lA] + 1)lxl),

E a(Ixl) E(IxI)+ IAI Ixl + g(Ixl),

g2(Ixl) g(Ixl)/ g(Ixl / ga(Ixt)).

This is possible since g is nonnegative, nondecreasing and such that limt_.o+ g(t)/t
0. Let x X with Ix[ -_< r/, let

Sx {z’z Z, Izl _-< g(Ixl)}

and let hx be a mapping from Sx into Z defined by

hx(z)-- z- (x, B-l(z- (])(.X;, 0))).

For Ixl _--< rt and z Sx we have

Izl + IqS(x, 0)l _-< E(ixl)+ IAI Ixl + g(lxl)=< E(lxl)

and hence (i) the mapping hx is continuous since

Ixl _-< and IB-(z 4(x, 0))1 _-< IB-lEl(IXl) _-< ,
and (ii) the mapping h maps S into S, since

Ihx(z)l <= Iz hx (z ok(x, 0))l / g(Ixl / Izl / 14(x, 0)l)

=< g(Ixl) / g(Ixl / Ex(IxI)) _-< E2(IxI) _-< E(IxI).

From the Brouwer fixed-point theorem we know that there exists a point Zx Sx
such that hx(zx)= z, i.e., such that ck(x,B-l(zx- q(x, 0)))= 0. Let O(x)

B-l(z:, qS(x, 0)). We have

q(x) + B-’Axl <= IB-xl IZx ok(x, O) + Axl
-< IB-ll(Izl / g(lxl)) =< IB-ll(2g(2(lAI + 1)lxl) + g(lxl))

which implies that ff is differentiable at the point 0 and admits -B-1A as its
differential. This concludes the direct proof of Theorem E.

THEOREM F (Correction function theorem).4

THEOREM G (Inverse function theorem).4

4 See the statement given in the Introduction.



IMPLICIT FUNCTIONS AND OPTIMIZATION PROBLEMS 235

Proof of Theorem F. Let T be a finite-dimensional subspace of X such that
A maps T one-to-one onto Y. Let 951 be a mapping from X x T into Y defined by
bl(X, y) ck(x + y) A(x 2’). Let (A1, B) be the differential of qSa at the point
(2,.9- 0). We have A 0 and B A. We apply Theorem D at the point
(2, .9 0) for the function b There thus exist a neighborhood U of 2’, a mapping, of U into Tand a continuous linear mapping C from X into T such that (e)
() 0, (/3) b l(x, (x))
at the point 2 and (6) A + BC 0. By letting O we obtain qS(x + ’(x))
ok(2) + A(x 2,) for all x e U. Moreover we have C 0 (since A 0 and since

B A maps T one-to-one onto Y) and hence lim,_o+ suplx_l__<,[(x)l/r/= 0.
This concludes the proof of Theorem F.

Proof of Theorem G. We are given a finite-dimensional Euclidean space X,
a mapping b from X into X, an element 2’ X and a linear mapping A from X
onto X such that

(i) b is continuous in a neighborhood of 2 and
(ii) A is the differential of

Let 1)1 be a mapping from X x X into X defined by ba(u, v)= u- qS(v). Let
(A, B1) be the differential of 051 at the point fi 05(2), 2. We have A1 I,
the identity mapping, and B -A. We apply Theorem E at the point (fi, b) for
the function qS. There thus exist a neighborhood U of 4(2), a mapping ff of U
into X and a linear mapping C from X into X such that

() 0(fi)= b, i.e.,
(/3) bl(U, O(u)) bl(fi, ) for all u e U, i.e., b(O(y)) y for all y e U,
(7) C is the differential of O at the point fi and
(6) A at- BC O.

We have C A- since A I and B1 -A is onto. By letting " we
conclude the proof of Theorem G.

3. Multiplier rule for optimization problems with equality and inequality
constraints which are not assumed to be continuously differentiable. We are given
a normed linear space X and functions b_,, ..., 4-a, qSo, (])1’ "’", /)m from X
intoR1.Theproblemistofindan2eA =_ {x:xeX, dpi(x) <= 0fori -/, ..-, -1
and dpi(x) 0 for 1,..., m} such that q5o(2) -_< 4o(x) for all x e A. An element
2’ A satisfying this condition will be called optimal. We shall prove the following
result.

MULTIPLIER RULE. If2 is an optimal solution, if )1, "’’, )m are continuous in
a neighborhood of 92, and if c/)_u,..., el) admit differentials a_u,..., a,, at the
point 92, then there exists a nonzero vector 2 (2_ u, ..., 2m) Ru+m+ such that

(i) Zi=_u,...,m)iai 0,
(ii) 2i =< 0for i= -/,..-, 0,

(iii) 2iq5i(92 0for -t, ..., 1.

Proof of the multiplier rule. We may assume without loss of generality that
92 0. We may also assume that the continuous linear functionals a, ..., am are
linearly independent. Indeed, if i= 1,...,initial--0 for some (/, ..., m)4-0,
then by letting 2i 0 for -/,..., 0 and 2i =/i for 1, ..., m we obtain
the required multiplier rule. If the continuous linear functionals a, ..., a are
linearly independent, then by Theorem F there exist a neighborhood U of 92 and
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a mapping from U into X such that

lim sup I(x)l/q O,
,0+ Ixl_-<,

and such that Oi(x + (x))= ai(x) for all x U and for all i= 1,..., m. Let
S {x’x eX, ai(x)< -Oi() for i= -, ..., -1; ao(x)< 0 and ai(x)= 0 for

1, ..., m}. We shall first prove that S is empty, or equivalently that S VI U
is empty. If x* e S VI U, let g(t) tx* + (tx*) for all [0, 1]. Let f(t) dp(gi(t))
for all -/, .., m and all [0, 1]. The functionsf have one-sided derivatives
at 0 and we have fi(0+) ai(x*) for -/,..., m. Since 4i() =< 0 for
i=-,...,-1 there thus exists a (0,1] such that q(g())<0 for

-/, , bo(g(’)) < o(-) and i(g(’0) 0 for 1, ..., m. The existence
of g() contradicts the optimality of . We have thus proved that S is empty. Let
K1 {z (z_,,..., z,,)’for some x eX we have z ai(x) for i= -#, ..., m}
and let K2 {z=(z_u,...,z,,)’z< -() for i= -/,..., -1" Zo <0
and z 0 for 1, ..., m}. Since S is empty the sets K1 and K2 are convex dis-
joint subsets of Ru+"+. Moreover we have 0K K’2, hence there exists a
nonzero vector 2 (2_,, ..., 2,.) such that

(a) 2.z=<0forallzK1,

(b) 2-z => 0 tbr all z K2

From (a) we know that for all x X we have

2a(x) 0,
-/,...,"

which implies (i). From (b) we have immediately (ii) and (iii). This concludes the
proof of the multiplier rule.

Aeknowletgment. thank the referee, G6rard Debreu and Freddy Delbaen
for valuable comments on this paper.
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ON THE APPROXIMATION OF ITO INTEGRALS USING

BAND-LIMITED PROCESSES*

A. V. BALAKRISHNANf

Abstract. Ito integrals involving observed data arise in many applications where we idealize the
observation noise to be white. Since the Wiener process is not realizable, and any observed process
must be smooth, the need arises for approximation in terms of a smooth process such as a band-limited
process which has no frequency components outside a finite band. We show that under a sufficient
condition, such an approximation is possible provided we also add suitable "correction" terms.

1. Introduction. Let W(t; o), - < < +, denote a standard Wiener
process, say one-dimensional for simplicity, and let fl(t) denote the associated
"growing" sigma algebra of sets (that is the sigma algebra generated by
W(s co), s < t). Letf(t; co) be a function jointly measurable in and , measurable
fl(t) for each t, and further with say (for simplicity),

Elf(t;

In many problems of filtering and control, we need to evaluate the Ito integral

(1.1) f(t; co)dW(t; o).

The standard approximation is to use partial sums of the form

(1.2) E f(ti; (o)(W(ti+ 1, (0) W(ti; 00)).

However, in practice, there is a serious difficulty with this procedure because, in
dealing with Ito integrals with respect to observed data, one does not have a true
Wiener process to work with (see the application in 2.1 for more details on this).
What one has rather is a "smooth" approximation to the Wiener process. A most
convenient approximation is the "band-limited" version, by which is meant,
precisely, the process

where

y(t 09) M(t s) dW(s

e2if’M(t) dt (f)

vanishes outside a finite interval, and is thus "limited" to the finite band

(1.3) 0(f) 0, fl > m > 0,
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and

$(f) 1, fl =< m.

For any function g(. in L2(0, 1) we note that J’o g(t)y(t; co) dt converges as m goes
to infinity with probability one and in the L2-mean to

(1.4) | g(.t) dW(t;
d 0

However, the situation is quite different in the case in which g(. is not deterministic.
To take a classic example, consider the Ito integral

(1.5) (W(t;

If we approximate

(1.6) y(s o9) ds y(t co) dt

by the band-limited processes above, the limit as m goes to infinity is

(1.7) (W(1 o) W(0; 0))2/2,
while the to integral itself is equal to

(W(1 o) W(O; o))2/2 1/2.

In other words, (1.6) does not converge to (1.5), but it does if we add the correction
term (-1/2). Wong and Zakai [1] showed that if we consider the Ito integral arising
from a stochastic differential equation in the Ito sense, for example,

dx(t co) m(x(t co)) dt + a(x(t 6o)) dW(t co),

then if we take the sequence of solutions obtained by replacing W(t; o) by a
sequence of smooth processes (such as the band-limited process), we do not have
convergence to the solution of the Ito equation but rather to another equation
obtained by adding a correction term

1/2a(x(t o))a’(x(t oo)) dt,

analagous to (1.8). They do not, however, deal with integrals of the form (1.1)
directly. McShane in his recent work2 [2 has examined many approximations to
(1.1), but they are time-domain approximations (extension of the form (1.2)),
and in fact he cites the need for examining band-limited approximations in view
of the negative results of Wong-Zakai. In this paper we study the problem of
approximating integrals of the form (1.1) by functionals on the band-limited
process, one area of application being in the calculation of likelihood functionals.
We show that under a sufficiency condition on the function f(t; o9), it is possible
to approximate in the desired manner, and indicate what the precise "correction"

We can generalize this condition, of course, so long as (1.4) holds.
See also his Stochastic Equations and Stochastic Models, Holt, Rhinehart and Winston, New York,

to appear 1974.
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terms must be. We begin with a special case first along with a direct application of
it. Our general result is given in 3.

2. The linear ease. We begin first with the notationally simple case, in which
f(t; co) is a linear functional but still exhibits the essential features of the more
general situation. Let W(t; co) denote an n-by-1 standard Wiener process on
(-oo, oo). See [3] for an explicit construction. As therein, we may set W(0; co)
to be zero. Let

(2.1) f(t; o9)= g(t;s)dW(s; co), 0 <= 1,

where L(t;s) is an n x n matrix function, Lebesgue measurable in s, t, and such
that

(2.2) L(t; s)ll 2 as at < ,
In particular, of course, condition (2.2) implies that

E(II f(t; )[[ 2) at L(t; s)l[ 2 as dt < .
0

Our first result is the following theorem.
THORZM 2.1. Let H denote the real Hilbert space of n x square integrable

functions L2((0, 1), E,). With L(t s) as in (2.2), define the linear transformation L
by

U g g(t) L(t s)f(s) ds, O < < 1,

mapping H into itsel Suppose (L + L*) is trace-class (or, nuclear", as it is referred
to in the more recent literature). Then

n L(t; s) dW(s; w), dW(t;

(2.3)
lim L(t; s)y(s; ) ds, y(t; ) dt tr (L + L*),

where

y,,(t o9) M(t s) dW(s co),

M(s) I. e2is df =/.(sin 2rms)/rs,

I. n x n identity matrix,

and the limit may be taken in the L2-mean.
Proof. We begin with a lemma (cf. [4]).

I[BII2 tr (BB*); [A,B] tr (AB*).
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(2.4)

LEMMA. Let el)i(. denote any orthonormal basis offunctions in H. Then

rl [Ldpi, d/)j]i( 1/2 tr (L + L*),

where

’i [i(t), dW(t; o)],

and the convergence is in the L2-mean.
Proof. See [4]. Here we shall indicate the main steps. Let a

Then since we are in a real Hilbert space, 1/2 tr (L + L*) au, and we note that

(2.5) , laii < oo.

For any finite subdivision of [0, 1] with subdivision points

{ti}, to=O, tv= 1,

we note that
p-1

rip [f(ti; co), W(ti+ ;o)) W(ti; co)]
i=0

where Lp is the operator on H defined by

Lpf g; g(t)= L(ti;s)f(s)ds, ti < t< ti+,

and we observe that Lp is trace-class with trace zero. Next we can calculate that,
if we assume for the moment that L(t;s) is continuous in 0 N s N N 1,

E ([LoCi, aij)ij + au
2 Lp Lll _s O as p ,

where H-S stands for the Hilbert-Schmidt norm. Since qp converges in the L2-
mean to q, we obtain (2.4). Next given an arbitrary (that is, noncontinuous) kernel
L(t;s), we can approximate it by continuous kernels L, such that

ILL,- g __s 0,

tr (L, + L) tr (L + L*).

Since (2.4) holds for each L,, we can proceed to take limits on both sides to obtain
the desired result for L.

Remark. In the case that L(t;s) is continuous in s N t, we know that

tr (L + L*) tr L(t; t) dr.

On the other hand, even if f Itr L(t;t)l dt < , it is not necessary that (L + L*)
be trace-class, and (2.4) need not hold. For example, we know that we can, by a
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classical construction due to Carleman, find a continuous function h(t), 0 __< _<_ 1,
such that h(t) has the Fourier series expansion

h(t) ck cos 2rckt,
o

where Icl + . If we now take L(t;s) h(t s), we note that L is not
trace-class, and (2.4) does not hold if we take the orthonormal basis oftrigonometric
functions.

Let us now return to the proof of the theorem. Let us first assume that L(t; s)
is continuous in s <_ t. Then because (L + L*) is trace-class, we know that

tr (L + L*) tr L(t; t) dr.

First we note that by letting (for fixed m)

we have

(2.6)

R(; s) (y,.(; o)y(s; o)*),

R(t; s)=/,(sin 2rtm(t- s))/rt(t- s)= M(t- s).

Define the transformation, mapping H into itself, by

Rf g; g(t) R(t;s)f(s)ds, 0<= <= 1.

Let Oi denote the orthonormalized eigenfunctions of R, and it is an easy matter to
see that R is trace-class and that

where

L(t S)Ym(S 09) ds Ym(t 09) dt aij7,

Let i be defined as before"

. [Ym(t; CO), b,(t)] dt,

aij [LOi,

, [,(t), dW(t;

The bi(. being an orthonormal basis, we have, of course,

[LqSk, b] 1/2 tr (L + L*).

Next let us note that, because of the circumstance (2.6),
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as a ready calculation shows. Next let

rio ., aijij.

Denoting by 2i the eigenvalues corresponding to , we can readily calculate that

E((nm 0)2) ( aii(1 2i)) 2 + 2 (bij)2(1 2i2j)

where bj (aj + aji)/2. If we denote by k(t; s) the kernel corresponding to
(L + L*), we note that

a.(1 2) tr (L + L*) tr k(t; s)R(s; t) ds dt

]f] sin2m(t-s)
tr L(t; t) dt tr L(t; s)

(t s)
ds dr.

Again,

(bij)2)ij 2 2 [1/2(L + L*)Rdpi, ]. [R1/2(L + L*)dpi, dpj]

[1/2(L + L*)R, R(L + L*)]n_s.

(H-S denoting the inner product in the space of H-S operators). But now it is
standard analysis to show that

lim tr L(t s)
sin 2zm(t s)

(t s)
ds dt tr L(t t) dt,

lim [1/2(L + L*)R, R1/2(L + L*)]n_s [1/2(L + L*), (L + L*)3._s b.
Hence (2.3) has been proven for the case where the kernel L(t;s) is continuous.
If L(t; s) is not continuous, then we can use the approximation (as in 5], for
example)

L(u; v) du dr,Lh(t’ s) -4.’t-h
apply the theorem for each sufficiently small h, then as h goes to zero exploit the
fact that

tr (L + L*)= lim tr (Lh + L’),

L, LII -s O.

2.1. An application. We shall now indicate one application of Theorem 2.1,
which was in fact the motivation for the present work. Consider the linear stochastic
differential system

(2.7) x(t; o9) Ax(s; o9) ds + BW(t; o9), 0 _< 1,
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Y(t co) Cx(s co) ds + DW(t co),

x(t’, co) O, =< O, DD* identity matrix, BD* O.

W(t;co) is a standard Wiener process as before, with W(O; co) zero. We know
that the process Y(t; co), 0 =< <_ 1, induces a probability measure on the Banach
space C(O, 1) which is absolutely continuous with respect to the Wiener measure
induced by W(t; co), 0 =< =< 1. Moreover the R-N derivative is given by

(2.9) exp [Cx(s; co), Cx(s; co)] ds 2 [Cx(s; co), dY(s; co)]

where

x(t CO) ((t))(S)-1p(s)C* dY(s;co),

where 4(t) is a fundamental matrix solution of

(t) (A P(t)C*C)dp(t),

and P(t) is the nonnegative definite solution of

P(t) AP(t) + P(t)A* + BB* P(t)C*CP(t), P(O) O.

Unfortunately, what is observed in practice is not (2.8), but a band-limited version,
albeit of large enough bandwidth to allow the use (in theory) of (2.8). The main
question, then, is the approximation of the Ito integral in (2.9). Here we can use
Theorem 2.1 to state the following.

THEOREM 2.2. Let M( be as in Theorem 2.1 and define

y(t; co) M(t s) dY(s; co),

Then the lto integral in (2.9) can be approximated

where

0 < t_<_ 1.

[Cx(s co), dY(s co)] lim CL(t s)y(s co) ds, y(t co dt

j tr CP(t)C* dr,
0

L(t; s) dp(t)(S)- 1P(s)C*.

ProoJ We note, first of all, that we can write

y(t co) Cxm(t co) dl-- z(t co),

Cxm(t co) M(t s)Cx(s co) ds M(t s)Cx(s co) ds,

z(t co) M(t s)D dW(s co).
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We note that using Theorem 2.1 and the fact the operator

Lf g; g(t)= CL(t;s)f(s) ds, 0 <= <__ 1,

is such that (L + L*) is trace-class (see [4] for a proof if necessary), we have

CL(t; )(; co) d, (t; co dt --, CL(t; )D dW(; co), D dW(t;

] tr CP(t)C* dr.
0

T theorem is thus proved if can sho that

CL(t; )(s; ) d, (t; dt

CL(t; s)Cx(s; o), D dW(t; m)

and that

(2.12)

CL(t s)Cxm(s ), Cx(t ) dt

CL(t; s)Cx(s; co) ds, Cx(t; co dt.

Because random variables are involved, we shall proceed to prove this in some
detail. Let

Then

@(f co) e2ifSx(s co) ds

CXm(t co) eZif’l(f co) dr.

Since x(t; co) is continuous in t, omitting a set of measure zero, we note that

Cx(t; o) Cx(t; o)ll 2 dt <= (f o)ll 2 df,
0 fl>m

and since

it follows that

CXm(t; co) Cx(t; 0)112 at <= (t; )112 df,
0 fl>m

E(II Cxm(t co) Cx(t )ll 2) at o
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This is clearly enough to establish (2.12). To handle (2.11), it is convenient first
to integrate by parts. Thus,

CL(t s)Cx(s co), dW(t co)

ok(s)- 1P(s)C*Cx(s; co) ds, qb(t)*C*D dW(t; co)

ck(s)-IP(s)C*Cx(s; co)ds, c(s)*C*D dW(s; o9)

qb(t)-P(t)C*Cx(t; co), (s)*C*D dW(s; co)

We perform a similar integration by parts on the left-hand member of (2.11),
and establish the necessary convergence term by term. For 0 =< =< 1, let

r/(t; co) dp(d)*C*z(s co) ds dp(s)*C*D dW(s co)

(hm(s) h(s))D dW(s;co),

where

Then

(s)*C*, o <= s <__ t,
h(s)

0 otherwise,

hm(s M(s a)h(a) do.

E(llr/(t o9)112) libra(s) h(s)ll 2 ds,

and the integral on the right goes to zero as m goes to infinity. With this additional
estimate, we can see that (2.11) follows.

3. Generalization. Let us now go on to consider the general case. In order to
avoid notational complication, we shall restrict ourselves to the case, in which
W(t; co), the standard Wiener process, is one-dimensional. The extension to the
multidimensional case can be made using either polynomials as in [6] or tensor-
product Hilbert spaces as in [7].

Suppose, then, we are given an Ito integral of the form f(t; co)dW(t; co),
where E(lf(t;co)12)dt < m. Note that r/(co)=f(t;co)dW(t;co) defines a
measurable, square integrable functional on the Wiener process W(t; co), 0 < < 1,
and as Ito has shown in [8], it can be approximated by sums of the form

Kt,(t,... t,)dW(t;co).., dW(t,; co),
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where each term is an Ito multiple integral. For example, the "linear" case of
2,

L(t s) dW(s; co) dW(t co),

can be expressed using the convention that L(t;s) 0 for s > t

fjf/L(t;s)+L(s;t)dW(s.co)dW(t.co)
Hence our main result can be stated as follows.

TIqOM 3.1. Let K(tl, ..., tp) be a continuous symmetric (real-valued)
function on 0 1, 1,..., p. For each integer v, 2v p, and each fixed
function h(t, ..., tp_2 continuous in 0 1, i= 1,..., p- 2v, dne the
operator L by

Lf g;

g(t, ..., t) K(t, ..., t, s, ..., s,
o

h(r+ rp) dr+ drpf(s s) ds ds
mapping L((O, 1)) into itself. Suppose L is trace-class for each v and each arbitrary
chosen h(...). Then the Ito integral

K(t,..., tp)dW(t;).., dW(t;
o

(3.1) =lim P

dx dvY(t2 + ) y(tp; ) dt2v + dtp,
where

/’ (sin 2r(t s))
y(t co) =)-o (t-s)

dW(s; co),

the limit being taken in the L2-norm and [c] denotes the largest integer <= c.

Proof. To clarify the notation in (3,1), let us look at (3.1) for the case iv 2.
We have

f/ ff K(tl, t2) dW(t o9) dW(t2 co)

lim K(t 1, t2)Y(t c)Y(t2 co) dt dt2 K(s, s) ds.

But this is a special case of Theorem 2.1. For, the Ito double integral is given by the
sum of the integrated integrals,

K(t s) dW(s co) dW(t co) + K(s t) dW(s co) dW(t co),
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which, since the kernel is symmetric, is equal to

2 K(t; s) dW(s; co) dW(t; co),

and this in turn, by Theorem 2.1,

lim 2 K(t; s)y(s; co) ds y(t; co) dt K(t; t) dt

lim K(; s)y(s; co)y(t; co) ds dt K(t; t) dr.

Illustrating the case when p is odd, let us calculate (3.1) for p 3"

ff f J0 K(/?I’ t2’ g3)MW(/I, 09)MW(152 ;co)MW(153

lim K(t, , t3)y(t co)y(t co)y(t co) dt dt dt

3 K(s; s; t) ds y(t; co)

The main tool we shall use in the proof is the decomposition formula for
multiple Ito integrals. Let qSi(. denote an orthonormal basis in L2(0, 1). Let us use
the notation I,(K(tl, ..., t,))for the associated lto multiple integral. Then we have,
using the Ito decomposition formula (cf. [8]),

Ip(dpi,(tx)i_(t2) @ip(tp)) Iv_ l(qSi,(tx) dpip_ ,(tp_ 1))ip(co)
(3.2) p-

2 Ip-2(dfli(tl) )i-,(tl-l)dfli+
k=l

cj(t)dW(t’@. Next let us note that qS(t).., qS(t)is anwhere j(og) J’o
orthonormal basis for L2(0, 1)), v =< p, and in particular,

(3.3) K(tl, ..., tp) ... aiiz...ipdPi(tl).., dpip(tp),
i ip

the series converging in L2((0, 1)P), where the Fourier coefficients are also symmetric
in the variables. Because of the trace-class condition on the operators L, it is
readily seen that

(3.4) 2 lai,iaiiz...i,,i,,iz,,+ ,...ipl <
i iv

for each fixed set of indices i2v+l, ip, and every v, 2r =< p. Because of (3.3),
we have that the Ito integral in (3.1) is the limit in the L/-norm of the series

(3.5) "" Z aiti2i3...iplp(d/)i,(tl)’" dPip(tp))"
i ip
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This series we shall now show is expressible as

tp/21 p I(- 1)v
o2(p-2v)’2Vv ’2’’’2 2 ""Z 1...ip

il iv i2
(3.6) ,2,,+,(c) ,,(09)....
We can prove this by induction using (3.2). (The coefficients are obtained by the
same combinatorial argument as in Wiener [93). Thus, substituting in (3.5) from
(3.2), and assuming the result true for integers less than p, we have

Z"" Z ai,...,,Ip(i,(tl).., cbi,(tp))
ip ip

[(p- 1)/2] (p 1)!(-- 1)E E’’" E’’" E ai’..i,,,,,i2, .ip
o (p- 1-2v)!2v 11 lp

2v+ 1((1))’’" p(OO)
[(p-2)/2] (p 2)!(--1)

-(p-1)
2 ,......

o (p-2-2v)! v.i,

a,,,,,...+ ..._2+ (o)

And combining the two sums, taking the v sum in the first term with the (v 1)
sum in the second term for v => 1, and noting that

(p- 1)! (p- 1)(p- 2)! p!
+

(p 1 2v)!2v! (p 2 2(v 1))!2 l(v 1)! (p 2v)!2v!

we have (3.6). Since we have already proved the result for p 2, the induction is
complete. Next for each m, let b be the orthonormalized eigenfunctions of the
operator R defined by

Rf g; g(t) (sin 2r(t s))/rc(t s) ds

mapping L2(0, 1) into itself, and letting

(o9) cki(t)y(t co) dr,

we note that

K(tl, tl, "", tv, tv, t2v+ 1, tp)

q5i2,,+ (t2v+ 1)"" ip(tp) dtl dt2v+

E’’’ Eailil...i,,i,,iz,+l...ip,
ix iv

by virtue of the trace-class assumption of L. Hence we can readily see that for
fixed m, the right-hand side of (3.1) is given by"

[p/2] p !(__ 1)v
(3.7) o (p_ 2v)!2v,2...2 + ""2ai,i,...iJ,+,...ii:+,(9)’"i:(c) "’’,

iv i2 ip



APPROXIMATION OF ITO INTEGRALS 249

which is the same as (3.6) except for replacing i((,D) by ’(o). It only remains to
show that as m goes to infinity, (3.7) converges to (3.6), to conclude the proof of
(3.1). Here we can again exploit the fact that E(’’(co)j(co) [Rdpi, bj]. The proof
is similar to the one we used in Theorem 2.1, only more tedious. Let us first note
that the difference of the v 0 sums in (3.6) and (3.7) is

il

and we can readily calculate that the expected value of the square of this is given by

P! Z"" E (ai,...ip)2(1 i,/i2"’" /ip)

(3.s) + E
i2

2

Z’’" 2 ailil...ivivi).v+ 1...ip’il/i2 ’iv /iz 1"" /ip
i iv

[pl p!

i2
aili...ivivi2,+ l...ip) 2

i iv

We can now proceed by induction. If we assume the result to be true for
integers less than p, then to prove it for p we only need to show that (3.8) goes to
zero. But this is readily done in a manner which is analogous to the case p 2.
Thus the first term in (3.8) can be expressed

(3.9) p !([K, K] [RpKp, K]),

where we denote by Rv the operator

f]f/sin2nm(tSl)lRvf=g; g(t,...,t) (ta-si
sin 2nm(t sv)

f(sx sv) ds ds

mapping L2((0, 1)) into itself. By Kp we mean the function K(tl,..., tp) as an
element of L2((0 1)P). Clearly (3.9) goes to zero as m goes to infinity. Next let us
look at the second term. Note that we can write

2 E ai,i,...ii,,iz,,+ ,...ip/i, /i tr RL,
il

where L is defined by

Lvf g; g(tl t)

K(tl, "’’, tv, $1, "’’, Sv, O"2v + 1’ "’’’ O’p)(/)i2v+ 1(0"2v+ 1)

)ip(lYp) do-2v + d6pf(sl, s) dsl ds
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mapping L2((0, 1)v) into itself. And hence

i2v i iv

01 fo sin 2zm(tl sl) sin 2zm(tv sv)

d’2v+ day,

which, as m goes to infinity, clearly goes to

K(tl, ..., tv, tl, tv, 0"2v + 1, av)dtl dtv

da2+ day

2
i2v ip il iv

Hence (3.8) goes to zero, thus concluding the proof of the theorem.
Finally let us remove the condition of continuity on the kernel.
COROLLARY. Suppose K(tl, ..., v) is symmetric and G L2((0 1)P). Suppose

further that the operator L defined by

Lf=g; g(tl,’",t) K(tl,...,tv,sl,.--,sv, a+l,...,ap)
0

d/ dap.f(s, s)ds ds

mapping L2[(0, 1)] into itself is trace-class a.e., in the variables ai, 2v + <= <= p,
and

(tr Lv(a2v + 1,’", p))2 da2v+ day <

for each v, 2v <= p. Then the Ito integral

K(tl, ..., tv) dW(tl, o)... dW(tv, o)
0

(3.10) lim P tr L,(t2, + 1,"" tp)y(t2,+ 1,09)
=o (P 2v)!2Vv!

y(tp, co) dt2v+l dtp.

Proof. For each h, the kernel
+h ftp+hKh(tl, tp) (1/(2h)p) K(sl, Sp) dSl, dsv

It -h ltp -h



APPROXIMATION OF ITO INTEGRALS 251

satisfies the conditions of the theorem, and hence we can obtain (3.1) for Kh(" ").
Because of the trace-class conditions irnposed on K(...), we may proceed to take
limits on both sides and obtain (3.10)as required.
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ON LOCAL AND GLOBAL CONTROLLABILITY*

H. HERMES,"

Abstract. Computable sufficient conditions to determine local controllability along a reference
trajectory are developed both by considering controllability of the linear variational equation and by
direct use of differential geometric techniques with special types of control perturbations. The
equivalence of the results obtained by the two methods is shown.

A collection, 6e, of smooth vector fields on a manifold M is said to be controllable on M if every
pair of points of M can be connected by a solution of . If the set of points attainable by solutions
of from every point x M has nonempty interior, 5e is said to have the accessibility property.
Jurdjevic has posed the problem of whether every family 5 of analytic vector fields on a connect6d
analytic manifold M which has the accessibility property is controllable on M. We give a counter-

example on the two-torus. It is next shown that every commuting two-field on the two-torus is con-
trollable. We also show that any n-manifold admits a collection 5e of 2n smooth (C) vector fields
with the accessibility property, but such that 5e is not controllable on M.

1. Introduction. Let M be a smooth (Coo) n-dimensional manifold with
tangent space at x denoted TMx. For each in an index set A, let X denote a
smooth tangent vector field on M’let 5 {X. A} and 5 {X(x) TMx"

A}. A solution of the collection of vector fields 5e is an absolutely continuous
map qg"[0,/]--. M,//> 0, such that dog(t)/dt5,,)almost everywhere. For
simplicity of exposition, we shall assume that solutions exist for all >__ 0. Note
that we do not allow < 0.

We begin with the problem of local controllability along a reference tra-
jectory. Specifically, let 09(." p0) denote a solution of 5e with 0(0; pO)= pc M.
The system 5e is locally controllable along 99 at time t2 >= 0 if all points in some
n-dimensional neighborhood of qg(t2" p) can be attained at time 2 by solutions
of 5e initiating from pO. The computable sufficient conditions which we obtain
for to be locally controllable along a reference trajectory are local in nature,
hence there is no loss of generality in assuming M ". Here we shall consider
the collection of differential equations associated with 5 to have one of the
following control representations (X, Y, f are C functions with ranges in
,t denotes dx/dt)"

(1.1) . X(x) + Y(x)u, -1 < u <= 1,

(1.2) 5c X(x) + YJ(x)uj, -1 <= uj <=
j=l

(1.3) 5c f(x, u), u 6 U s, interior U 4: .
We shall give sufficient conditions for the system considered to be locally con-
trollable at some time 2 along a reference trajectory q9 generated by a control u
which is piecewise constant and takes values in the interior of its set of admissible
values. Many sufficient conditions can be found throughout the literature of the

* Received by the editors March 22, 1973, and in revised form June 30, 1973. This research was
supported by the National Science Foundation under Grant GP27957.

" Department of Mathematics, University of Colorado, Boulder, Colorado 80302.
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last several years. One of the goals of this section will be to unify and show the
relations among the various approaches taken on this problem.

For the question of global controllability, we follow Sussmann and Jurdjevic
1], and define: is controllable on M if every pair of points of M can be joined
by a solution of 5e; 5e has the accessibility property if the set of points attainable
from each point x M, by solutions of 5e, has nonempty interior. In [1], com-
putable criteria are given to determine when a collection of analytic vector fields
on an analytic manifold M has the accessibility property. Jurdjevic [2] shows that
if 5e is a collection of right-invariant, analytic vector fields, with the accessibility
property, on a compact, connected Lie group M, then 5 is controllable. The
problem is posed, in 2], as to whether the accessibility property always implies

is controllable on a compact, connected manifold M. We give a counterexample
with M the two-torus, T2. On the other hand, we show that every pair of linearly
independent, commuting (under the Lie product) vector fields on T2 is controllable.
We next show that any n-manifold M carries a collection, 5, of 2n tangent vector
fields X1, X2" such that 5 has the accessibility property (indeed we even
have dim span {Xl(x), xZ"(x)} n for all x M), yet 5e is not controllable
on M.

2. Local controllability along a reference trajectory. Let qg(t; pO) denote a
reference trajectory for one of the systems (1.1)-(1.3). If t2 > tl, the map qg(t2,. ),
considered as a map of initial data, carries a neighborhood of qg(tl ;p) homeo-

morphically onto a neighborhood of q(t2;p). Thus if a system is locally con-
trollable along 0 at time tl, this is also true for any t2 ->_

2.1. Controllability of the variational equation. Let u-= 0 generate the
reference trajectory q9 of equation (1.1), and let X,(x) denote the n n Jacobian
matrix of partial derivatives of the vector function X. The linear variational
equation along q is

(2.1) (t) Xx(qg(t))z(t) + Y(qg(t))u(t).

If this equation is controllable at some time tl > 0 (see [3, 19]), it easily follows
from the implicit function theorem that the system (1.1) is locally controllable
along q9 at time tl. For notational simplicity, let A(t) Xx(qg(t)) and B(t) Y(qg(t)).
Then A and B are smooth matrix-valued functions and [3, Thin. 19.3] can be

applied as follows. Let F d/dt A(t). If there exists a positive integer k and a

t >__ 0 such that

rank IB(tl), (FB)(tl), ..., (FkB)(tl)] n,

then the linear system (2.1) is controllable at t.
For the special form of A(t), B(t) as above, we compute

(2.2) (FB)(tl) Y(q)(t)) Xx(q)(t))Y(q)(t)) -IX, Y](q(tl)),
t-’tl

where X, Y] denotes the Lie bracket product. Define the operator ad as follows"
(ado X, Y)(p) Y(p), (ad X, Y)(pl) IX, Y](p) and inductively (ad X, Y)(p)

IX, (ad- X, r)](pl). Then, inductively from (2.2), F(FB)(t) (ad2 X, Y)(q)(t)),
etc., and Theorem 19.3 of [3] applied to equation (2.1) yields the following.
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PROPOSITION 1. A sufficient condition that the variational equation (2.1) be
controllable at time 2 > 0 is that there exist a (0, tEl and integer k such that

(2.3) dim span Y(q0(tl)), (ad X, Y)(q(tl)),’’’, (ad X, Y)(tp(tl))} n.

It follows that (2.3) provides a sufficient condition for system (1.1) to be locally
controllable along the solution p generated by u 0, at time t2 > 0.

Remark 1. Theorems 19.2 and 19.4 of [3] give necessary and sufficient con-
ditions for controllability of the variational equation (2.1). These do not, how-
ever, yield necessary conditions for controllability of the system (1.1) along
Indeed the system (1.1) may be locally controllable along q at t, yet the variational
equation (2.1) is not controllable at tl. For an example of this, see [4, Ex. 2.2].

2.2. Differential geometric methods of Hermann and Krener. For notational
convenience, we shall use either (t; p) or St(p) to denote the solution, at time t,
of 2 X(x) + Y(x), x(0) p, and either q(t; p) or Tt(p) to denote the solution
ofS X(x),x(O) p. Then ff corresponds to u in (1.1) and p to u 0. Again,
p will be the reference trajectory.

For the moment, assume that we may proceed either forwards or backwards
in time along a trajectory. This will be corrected later. Let > 0 and p(t pO) pl.
For real a, r in a neighborhood of zero, define

q(r ) TSrTtl --r(po).

Then q(0; a) _= p for all a, and

(2.4) --(0" a) D0(a" (-a, p))r((o(-a’ p’)),

where D denotes the differential. Geometrically, this equation tells how the
variational equation along q, which has fundamental solution Dcp, carries the
vector field Y forward to time which is a 0. Indeed, consider the situation
on a manifold M with tangent space at q denoted TM, rather than on I". Then

Dtp(a q) TMq --* TMo(;q),
thus

Now

De(a, qo(-o-, p)): TMt_;,, TMp,.

IX, y](pl) lim
t-o -f[Oq)(-t, (p(t; p ))Y(q(t; p )) g(pl)],

hence

d
d--[Dq(a q(- a p’)) Y(q(-a P’))]=o -IX, Y](p’).

In the terminology of differential geometry, IX, Y](pl) is called the Lie derivative
of Y with respect to X at p.

Another interpretation of the Lie derivative is as follows. Pick a basis for
TMp,. Then Dq)(-a: p)carries this basis into a basis for
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Express Y((-a;pl)) in terms of this latter basis, and the Lie derivative of
Y with respect to X at go(-a; p1) is just the derivative (with respect to a) of the
components of Y. But for any basis in TMI, Dq)(r;go(-a;pl))y(rp(-a;pl))
merely gives the components of Y at qg(-a;p 1) in terms of the induced basis for
TMo(_...pl). Thus, again (d/da)Dq)(a; rp(-a pl))Y(qg(-a pl)) is the Lie derivative
of Y with respect to X. Also, inductively,

d2

ta: Dq,(,r. ql-’ pl))(q_,,, pl))l__ IX, IX, r33(p1).

In general, we obtain the Taylor series expansion

Dgo(o- rp(- a" pl)) Y(rp(- o-" pl))

(2.5) y(pl) a[X, y](pl) + (rz/2)(ad2 X, y)(pl)

(exp a ad X)) y(pl).

In forming the derivative of q with respect to r in (2.4), we assumed r < 0
was admissible. Since r represents time along a trajectory, this presents a difficulty.
Following ideas of Krener [5], we use the fact that both X

___
Y are admissible

vector fields. Let Q’(p) denote a solution, at time t, of 97 X(x) Y(x), x(O) p
and define q-(r; a) TQrT’l--r(p). A simple calculation shows

lim
cqq

(r" a) lim
(q-

o o-(r’)’
r>O r>O

hence we may consider q, with r >_ 0, as having a derivative with respect to r at
r 0 as given by (2.4).

Suppose, for some positive integer k,

(2.6) rank {y(pl), (ad X, y)(pl), ..., (ad X, y)(pl)} n.

For any set a, ..., ak of real numbers in a neighborhood of zero, define

q(rl, rk’al, ok) TkSk TISIT’x-z(’+’)(p).
From (2.4) and (2.5) it easily follows that

c3q
(2.7) (0, ..., O; a, ..., ak) Y(p) aj(ad X, y)(pl) _+_

Now consider al, "’", ak as fixed parameters and q [k [,. We have q(0, ..., 0;
a, ..., ak) pl, while from (2.6) and (2.7) one can easily conclude that in any
neighborhood of zero, there are values a l, "., ak such that Dq(O,..., 0;
a, ..., ak) has rank n. For such a choice of the values a, q maps a neighborhood
of zero in Rk onto a neighborhood of pl in JR".

Remark 2. The conditions (2.3) and (2.6) are the same. Both provide only a
sufficient condition for controllability of the linear variational equation.

We may now use either the methods of 2.1, or of this section, to immediately
obtain the following local controllability results.

PROPOSITION 2. Let q) be a solution of (1.1) corresponding to control u O.
A sufficient condition that the system (1.1) is locally controllable along go at time
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2 > 0 is that there exist a (0, t2] and integer k such that

rank Y(tp(tl)), (ad X, Y)(q)(tl)),"., (ad X, Y)(tp(tl))} n.

PROPOSITION 3. Let q be a solution of system (1.2) corresponding to uj 0 for
all j. A sufficient condition that system (1.2) be controllable along q9 at time 2 > 0
is that there exist integers k l, ..., ks and a (0, tEl such that

rank {yl(pl), ..., rs(pl), (ad X, y1)(pl), ..., (ad X,

.., (adk’ X, y1)(p), ..., (adks X, rs)(pl)} n,

where pl qg(tl).
PROPOSITION 4. Let u* be an admissible control for system (1.3) which generates

a reference trajectory qg. A sufficient condition that system (1.3) is controllable along
tp at time 2 > 0 is that there exist a tl (0, tEl such that u*(tx) interior U, u* is
constant in a neighborhood of and if p q(tl),

rank yl(pl), ..., ys(p), (ad X, y1)(pl), ..., (adks X, ys)(pl)} n

for some integers kl,’", ks, where X(x) f(x, u*(tl)) and YJ(x)
u*(t)).

3. Global controllability. Let M be a smooth, n-dimensional manifold. For
X, Y any two C vector fields on M, we let IX, Y] denote their Lie bracket product.
Let V(M) denote the set of all C vector fields on M, which we consider as a Lie
algebra over the reals with product the Lie product. If is a collection of vector
fields on M, the fact that we required a solution of to be defined only for __> 0
again creates difficulties. These are eliminated by assuming is symmetric, i.e.,
X implies -X , for then we can effectively reverse time by reversing the
vector field.

For the moment, consider to be C and symmetric. Let () denote the
smallest subalgebra of the Lie algebra I/(M) containing ; i.e., -() consists of
the linear span of all elements of together with all products of elements of ,
and products of products, etc. We can now state a case of Chow’s theorem, as
follows.

THEOREM (Chow [6]). Let 5e be a symmetric set of C vector fields on M. If
Jbr each x M, dim -(5’), n, then 5 has the accessibility property on M.

For symmetric 5e, this theorem has as an immediate consequence a relation
between St having the accessibility property and 5e being controllable.

COROLLARY. Suppose M is connected, while is a symmetric set of C vector

fields with dim -(5), n for all x M. Then S/ is controllable on M.
The verification of this is easy. Indeed, join any two points pl, p2 M by an

arc in M. For each point p on this arc, there is a neighborhood of points accessible
from p, and this neighborhood contains p as an interior point. The arc is compact,
hence we can take a finite subcover from the above neighborhoods. Call these
N(xl), N(xk), and assume the labeling taken so pl N(xl), N(xi) f-) N(xi+ 1)
4: and p2 N(xk). Then there is a trajectory of 5t which joins pl to a point
ql N(x 1) 0 N(x2), a trajectory joining ql to x2 in N(x2), a trajectory joining x2

to q2 N(x2) [-’) N(x3), etc., until we get to p2. For details, see [7, pp. 664-665],
or [2, Prop. 5] for a different argument.
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If 50 is not symmetric, matters are not so easy. Sussmann and Jurdjevic
obtain the following result in [1].

THEOREM (Sussmann-Jurdjevic). Let 50 be a set of analytic vectorfields on the
analytic manijbld M. If dim -(50)x n :Jbr all x M, then 50 has the accessibility
property.

Now, however, it is in general not true that x is an interior point of the
neighborhood of points attainable from x by solutions of 50. Thus the relation
between 0 being controllable and having the accessibility property is no longer
as easy as in the corollary following Chow’s theorem. Some known results are as
follows. Let M " and 5x {Ax + biu, 1, 2,..., k, - < u < } where
A is a given real n n matrix and b l, bk [" are given. Then if 50 has the
accessibility property, 50 is controllable. Here one can easily verify that dim -(50)x
dim(50)o dimspan {b 1, ..., bk, Ab, ..., Abk, ..., A"-b, ..., A"-bk}.

The result now follows from standard controllability theory of linear control
systems. Jurdjevic [2] shows that if 5 is a set of right-invariant analytic vector
fields with the accessibility property on a compact, connected Lie group M,
then 5 is controllable on M. This motivates the question, asked by Jurdjevic,
as to whether the accessibility property for an analytic set of vector fields, 5, on
a compact, connected, analytic manifold M implies 5 is controllable on M. We
shall next give an example to show this is not true.

DEFINITION. A tangent k-field on a manifold M is a set of k tangent vector fields
XI, X which are linearly independent at each point of M.

Remark 3. Clearly, a k-field on a k-dimensional manifold has the accessibility
property. For results on when an n-manifold admits a k-field, see [8].

EXAMPLE 3.1. An analytic two-field on the torus, T2, which is not controllable.
Let 0, q designate coordinates for 2, and define

X(O, q)= (1/2 + (1/2)cos 0)c3/c30 + (1/2 -(1/2)cos 0)O/c3q

X2(O, q)= (-1/2 + (1/2)cos 0)c3/c30 + (1/2 + (1/2)cos

These functions are 2z-periodic in 0 and q and analytic. We consider Tz as the
plane with points whose coordinates differ by integer multiples of 2 identified.
Letting Z denote the integer multiples of 2z, the covering space map from
2 T2 2/Z Z induces a Riemannian metric on T2. We now consider X
and Xz as (induced) vector fields on T2. Relative to the inner product derived from
this metric, we see X and X2 are always orthogonal and neither is zero. Thus
5e {X,Xz} is a two-field on T2. (Note for later use, that [X1, X2](O,q)

((1/2) sin 0, (1/2) sin 0 cos 0), hence 5e is not a commuting two-field.) We see that
for 0 r, X has a periodic solution O(t) zr, q(t) t. Denote this solution by
1. For 0 0, X2 has a periodic solution ’2. Also any solution which begins in
the "half-torus" (cylinder) 0 <= 0 _< re, 0 _<_ q =< 2re, remains there, i.e., this is an
invariant set for the flow of 50, hence 5 is not controllable on T2. (See Fig. 1.)

Remark. The referee has informed me that C. Lobry has also given an ex-
ample oftwo analytic vector fields on the two-sphere which satisfy the accessibility
property but do not yield a controllable system. His paper, Controllability ofnon-
linear systems on compact manifolds, appears in this Journal, 12 (1974), pp. 1-4.

DEFINITION. A k-field {Xa, X} on M is called a commuting k-field if
IX, XJ] 0 for all =< i, j _< k. We say a manifold M has rank k if k is the largest
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FG.

integer such that there exists a commuting k-field on M.
For example (see [8]), rank T2 2, while Lima [9] has shown that the rank

of the three-sphere, S3, is one.
THEOREM 3.1. Let 5 {X 1, X2} be a commuting two-field on the two-torus

T2. Then is controllable on T2.
Proof. (We utilize many ideas from the proof of [9, Thm. 1].) Since X, X2

are pointwise linearly independent and commute, they determine an action q) of
the Lie group R2 on T2. Specifically, let , r/" [R x T2 T2 denote, respectively,
the flows generated by X and X2. Then for any r=(t,s)eN2 and x eT2,
or(x) tr/s(x) r/s,(x). Since for controllability we restrict the time parameter
to values >= 0, what we wish to show is that the image {qr(x)’r (t, s), t, s >- 0}
is all of T 2 for any x e T2. We shall call this the positive orbit of 0 through x.

Consider, first, the positive semiorbit ,(x), _>_ 0. If this is dense in T2, the
linear independent of X and X2 immediately yields the desired result, thus we
assume the positive semiorbits of X and X2 are not dense in 7’2. By the theorem
of A. Schwartz for smooth (C2 at least) vector fields on two-manifolds, since X
does not vanish, ,(x) must have a minimal set homeomorphic to S for some

Xo T 2, i.e., there exists an Xo e T2 such that the -orbit through xo is periodic
with least period to > 0.

Now let K be the closure of the positive orbit of q through Xo. Then K is
compact, nonempty, q positively invariant, hence contains a positive minimal set
M for q. The positive q-orbit of Xo e M is dense in K, since K is its closure, hence
is dense in M. Thus if x is any point in M, there exists a sequence r, (t,, s,),
t, , s, --, oe, such that q,.(Xo) x. Then to(X) lim to q0.(Xo) lim q%
,o(Xo)= lira q.(Xo)= x, where the second equality uses the commutivity of, r/. This shows that every -orbit through a point of M is periodic of period to.

Pick any xl e M, and let ’1 {(t, xl)’0 _-< N to} be the closed orbit of X
through xl. Since X 4: 0, 71 does not bound a disc, hence (. ,xl) represents a
nontrivial element of/r(T2). Since X and X2 are linearly independent, the full
orbit of q) through x is either a cylinder (the case in which the isotropy subgroup
is Z, the integers), or the full orbit is T2 (the case in which the isotropy subgroup
is Z x Z). In the latter case, it clearly will also be true that the positive orbit of
q) through x will be T. To complete the proof, it suffices to rule out the case
that the full orbit of q through x is a cylinder. We shall show that the q-orbit
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through some point of M is homeomorphic to S but that this orbit is not in the
homotopy class of (., x 1). Then by the above argument, every q-orbit through a
point of M is periodic (with the same period) and the isotropy subgroup of (p is
Z Z, as desired.

Let x 71 and q+(R)(x) be the co-limit set of the q-flow through x. Let
L (q + oo(x)) be the union of all -orbits through points of r/+ oo(x). Since each
such -orbit has period to, L L0,,ol(r/+ oo(x)). Now r/+ (x) is compact, so L is
compact. Since L is also nonempty and positively o-invariant, L M. In par-
ticular, x L, thus x t(Y) for some [0, to] and y r/+ (R)(x), so y _,(x),
i.e., y 7 f3 rt+ o(x). Since we assumed that neither X or X2 generated a dense
flow, and neither is zero, Schwartz’s theorem again gives that r/+ oo(x) is a periodic
orbit of X2, which we denote by ?’2 {r/(s, y)"0 __< s __< So}, So being the minimum
period. We know that y e (1 CI 2) - . By linear independence of X and X2,
)’2 is not identical with 71, nor does it bound a disc. If r/(., y) is homotopic to
(’, x 1), the orbits 7 and 72 must have at least one more intersection, say at a
point y where the orientations of the two-field {X(y),X2(y)} and {XX(yl),
X2(yl)} must be reversed. This would contradict the linear independence of the
vector fields on T2, hence r/(., y), (. ,xl) must not be homotopic. They then
represent generators ofZ x Z, and the full orbit of q is diffeomorphic to N2/Z x Z
or T2. The same must be true of the positive orbit of q, and the proof is complete.

In general, a manifold M cannot be expected to admit a k-field. Indeed, for
k-- l, a 1-field is a nonsingular vector field, and a necessary (and sufficient)
condition for M to admit such is that the Euler characteristic )(M) 0. It is a
well-known result of Whitney [10] that any n-dimensional manifold can be im-
bedded in [2,. Let f’M 2, be such an imbedding. Then relative to a choice
of coordinates for N2,, f has the form (f 1, ..., fZn), with each fi real-valued. Let
X be the gradient field off. Rank Df(x) n for all x e M sincef is an imbedding,
hence dim span {Xl(x), ..., XZ"(x)} n for all x e m. Thus we have the following.

PROPOSITION 5. Any smooth n-manijbld M admits a collection 5 {X 1,
.., X2"} of 2n smooth vector fields such that dim span {Xl(x), X2"(x)} n

for all x M.
Remark 4. All that was required for the above construction was that rank

Df(x) n for all x e M; thus it would have sufficed to have f an immersion.
Whitney [11] has shown that every smooth n-manifold can be immersed in [2,-1,
for n > 1. One may easily sharpen Proposition 5 by replacing 2n with (2n 1).
(The case n provides no difficulty.) An interesting question which arises is"
can one replace 2n by (n + 1) in Proposition 5?

A collection of vector fields, as in Proposition 5, will always possess the
accessibility property. We shall next show (geometrically) how to locally modify
any such collection so that

(a) the modified collection 5’ still satisfies the condition dim span 9’. n
for all x e M, but 5’ is not controllable on M.

One may conclude, from this, that if 5 has the accessibility property, in
order to show 5 is controllable on M, one must impose additional conditions on
the vector fields of 5 (such as right-invariant with M a connected Lie group as
done by Jurdjevic, or commuting as in Theorem 3.1 above). Controllability of 5e
on M cannot be accomplished by any conditions on the topology of M alone.
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We next outline, geometrically, the construction to obtain the modified
collection 5’ as in (a) above. To do this analytically, with all details, would not
serve much purpose, in this author’s opinion.

Let 5 {X1,..., X2"} be as in Proposition 5. Pick xe M. Our modi-
fication will be local, hence we assume we work in " rather than M. By a slight
perturbation of the vector fields of St, if necessary, we may assume that

(i) every collection {Xi’, Xi’} of n distinct elements of 5 satisfies
dim span {xi’(x), xi"(x)} n. This also insures XJ(x) :/: 0 for
j 1, .-., 2n, hence we further assume that

(ii) each XJ(x) has unit length, and
(iii) for some e > 0, all of the vector fields of 5e are constant in a 4e-neighbor-

hood N of x.
This allows us to picture each X as producing a parallel flow in N. We shall

modify each X to a vector field yi in N so that X and Y match on the boundary,
but each yi has exactly two critical points in N. Let pi xo + eXi(xO), qi= xo

+ 3eX(x), 1, ..., 2n, and choose Yi to have an attractive node at if, a hyper-
bolic critical point with (n 1)-dimensional stable manifold at q, and no other
critical points in N. Figure 2 shows the flow of the modification Y of Xi.

FIG. 2

By assumptions (i), (ii), the points if, q are distinct for different values of i, hence
the vector fields Y do not have common zeros. Thus one can do such a con-
struction so that dim span {Yl(x), ..., YZn(x)} n for all x N. Also, we may
have Y X on the boundary of N, while a 2e-neighborhood of x becomes an
invariant set for the flow of ’= YI, ..., yZn} in N. Letting yi be X in the
complement of N, we obtain a collection St’ with dim span ’x n for all x M,
so 5t has the accessibility property, yet the 2e-neighborhood of x is invariant
under the flow of 5’; hence 5’ is not controllable on M.
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LINEAR DIFFERENTIAL GAMES*

L. S. PONTRYAGINf

Abstract. A pursuit problem and an evasion problem are formulated and results are obtained for
the case in which the dynamics are governed by linear differential equations and the terminal set is a
linear manifold in the state space. Conditions are given ensuring the existence of an open set in the
phase space such that if the initial state belongs to this set, termination of the pursuit game can be
achieved. Conditions are also given ensuring that for any initial state not in the terminal manifold the
evasion game can be prolonged indefinitely.

This paper is devoted to the study of the pursuit process of one controlled
object by another controlled object. The general nonlinear problem will be
formulated, but the results will only concern a linear case. Even in this simple case
they are nontrivial and interesting. Stronger results than those which will be given
here have already been published [1], [2], [3]. Those given here, however, will be
in a form that is simple and easy to remember.

The problem considered is technological in origin, and the success of the
mathematical investigation depends very much on the idealization which is made.
I consider here only my idealization which leads to a rather simple mathematical
consideration. There are other idealizations of the problem, but I do not intend to
mention them here.

To have a technological example let us imagine that one airplane pursues
another. The objective of the first airplane is to intercept the second one. The
objective of the second airplane is to prevent interception. Each pilot controls his
plane, having in mind his objective and using the information about the situation.
The information consists of two parts. The first part is the complete knowledge of
the performance capabilities of both planes. The second part of the information
concerns the present and the past behavior of the airplanes, but nothing is known
about their future behavior. We must give a mathematical idealization that retains
the essential features of the technological problem.

We denote the phase vector of a controlled object by x and assume that the
motion of this object is described by the ordinary differential equation

(1) 2 f(x, u),

where the dot denotes derivative with respect to time and u is the control. The
variable u may take its values from the given set P; thus u e P. This equation
describes the performance capabilities of the object. Indeed, it gives all the motions
of which the object is capable. To obtain a concrete motion we have to specify
the initial values to, Xo and we have to prescribe the values of the control u as a
function of time t; u u(t). It is supposed that u is a measurable function of t.
The possibility of the choice of different functions u(t) just means that the object
is a controlled one. As x is the phase vector, it consists of two parts x (x l, x2),
where x is the geometrical position, and x2 is the velocity of the object. In the
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case of an airplane, equation (1) gives its performance capabilities and the values
of the control u correspond to the various settings of the plane.

In the pursuit process there are two controlled objects, the pursuer x and
the evader y. The capabilities of the evader are described by the equation

(2) ’ g(y, v).

Here v Q is the control, and y consists of two parts, y (Y l, Y2), where y is
the geometrical position and Y2 is the velocity of the object.

Interception occurs when the objects coincide geometrically, that is,

(3) x y.

If interception occurs, we shall also say that the pursuit is completed.
The first part of the information which mentioned above is contained in

equations (1) and (2), and it is always assumed to be known. In considering the
second part, different mathematical idealizations of the problem arise. am going
to describe one of them.

The pursuit process itself can be considered from two different viewpoints.
In the first point of view we identify ourselves with the pursuer and assume

that the evader moves in an arbitrary manner in accordance with his capabilities.
The control u is in our hands and our aim is to achieve interception, or to complete
the pursuit. Having our aim in mind, we have to calculate the value u(t) at each
instant of time t, using the knowledge of the functions

x(s), y(s), v(s)

which are defined on the interval 0 =< s < t, where 0 is a suitable positive
number. In symbols,

u(t) U,(x(s), y(s), v(s), 0 <= s <= t),

where Ut is a functional which we call the pursuit rule.
In the second point of view we identify ourselves with the evader and assume

that the pursuer moves in an arbitrary manner in accordance with his capabilities.
Then the control v is in our hands and our aim is to prevent interception, or
completion of the pursuit. So having our aim in mind, we have to calculate the
value v(t) at each instant of time t, using the knowledge of the functions

x(s), y(s), u(s)

which are defined on the interval 0 s t, where 0 is a suitable positive
number. In symbols,

V(t) V(x(s), y(s), u(s), t-- 0 <__ S <= t),

where V is a functional which we call the evasion rule.
This is the idealization which I will consider. Here we have two problems:

the pursuit problem and the evasion problem, which are quite different.
To simplify the notations we transform the pursuit process into a differential

game by coupling the phase vectors x and y of the objects into a single vector
z (x, y). The vector z is the phase vector of the game. It belongs to the phase
vector space R of the game, where R is the direct sum of the phase vector spaces
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of the two objects. We can now rewrite our two differential equations (1) and (2)
into the single differential equation

(4) F(z, u, v).

Condition (3) defines a certain subset M in the space R. Now we can consider the
game independently of the pursuit process. The game is given if its phase vector
space R, differential equation (4), and the subset M on which the game is completed
are given. Here we have z R and two controls" u--the pursuit control, and
v--the evasion control.

Here we also have two problems’the pursuit game and the evasion game.
The pursuit game is as follows" At each instant of time find the value u(t) in order
to complete the game. The value u(t) is a functional of the two functions z(s) and
v(s) which are defined for 0 =< s __< t, where 0 is a suitable positive number.
In symbols,

u(t) U,(z(s), v(s), t-- 0 <= s <= t),

where Ut is a functional which we call a pursuit rule. In other words, the problem
is to select a function U,, or pursuit rule, that will result in completion of the
game. The evasion game is as follows" At each instant of time find the value v(t)
in order to prevent completion of the game. The value v(t) is a functional of the
two functions z(s) and u(s) which are defined for 0 __< s __< t, where 0 is a suitable
positive number. In symbols,

v(t) V(z(s), u(s), t- 0 <= s <= t),

where V, is a functional which we call an evasion rule. In other words, the problem
is to select a functional V,, or evasion rule, that will prevent completion of the game.

To obtain some concrete results I will restrict myself to linear differential
games. The differential equation of the game is written in the following form"

(5) = Cz-u+v+a,

where z R, the phase vector space R is a Euclidean space, C is a given linear
mapping of the phase vector space R of the game into itself, a is a constant vector
in the space R, and the controls u and v are also vectors in the space R. The controls
are not arbitrary vectors, but satisfy the conditions

(6) ueP, veO,

where P and Q are given compact convex subsets of the space R. These sets are
sets of arbitrary dimension. The set M on which the game is completed is a vector
subspace of the space R. We denote the orthogonal complement of M in R by L,
and its dimension by v. Thus R M L and

(7) dimL v, v >_ 2.

To obtain a solution of the pursuit game, i.e., to achieve completion, we have
to have superiority of the pursuit control over the evasion control. Similarly, we
have to have superiority of the evasion control over the pursuit control in order to
obtain a solution of the evasion game, i.e., to prevent completion. The capabilities
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of the pursuit control u are defined by the set P, and the capabilities of the evasion
control v are defined by the set Q. Therefore, to express these superiorities we have
to compare the sets and express the fact that one of them is in some sense richer
than the other. This comparison of the sets P and Q must be done by taking into
consideration the linear differential equation of the game and the final set M,
and therefore it must depend on the linear mapping C of the space R into itself
and on the linear subspace M.

Let us denote by rc the operation of orthogonal projection of the space R onto
its subspace L. Thus if z is an arbitrary vector of the space R, rcz is its orthogonal
projection onto the space L. Since C is a linear mapping ofthe space R into itself, ec,
where z is a real number, is a linear mapping ofthe space R into itself. This mapping
depends analytically on the variable z. Now we can consider the linear mapping
roec of the space R onto the space L. This mapping also depends on the variable r.
Let us apply this linear transformation to the sets P and Q. We obtain two compact
convex subsets of the space L:

(8) P rceCp, Q rceCQ.

Now the superiorities which mentioned above may be expressed essentially as
follows:

(9)
/Q* P for the pursuit game,

#P c Q for the evasion game,

where/ is a constant > 1.
Now I shall formulate the results the first for the pursuit game and the second

for the evasion game.
The pursuit control u has superiority over the evasion control v if the following

two conditions hold:
(A) The dimension of the set P, is equal to v for all sufficiently small positive

values of , i.e.,

(10) dim P dim L v.

(B) For all sufficiently small positive values of r the following inclusion holds

(11) #Q P,

where # is a constant, # > 1.
The result for the pursuit game is the following If conditions (A) and (B) hold,

then there exists a nonempty open set in the phase space R of the game such that
if the initial value Zo of the game belongs to fl, then the game with this initial value
Zo can be completed.

The evasion control v has superiority over the pursuit control u if the following
two conditions (C) and (D) hold. (The statement of these conditions can be obtained
by interchanging the sets P and Q in conditions (A) and (B).)

(C) The dimension of the set Q, is equal to v for all sufficiently small positive
values of , i.e.,

(12) dim Q dim L v.
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(D) For all sufficiently small positive values of z the following inclusion
takes place"

(13) /P Q,

where # is a constant,/t > 1.
The result for the evasion game is the following: If conditions (C) and (D)

hold, then in the evasion game completion can be prevented for arbitrary initial
values z0 which do not belong to M. This means that for arbitrary Zo M it is
possible to choose an evasion rule such that the phase vector z(t) of the game never
reaches the set M; i.e., for all < , z(t) M. Moreover, the distance (t) of the
point z(t) from the set M cannot become too small, and this distance can be
estimated in the following way.

Let us denote by r/(t) the distance between z(t) and L. Then there exist positive
constants c and e and a positive integer k, all depending only on the data defining
the game, such that if (0) =< e, then

4) (t) >
[1 -4- rl(t)]k"

If (0) > e, then we wait until (t) becomes equal to 5, say at time to. The estimate
(14) will then hold for >__ to, while for < to we have the estimate (t) > 5.

To illustrate the results let us consider two examples.
Let E be a geometrical Euclidean vector space of dimension v >_ 2. Let x and y

be two points in the space E, x--the pursuer and y--the evader. Here x and y are
not the phase vectors of the objects, but their geometrical positions. Thus the
pursuit process is completed when x y.

Example 1. The differential equations which describe the motions of x and y
are the following"

(15) 5 u, .9- v.

Here the controls u and v are vectors in the space E subject to the following
constraints"

(16) lul =< , Ivl _-< 1.

It turns out that this pursuit process, considered as a game, satisfies conditions
(C) and (D). The evasion can therefore be continued indefinitely provided only that
x(0) 4: y(0). This result is intuitively clear as the evader y has the maneuvering
superiority over the pursuer x. This is so because the evader’s velocity is controlled
directly while the velocity of the pursuer x is controlled indirectly by controlling
the acceleration. Thus the pursuer’s velocity can only be changed slowly.

Example 2. The differential equations which describe the motions of x and y
are the following"

(17) M + u, j) + fl.9 v.

Here the controls u and v are vectors in the space E subject to the following
constraints"

(18) [ul =< p, iv] .
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Here ,/, p, a are positive numbers. The motions of the points x and y, described
by equations (17), are motions under the action of forces u and v with linear
friction.

It turns out that, if

(1_9) a > p,

then the differential game which corresponds to the pursuit process satisfies
conditions (C) and (D). The evasion process can therefore be continued indefinitely
provided only that x(O) :/: y(O). If, however, the inequality

(20) p > a

holds, then conditions (A) and (B) are satisfied. Therefore a nonempty open set f
exists in the phase space such that if the initial state (x(0), 97(0), y(0), p(0)) of the
game belongs to f2, then the pursuit process will be completed in a finite time.
If besides the inequality (20) the following inequality

(21) p/ >

holds, then the set is the whole phase space R of the game. The pursuit process
can then be completed for any arbitrary initial state (x(O), +/-(0), y(O),.P(O)) and the
time of the pursuit can be estimated in terms of the initial state of the game.
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AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS AND
DUALITY IN NONCONVEX PROGRAMMING*

R. TYRRELL ROCKAFELLAR’

Abstract. If a nonlinear programming problem is analyzed in terms of its ordinary Lagrangian
function, there is usually a duality gap, unless the objective and constraint functions are convex. It is
shown here that the gap can be removed by passing to an augmented Lagrangian which involves
quadratic penalty-like terms. The modified dual problem then consists of maximizing a concave
function of the Lagrange multipliers and an additional variable, which is a penalty parameter. In
contrast to the classical case, the multipliers corresponding to inequality constraints in the primal
are not constrained a priori to be nonnegative in the dual. If the maximum in the dual problem is
attained (and conditions implying this are given), optimal solutions to the primal can be represented
in terms of global saddle points of the augmented Lagrangian. This suggests possible improvements
of existing penalty methods for computing solutions.

1. Introduction. Let fo, fl, fm be real-valued functions defined on a set
S c R". We shall be concerned with the nonlinear programming problem:

minimize fo(x) over all x S satisfying
(P)

f/(x)__< 0 for/= 1,...,m.

The ordinary Lagrangian function associated with problem (P) is

(1.1) Lo(x, y) fo(x) + Y f(x) + + Ymfm(X)
and this corresponds to the dual problem:

for (x, y)e S R’,

(Do)
maximize go(Y) over all ye R’, where

go(Y) inf" Lo(x, y).
xS

It is well known that the optimal values in these two problems satisfy

(1.2) inf(P) >__ sup(D0),
but equality cannot be expected to hold, aside from freakish cases, unless S and
the functions f/are convex. The discrepancy in (1.2) is termed a "duality gap".

In recent years a number of authors have addressed the question of whether
this duality gap in nonconvex programming could be eliminated by changing the
Lagrangian function. Such a change might also be of benefit computationally in
some situations, even in convex programming, where the plurality of useful
Lagrangians and dual problems has been known for some time. Computational
considerations in nonconvex problems with equality constraints have led in par-
ticular to algorithms based on an augmented Lagrangian in which "penalty"
terms of the form rf(x)2, 1, ..., m, are added to Lo(X, y); cf. Arrow and Solow
[2], Bertsekas [3], Buys [4], Fletcher [6], [7], [8], Haarhoff and Buys [9], Hestenes
10], Kort and Bertsekas 11 ], Lill 12], Miele et al. 14], [15], [16], 17], Poljak [30],
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Tripathi and Narendra [25, and Wierzbicki [27, [28, [29]. For the inequality-
constrained problem (P), the simple terms rf/(x)2.are not suitable, and the analogous
augmented Lagrangian (suggested in [21 and investigated by Buys in his thesis [4])
turns out to be

L(x y, r) fo(x) + ’. [Yi max {f/(x),
i=1

(1.3)
fo(x) + r /(fi(x), yi/r)

i=1

where T R x (0, + oo)and

(1.4)

yi/2r} + r max2 f/(x), y,/2r}]

for x e S, (y,r)eT,

O(e, fl)= [max2 {0,2e + fl} fl2]/4

J" fl -]- O{ 2 if O >____ --fl/2,
if =<

We have demonstrated in [13] that in the convex case this augmented
Lagrangian is not only a natural choice but has a number of strong properties
not possessed by the ordinary Lagrangian L0. In [14], we have derived some
consequences of these properties for the multiplier method of Hestenes and
Powell. It is the purpose of the present paper to develop general properties of
L in the nonconvex case, especially with regard to duality.

Arrow, Gould and Howe [1, Thm. 2] have already shown that if . is an
isolated local solution to (P) satisfying the standard second order sufficiency
conditions for optimality with strict complementarity, the Lagrange multiplier
vector being , and if ? is sufficiently large, then there is a neighborhood N of ff
in S such that

(1.5) min L(x, ., ) L(, ., ) max L(X, y, ),
xN yeR"

with the minimum in (1.5) attained uniquely at . This saddle-point theorem is
strengthened below (Corollary 6.1) in three ways: by extending the maximum in
(1.5) to the maximum of L(ff, y, r) over all (y, r) T (thus in particular removing
the constraint y _>_ 0), by deleting the strict complementarity assumption, and
(under the hypothesis that ff is the unique globally optimal solution to (P) "in
the strong sense") by extending the minimum in (1.5) to the minimum over all
x S. Introducing the ordinary perturbations associated with (P), we also give
necessary and sufficient conditions in terms of stability for the existence of a
global saddle point (if, y,?) of L with respect to S T and more generally
characterize the case where at least the global "infsup" and "sup inf" of L are
equal.

These results correspond to a detailed study of the following dual problem
in place of (Do):

maximize g(y, r) over all (y, r) T, where
(D)

g(y, r) inf L(x, y, r) < +

Of course, the optimal value in (D) is by definition

(1.6) sup (D) sup inf L(x, y, r).
(y,r)eT xeS
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On the other hand, the optimal value in (P) satisfies

(1.7) inf(P) inf sup L(x, y, r),
xeS (y,r)eT

inasmuch as

(1.8) sup L(x, y, r) f, f(x) if is feasible,X

ty,r)er (+ GO if x is not feasible.

The latter is immediate from the fact that

0 if_< 0,
(1.9) sup 0(o,/3)

tieR + Go if > O.

Thus the relation

(1.10) inf(P) _>_ sup(D)

holds, and minimax theorems for L are equivalent to duality theorems asserting
the equality and attainment of the optimal values in (1.10). (For related work on
duality since this paper was submitted for publication, see Mangasarian [13],
Pollatschek [18] and Rockafellar [24].)

For notational simplicity, only inequality constraints are treated in this
paper. However, the same results apply with only the obvious changes if explicit
equality constraints are also allowed (the corresponding terms rg/(f(x), yi/r) in
(1.3) being replaced by yi(x) + rfi(x)2). The routine alterations in the proofs are
left to the reader.

Except for Theorem 6, which requires second order differentiability of the
functions fi, the results remain valid if S is a subset of an arbitrary topological
real vector space.

2. The nature of the dual problem. Let p:R" - [-Go, + Go] be the ordinary
perturbation function (min-value function) associated with (P), that is,

(2.1) p(u) inf F(x, u),

where for each (x, u)e S x Rm:

(_. fo(X) iff(x) u, for 1,...
(2.2) F(x U)

+ Go otherwise.

,m,

Then

(2.3) inf {F(x,u)+y. u}= (l,(,c,_,,,,.,y) if yeR2,

ueR (--GO ify R,

f if y6
(2.4) inf {p(u)+ y. u} {go,J,

ueRm (GO-- if y q R.
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More generally, it is elementary to calculate that

(2.5)

(2.6)

L(x,y,r)= inf {F(x,u)+y.u+r[ul 2} for all (y, r) T,
uR

g(y,r)= inf {p(u)+y.u+r[u[2} for all(y,r) 6T.
uR

In order that (2.3) and (2.4) can be regarded as instances of (2.5) and (2.6), we
adopt the convention that

(2.7) L(x, y, O) { Lo(x,_ oo
y) ififyqR,,y R’

(2.8) g(y, 0) {g(Y)_c ifify R’.
y e R’,

This extends the definition of L(x, .,. and g to cl T.
THEOREM 1. The functions L(x, y, r) and g(y, r) are concave and upper semi-

continuous in (y, r) cl T R R+ and nondecreasing in r RI+, nowhere +
Furthermore, whenever r > s >= 0 one has

(2.9) g(y, r) >= max {g(z, s)- lY z12/4(r s)}.
zeR

Proof. The first assertion is implied by (2.5) and (2.6), since the pointwise
infimum of a collection of affine functions of (y, r) which are nondecreasing in r is
an upper semicontinuous, concave function which is nondecreasing in r. For any
(y, r) and (z, s) satisfying r > s >__ 0, we have from (2.6) that

g(y, r)= inf {p(u) + z. u + slu[ 2 + (y z). u + (r s)lul 2}
uR

> inf {p(u)+ z. u + slul 2} + inf {(y- z). u + (r- s)[u[ 2}
uR uR

g(z, s)- [y- z[2/4(r s),

and this yields (2.9). The maximum (instead of supremum) in (2.9) is valid because
g(., s) is an upper semicontinuous concave function nowhere having the value
+ ov and hence in particular is majorized by at least one affine function. (Thus
the function of z being maximized is upper semicontinuous; its level sets are
bounded because it is majorized by a negative definite quadratic function of z.)

Remark. In the convex case (i.e., where S and the functions f are all convex),
L(x, y,r) is convex in x and relation (2.9) holds as an equation I13]. Then for
every r > 0 the function g(., r) has the same maximum and even the same maxi-
mizing set as g(., 0), since in the formula

g(y, r)= max {g(z, 0)- [y zlZ/4r}
zR

the bracketed expression is maximized jointly in y and z if and only if y maximizes
g(., 0) and z y. In other words, in the convex case a pair (y, f) with > 0 is an
optimal solution to the dual problem (D) if and only if y is an optimal solution
to the ordinary dual (Do). In the nonconvex case this is no longer true, although
the monotonicity of g(y, r) in r still implies that if (y, f) is an optimal solution to
(D) and r > f, then (y, r) is also an optimal solution to (D).
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COROLLARY 1.1. There is an ro, 0 _<_ ro _<_ + , such that g(y, r) is finite for
all y R" if ro < r < + , whereas g(y,r) -forallyR’if0<__r<ro.

Proof. This is obvious from (2.9), according to which g(y, r) > - if there
exists some s [0, r) and z R such that g(z, s) > -.

In view of the fact that g(y, r) is nondecreasing in r, Corollary 1.1 says there
are no real constraints at all in (D), even implicit ones. This is in contrast to the
situation for (Do), where the feasibility condition go(Y) > - requires the satis-
faction of y >= 0, as well as other possible constraints. (It is not always possible
a priori to specify for (D) an r such that r > ro, although, for example, one has
ro 0 iffo is bounded below on S. In this connection, see the remarks preceding
Theorem 2 in the next section.)

COROLLARY 1.2. For every y R", one has

(2.10) lim g(y, r) sup g sup (D).
r--* + T

Proof. Given any (z, s)e T and e > 0, one has g(y, r) >= g(z, s) e for all r
sufficiently large by (2.9).

The last result brings out the close relationship between the dual (D) and
penalty methods for solving (P). By definition, we have

(2.11)

and consequently

L(x, O, r) fo(x) + r max2 {0, f/(x)},
i=1

(2.12) g(0, r)= inf fo(x)+ r max2 {0,f/(x)}
xS

The limit of the infimum (2.12) as r + oe is the optimal value sup (D), according
to Corollary 1.2. Thus the relationship between sup (D) and inf (P) is of funda-
mental importance for the penalty method in which (2.12) is calculated for a
sequence of r values tending to + oe. Note that if we fix any y e R and minimize
L(., y, r), instead of L(., 0, r), for a sequence of r values tending to + oe, the limit
of the infima is still sup (D) by Corollary 1.2. This procedure can be regarded as
a modified penalty method. Still more broadly, one can try to solve (P) by mini-
mizing L(., y, r) for a sequence of vectors (y, r) T such that g(y, r) sup (D). If
the sequence can be generated in such a manner that the r values remain bounded,
there is the advantage that the numerical instabilities associated with minimizing
(2.11) for ever-larger values of r could be avoided. The results below demarcate
the region of validity and potential effectiveness of such algorithms, from a
theoretical point of view. Theorem 6 indicates that indeed, penalty methods can
be constructed which are capable of solving "most" problems without r --, + o.

3. Solving (P) in the asymptotic sense. We say that (P) satisfies the quadratic
growth condition if there is an r _>_ 0 such that the expression (2.11) is bounded
below as a function of x S. This certainly holds if fo is bounded below on S,
and in particular if S is compact and fo lower semicontinuous. In general, since
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by (2.6) and the definition of g we have

(3.1) inf L(x, O, r) g(O, r) inf {p(u) + rlul2),
xS uR

the quadratic growth condition holds if and only if there exist real numbers
r _> 0 and q such that

(3.2) p(u) >= q rlul 2 for all u Rm.
The condition is therefore equivalent also to the relation

lim inf p(u)/lul 2 >

Observe that the r0 in Corollary 1.1 is the infimum of all the numbers r >_ 0
for which the quadratic growth condition holds, since it is the infimum of all the
numbers r => such that g(0, r) > . Thus (P) satisfies the condition if and only
if g is not identically on T, or, in other words, if and only if (D) has "feasible
solutions". This also shows that the quadratic growth condition is equivalent to
the seemingly more general condition that for some y R (not necessarily y 0)
and some r _> 0, the infimum of L(x, y, r) over all x e S is not .

THEOREM 2. If (P) satisfies the quadratic growth condition, one has

< sup (D) lim inf p(u)
(3.3)

,-.o

=< p(0) inf (P).

If (P) does not satisfy the quadratic growth condition, one has sup (D) -.
Proof. The preceding remark makes clear that sup (D) - if and only

if the quadratic growth condition fails to be satisfied. Assume henceforth that the
condition is satisfied; thus (3.2) holds for a certain ?/and ?. From (3.1) we see that

g(0, r) =< lim inf p(u) for all r >= 0.
UO

Taking the limit as r + and invoking Corollary 1.2, we obtain

sup (D) =< lim inf p(u).
u--*O

To establish the opposite inequality, and thereby complete the proof of the
theorem, consider now an arbitrary real number q such that

(3.4) q < lim inf p(u).
uO

Choose e sufficiently small that p(u) >= q whenever lul < . For r sufficiently large,
we have

q rlul <-_ Zl lul 2 if lul >_-

(with ?/and ? as above), and therefore

q rlul 2 __< p(u) for all u.

But then

q =< inf {p(u) + rlul2} g(0, r) =< sup (D).
uR
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Since q was any real number satisfying (3.4), this shows that

sup (D) => lim inf p(u),
u0

and we are done.
The quantity

(3.5) lim inf p(u)
0

in Theorem 2 is the asymptotic optimal value in (P). It can also be described as the
minimum of

(3.6) lim sup fo(xk)

for (P)" that is, sequences in Sover all asymptotically feasible sequences (x)k=
satisfying

(3.7) lim sup.(x) N 0 for 1,..., m.
k)

Indeed according to the definition of p, (.) is th lowest possible limit achivabl
by any sequence (k)= such that there exist Uk R and X S with Uk O,

kfori= m, andf0(xk)<k.Z(x) u
Let us call a sequence (xk)ff= asymptotically minimizing for (P) if it is asymp-

totically feasible and yields the minimum possible value for (3.6). We can then
obtain from Theorem 2 a result which shows how any procedure for solving (D)
can be used to solve (P) in the sense of constructing an asymptotically minimizing
sequence. (A similar result involving more detailed estimates in the convex case
has been demonstrated in [22].)

r be a sequence such that jbr some 6 > 0 one hasTOM 3. Let (yk, k)k=
(yk, rk 6) T and

(3.8) lim g(yk, rk 6) sup (D) < +.
km

Let X S satisfy

(3.9) L(xk, yk, rk <= inf L(x, yk, rk + k,
xS

_. xk is asymptotically feasible andwhere k O. Then )k=

(3.10) liminfyk/rk>=O .fori-- 1,.-.,m.
k--*

If in addition (yk)ff=l is bounded, then (xk)--1 is an asymptotically minimizing
sequence for (P).

Proof. From (3.9) and (3.8) we have

(3.11.) L(xk, yk, rk <= g(yk, rk) + Ck <= sup (D) + ck < + o.

In particular, sup (D) is finite. On the other hand, (2.5) and (2.2) imply

(3.12) L(xk, yk, rk) fo(Xk) / yk. U / rklukl 2,
where

(3.13) ui max{f/(xk),--y/2rk} for/---- 1,...,m.
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Therefore, using (2.1) and (2.6),

L(xk, yk, rk >_ p(uk) + yk. U + (r ,)lul a / lula
(3.14)

>= g(yk, rk 6) + ilul 2

We combine (3.14) with (3.11) to obtain

(3.15) lul 2 <- sup (D) g(yk, rk 6) + ak O.

Thus u ---, 0, and this establishes in view of (3.13) that (3.7) and (3.10) hold. Next
we argue from (3.11) and (3.14) that

(3.16) lim L(xk, yk, rk) sup (D).
koo

If the yk sequence is bounded, then (3.12) and the fact that uk --. 0 give us

lim fo(xk) sup (D).
k’-*

But sup (D), since it is finite, is the asymptotic optimal value in (P) by Theorem 2.
This completes the proof.

The need for the boundedness of (yk)- in Theorem 3, even in the convex
case, is illustrated by the following counterexample.

Example 1. Definefo,fl,f2 for x (Xl, X2, X3)E R3 byfo(x) x3,fl(x) Xl,

f2(x) x2. Let

S {x R3lxly + x2Y2 x3 <= 0 for all (Yl,Y2) e C},
where

C {yeR2[yl <= O,y + 2y2 =< 0}.
Note that S is a closed convex cone which can also be expressed as

S {x e R3lx3 _> qb(x1,

where b is the support function of C"

(/)(X1, X2) sup {xly -+- x2Y2l(Yl, y2) C}
x21/2X2 if x 0 and x2 > 0,

0 ifxl ’0, x2 ’0,

+ o otherwise.

The function b is nonincreasing in X and x2, so obviously

p(ul, u2) qS(ul, u2) for all Ul, u2.

It can be shown, incidentally, from this fact and formula (2.6) by means of ele-
mentary results about conjugate functions, that

g(y, r) (1/4r) dist2 y, C).

All we really need to know at the moment, however, is that g(y, r) =< 0 everywhere
and

(3.17) g(y,r) (1/r)g(y, 1) for r > 0.
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These relations follow from (2.6) because p(0) 0 and p(u/r) p(u)/r. Let

uk (-k-,k-3), x (-k-,k-3,k),

r 1, y= -Vp(u) 2u= (k + 2k-,(1/2)k 2k-3).

Then if y and r are substituted into (2.6), the minimum is attained uniquely at
u, indicating that

g(y, r) -lu[2 -, 0 sup (D).

Hence also g(y, r 6) -, sup (D) by (3.17), if 0 < 6 < 1. On the other hand, the
minimum in (2.1) for u u is attained uniquely at x. Thus x uniquely minimizes
L(. ,y, r) over S (cf. (2.5)), and all the assumptions in Theorem 3 are satisfied
except for the boundedness of (y)_. But fo(x) k + , so that (x)= is
certainly not an asymptotically minimizing sequence for (P).

Two corollaries of Theorem 3 may now be stated.
COROIIhRY 3.1. Assume the asymptotic optimal value in (P) is not + o. Fix

any y Rm. Let x satisfy

(3.18) L(x, y, r) <= inf L(x, y, r) + ,
xS

where r + o and z O. Then (x)ff= is an asymptotically minimizing sequence
for (P).

Proof. With y y, we have (3.8) by Corollary 1.2 so that the conclusions
of Theorem 3 are justified.

COROLLARY 3.2. Let (., ?) be such that for some 6 > 0 one has (y, ? 6) T
and

(3.19) oc < g(y, ? 6) sup (D).

Let (xk)= be a minimizing sequence in S for the function L(., , ). Then >= O,
and (xk)= is an asymptotically minimizing sequence for (P). Moreover, if is a
point at which the minimum of L(., , ) over S is attained, then is actually an
optimal solution to (P).

Proof. Take (y, r) --(., ?) in Theorem 3. For the final assertion of the
corollary, take x ft.

Theorem 3 makes clear the computational relevance of the questions of
when sup (D) equals inf(P) and when sup (D) is attained. These questions are
answered in the next section in terms of the stability of (P).

4. Duality theorems and stability. Problem (P) will be called (lower) stable
of degree k (where k is a nonnegative integer) if there is an open neighborhood U
of the origin in R and a function rt: U --, R of class C such that

(4.1) p(u) >= rt(u) for all u e U, with p(0) re(0).

This implies of course that inf (P) is finite.
Stability of degree 0 is equivalent to the property that

(4.2) p(0) lim inf p(u) (finite).
u--*0
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The necessity of (4.2) is evident. On the other hand, if (4.2) holds, then the non-
increasing function

O(s) inf p(u), s >= O,
lul_-<s

satisfies O(s) 0(0) as s 0. Choose e > 0 small enough that 0(e) > -, and
define the function 0o on 0, e/21 as follows" 0o(0)= 0(0), Oo(e/(j + 1))= O(e,/j)
for positive integers j, 00 interpolated linearly over the intervals [e/(j + 1), e/j].
Then 0o is continuous and 0o -<_ 0. The definition of stability ofdegree 0 is therefore
satisfied by rt(u) 0o(lul),

Theorem 2 therefore gives us the following.
THEORZM 4. Suppose that (P) satisfies the quadratic growth condition. In order

that the duality relation

(4.3) inf (P) sup (D)

hold, or equivalently

(4.4) inf sup L(x, y, r) sup inf L(x, y, r),
S T T S

it is necessary and sufficient that (P) be stable of degree O.
Various conditions are known which guarantee stability of degree 0, i.e.,

(4.2). The most basic perhaps is the following: S is closed, the functions f are all
lower semicontinuous, and for some u int R’ and a > inf(P) the set

(4.5) {X G-Slfo(x 9(,L(x Ul, ,fro(X) blrn}
is compact. (This is evident from the characterization of (3.5) in terms of asymp-
totically minimizing sequences.) In the convex case, the Slater condition and its
variants suffice [20], [24].

Stability of degree is a generalization of the stability condition in convex
programming that p be subdifferentiable at u 0. As a matter of fact, in the
convex case stability of degree implies stability of all higher orders. In the
absence of convexity, however, stability of degree 2 plays an essential role.

THEOREM 5. Suppose that (P) satisfies the quadratic growth condition. In order
that the duality relation

(4.6) inf (P) max (D)

hold, or equivalently,

(4.7) inf sup L(x, y, r) max inf L(x, y, r),
S T T S

it is necessary and sufficient that (P) be stable of gegree 2. Indeed, (, ) is an optimal
solution to (D)for some > 0 if and only if p -Vrc(0)for some function . as
in the d@nition of stability of degree 2.

Proof. Clearly (4.6) is equivalent to the existence of (., ?)e T such that

(4.8) inf(P) __< g(y, ?) > ,
since inf(P) __> sup (D) in general, while sup (D) > by Theorem 2. Using
(2.6), we can write (4.8) in the form

(4.9) -o < p(O) p(u) + re. u + ulul 2 for all u e R
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If this is fulfilled, then p(0) is finite and the condition for (P) to be stable of degree
2 is satisfied with

TO(U)--" p(0)- ." U- IRI 2 U R

Here y Vrc(0).
Assume now conversely that the stability condition is satisfied for a certain

rc and U. Then re(0) p(0) (finite). Define y -Vz(0), and choose e > 0 small
enough that [u[ =< e implies u U. Since r is of class C2, there is an rl > 0 such
that

(4.10) z. g2rc(u)z >_ -2rlz[ 2 for all zRmif[u[ <__ e.

Then

(4.11) rt(u) p(0)- ." U rllU[ 2 iflu[ e.

This follows from the fact that for h(t) rt(tu), 0 <= < 1, one has

h() h(0) + h’(0) + h"() t

where
h"(z) U" V27t(tU)U.

Since (P) satisfies the quadratic growth condition, there exist numbers q and r
such that (3.2) holds. We can choose r2 > 0 SO that

(4.12) q rlu[ 2 >= p(0) .. u r2 u[ 2 if lul >_- e.

Then (4.12) and (3.2) imply
p(u) >= p(O) :. u r2lu[ 2 if lul _-> ,

while (4.11) and (4.1) imply

p(U) p(O) f;" U rllul 2 if lu] =<
Taking ? max {r, r2} we have (4.9), and hence equivalently (4.6) as already
noted.

COROLLARY 5.1. Suppose (P) satisfies the quadratic growth condition and is

stable of degree O. Then (D) has an optimal solution if and only if (P) is stable of
degree 2.

Proof. This is obtained by combining Theorem 5 with Theorem 2.
COROLLARY 5.2. Suppose (P) satisfies the quadratic growth condition and is

stable of degree 2. In order that ff S be an optimal solution to (P), it is necessary
and sufficient that there exist (, ?) T such that

(4.13) L(x, , ) >= L(, , ) >= L(ff, y, r) for all x S, (y, r) T.

Moreover, this condition is satisfied by (, ?) if and only if (f, ) is an optimal solution
to (D).

Proof. The saddle-point condition (4.13) is equivalent by virtue of (1.8) and
(1.10) to ff being a feasible solution to (P) such that

(4.14) fo()- min (P)= max (D)= g(., ),

in which case the common value in (4.14) is L(ff, ., ?).



AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS 279

Remark. If there exist 2e S and (y,?)e T satisfying (4.13), and therefore
(4.14), then (P) must satisfy the quadratic growth condition (cf. remark preceding
Theorem 2) and hence be stable of degree 2 (Theorem 5). Compare also with
Corollary 3.2.

Corollary 5.2 may be regarded as a generalization of the Kuhn-Tucker
theorem in convex programming. Qualitatively, we may expect that most prob-
lems encountered in practice will be stable of degree 2, so that the result will be
applicable. But, as in the case of "constraint qualifications" and other familiar
conditions in the theory of nonlinear programming, it is hard to give verifiable
criteria directly in terms of the constraint functions (rather than an unknown
optimal solution) which imply such stability. Of course, convexity plus some
form of the Slater condition is sufficient. In the next section we investigate the
nonconvex case further in terms of the local conditions which are usually satisfied
by optimal solutions to (P).

It should be emphasized that the saddle-point relation (4.13) does yield the
usual differential Kuhn-Tucker conditions if 2 e int S and the functions f are
differentiable at ft. Indeed, (4.13) implies

c3L
(4.1S) 0 _---y_ (2, , P) max {f(ff), -,/27} for 1, ..., m,

Yi

(4.16)

0 VxL(ff, Y, )= Vfo(ff)+ max {0, ; + 2rf(ff)}Vf(ff)
i=1

Vfo(-) + [.i + 2? max {f/(:),
i=1

y,/2?}]Vf(X),

or in other words,

(4.17) f() =< O, Yi >= O, yif() 0 for/= 1,...

(4.18) Vf0(:) + .lVfx(,) + + YmVfm() O.

At all events, the vectors y involved in Theorem 5 and its corollaries can be
interpreted in terms of "equilibrium prices" for perturbations of (P). As seen at
the beginning of the proof of Theorem 5, a pair (., ?) T satisfies

if and only if

(4.19)

inf (P) sup (D) g(y, ?)

p(u) + . u + lul 2

is minimized in u when u 0. Let us imagine an "economic" situation where we
are allowed to perturb (P) by replacing the constraint functions f by f u, so
as to obtain perhaps a lower minimum "cost" value p(u), but the cost associated
with the perturbation vector u (ul,..., Urn) is y. U + ?lul 2. The expression in
(4.19) gives the resulting total cost associated with the perturbed problem. Thus
(4.19) describes the "equilibrium" where the costs are such that no advantage is
to be gained from perturbation, and we are "content with (P) as it is." In particular,
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we would have (assuming p(0) finite)’
p(2u)- p(O)

(4.20) -.. u <_ lim inf for all u.
o 2

As is well known, such a global "equilibrium" cannot be achieved with ? 0
unless, at the very least, p coincides at 0 with its convexification, a property which
is very unlikely in nonconvex programming.

5. Local criterion for stability of degree 2. We consider now an which is
an optimal solution to (P) and show that, if certain conditions slightly stronger
then those usually necessary for optimality are satisfied at , (P) must be stable
of degree 2. In doing this, we extend a result of Arrow, Gould and Howe [1], as
described in the Introduction.

The point is said to be the unique optimal solution to (P) in the strong sense
if every asymptotically minimizing sequence for (P) converges to ft. This con-
dition is milder than it might seem. For example, assuming the functions f are
lower semicontinuous, it is satisfied if S is replaced by any compact subset in
which ff is the only locally optimal solution to (P).

The following conditions are well known to be sufficient (and "almost
necessary") for ff to be an isolated locally optimal solution to (P) (cf. [5, p. 30]):

(a) S contains an open neighborhood No of on which the functions f are
all of class C2

(b) there is a vector R" such that the Kuhn-Tucker conditions (4.17) and
(4.18) hold;

(c) for the Hessian matrix

(5.1) H V2fo()+ YlV2fl() + + f;mV2fm()= Vx2Lo(, 9)

and the index sets

(5.2) I0 {i :A 0lf(ff)= 0, , > 0}, I, {i 4: 0lf()= 0, 9, 0},

one has z. Hz > 0 for every nonzero z R" such that

(5.3) z.Vf(X)=0 for allieI0 and z. Vf(X)=<0 for allie11.

These will be referred to as the standard (second order) sufficiency conditions.
THFOIM 6. Suppose (P) satisfies the quadratic growth condition. Let Y be the

unique optimal solution to (P) in the strong sense, and assume that satisfies the
standard sufficiency conditions with f as the vector of multipliers. Then (P) is stable
ofdegree 2, andfor all ? sufficiently large the pair (f:, ?) is an optimal solution to (D).

Proof. Let N S denote a neighborhood of :, the nature of which will be
specified later, and define

(5.4) p(u) inf {fo(x)lx N and f/(x) =< ui, 1,... m}.

Since ff is the unique optimal solution to (P) in the strong sense, there exists. > 0 such that x e N whenever x e S, f/(x) N e for 1,..., m, and fo(x) <__ fo()
+ e. Then

(5.5) p(u) p(u) for all u Uo,
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where

(5.6) Uo {u e R’lui _-< e for 1,... m and p(u) < p(O) + .
Suppose we can construct a function n of class C2 on an open neighborhood U1
of the origin in R such that

(5.7) p(u) >= n(u) for all u e U1, with p(0) n(0).
We will then have

(5.8) p(u) >= n(u) for all u e Uo 0 U with p(0) n(0),

so that the definition of stability of degree 2 will be satisfied with

(5.9) U-- {ue Ulln(u < n(0) + e and ui < e for/= 1,..., m}.
(If u e U but u Uo, we have p(u) p(0) + e n(0) + e and hence p(u) > n(u).)
If also Vn(0) -y, then (, f) is an optimal solution to (D) for all f sufficiently
large by Theorem 5 and the monotonicity of g(y, r) in r. Thus the proof of the
theorem is reduced to the construction of N, U1 and n satisfying (5.7), such that
n is of class C2 on U1 and Vrc(0)= -y.

It will be enough actually to show the existence of N such that, for some
?>0,

(5.10) L(x, , f) => L(, y, ) fo() for all x N.

Indeed, this will imply from (2.5) that

fo() inf L(x, y, ?) inf inf {F(x, u) + . u + [ul 2}
xN xN uR

(5.11) inf inf {F(x, u)+ y-u + lul=}
uR xN

inf {p(u)+ y. u + lu12},
uR

Since p(O) fo(), we will then have

(5.12) p(u) p(0)- y. u lul 2 for all u e R

In other words, the desired properties will hold for n(u)= p(0) .. u lul 2

and U1 R".
Let Io and 11 be the index sets in (5.2), and let

(5.13) 12 {i 0]f(ff) < 0}.
Let No be the neighborhood of ff in the standard sufficiency conditions. For all
r > 0, define

(5.14) Nl(r) No

Then Nl(r) is an open neighborhood of if, and for all x e Nl(r) we have

(5.15) C(x, y, r) fo(x) + Z [y,f/(x) + rf/(x)2] + r Z 0(f/(x))2,
ielo iell

where

(5.16) 0() max {, 0}.
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Observe that L(, ., r) f0(ff), and by the Kuhn-Tucker conditions

(5.17) VxL(ff, ., r)= V/0(ff) + .iVf(ff)= 0.
i1o

We shall show next that in fact

(5.18) L(x, ., r)= fo(X) + h(x ) + rk(x X) + o(Ix Xl2),

where h(z) z. Hz and

(5.19) k(z) (z. Vji())2 + O(z. Vf())2 >_ 0.
ielo ielx

Since by (5.17)

(5.20) fo(x) +
ielo

and since (for f/(ff) O)

(5.21) f(x)2 ((x )-Vf(2))2 + o(Ix

we need only prove that the expansion

(5.22) 0(f(x))2 O((x X). Vf())2 + o([x ffl 2)
is valid when f(ff) 0. This amounts to establishing that

(5.23) 0 lim
t,o

2

uniformly in z e B, where

o(f(x + tz))- O(tz. vf,(x))

B {zR"llzl-- 1}.
But the latter is obvious from the continuity of 0 and the fact that the difference
quotient in (5.23)can be rewritten as

O(fi(ff + tz)/t)2 O(z. Vf/(:))2 O(z. Vf/(:) + w(tz))2 O(z. Vf/(X))2

where w(tz) --. 0 uniformly in z e B as $ 0.
We now demonstrate the existence of ? > 0 and 6 > 0 with

(5.24) h(z) + ?k(z) >= 26 for all z e B.

Let Bo {z e Blh(z) <= 0}. According to part (c) of the sufficiency conditions, if
k(z) 0, i.e., (5.3) holds, we have h(z) > 0. Thus k(z) > 0 for all z e Bo, implying
that the quotient -h(z)/k(z) is well-defined and bounded above as a function of
z e Bo. Choose any ? > 0 such that

> -h(z)/k(z) for all z e Bo.
Then h(z) + ?k(z) > 0 for all z e Bo; the same inequality also holds trivially for
z B\Bo, because there h(z) > 0 and k(z) >= O. Thus h + ?k is a positive, con-
tinuous function on the compact set B, and (5.24) is valid for some 6 > 0 as
claimed. Of course (5.24) implies

(5.25) h(z) + ?k(z) >= 261212 for all z e Rm,
because h and k are both positively homogeneous of degree 2.
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It remains only to combine (5.25) with (5.18). There exists by (5.18) a neigh-
borhood N of if, N Nl(?), such that

(5.26) L(x, y, ) >= fo(2) + h(x ,) + ?k(x ) /Six 212
for all x e N. Using (5.25), we obtain

(5.27) L(x, y, ) >= fo() + fi(x ff)2 for all x N.

Thus (5.10) holds for N and ?, and the proof of Theorem 6 is complete.
COROLLARY 6.1. Under the assumptions in Theorem 6, the global saddle-point

condition (4.13) holds for all sufficiently large.
Proof. The proof is immediate from Corollary 5.2.
We conclude this section with a counterexample demonstrating the need for

the second order condition in the hypothesis of Theorem 6.
Example 2. Here all the assumptions in Theorem 6 are satisfied, except for a

slight weakening of part (c) of the sufficiency conditions, and (P) is stable of
degree 1. But (P) is not stable of degree 2. The problem consists of minimizing

fo(xl, x2) 4x1(x2 1) + x
over S {x (x l, X2)e R21 =< X subject to

0 --L(X1,X2)-- X 1.

3X’/3 attained onlyThe minimum of fo(xl, x2)in x2 for fixed xl is -4x
at x2 -xl/3, and this minimum is a strictly decreasing function of X as long
as x _> -1. Thus (0, 0) is the unique optimal solution to (P) in the strong
sense. The quadratic growth condition is satisfied, because fo is bounded below
on S. Furthermore, the Kuhn-Tucker conditions hold at ff with 1 4 and with
the gradients Vf0(ff) and Vf() nonzero (thus one has "strict complementarity"
in (4.17), and moreover "the gradients of the active constraints at ff form a linearly
independent set"). Although the Hessian matrix H of the function l(x)= fo(x)
+ Yfl(x) at does not have the positive definiteness property required in (c)
of the sufficiency conditions, it is true at least that 1( + z) > l() for every nonzero
z such that (5.3) holds (i.e., z. Vfl(ff) 0). However,

p(ul) -4u 3u’/3 for u e [- 1, 1].

The function p is continuously differentiable around u 0, but it does not
majorize near 0 any function r of class C2 such that 7z(0) p(0) 0. Thus (P) is
stable of degree but not of degree 2.

Remark. We have already noted towards the end of 4 that, if (:, ., ?) is a
saddle point of L and the functions f are differentiable at ff (and ff e int S), then
ff and .9 satisfy the Kuhn-Tucker conditions. In fact, if everyf is twice-differentiable
at if, then the standard second order necessary conditions [5, p. 25] are satisfied,
i.e., besides the Kuhn-Tucker conditions one has condition (c) at the beginning
of this section, but with the inequality z. Hz > 0 weakened to z. Hz >__ O. This is
true because (5.15) holds (with in place of r) for all x in some neighborhood of, so that the right side of(5.15) must have a local minimum at x ft. From (5.21)
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and (5.22), it is clear that the latter implies

(5.28)
d2

0 <_ --[fo( + tz) + y,f( + tz)3l,=o
ielo

for all z satisfying (5.3), and this derivative equals z. Hz.
Thus for twice-differentiable functions f and S open, the situation can be

summarized as follows. If (, y:, ) is a saddle point of L for some >= O, then
and y: satisfy the standard second order necessary conditions for optimality, and
is (globally) optimal. On the other hand, if and satisfy the standard second order
sufficient conditions and is the unique (globally) optimal solution in the strong
sense, and the quadratic growth condition is satisfied, then (, f:, ) is a saddle point
of L for some > O.
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OPTIMAL CONTROLS WITH PSEUDODELAYS*

J. WARGA?

Abstract. This paper investigates questions of existence and necessary conditions for ordinary,
relaxed, and approximate solutions of optimal control problems defined by functional-integral
equations of the form

y(t) f  (dz) ff(t, z, s, (y)(z), u(s), b)v(z)(ds)

and subject to unilateral restrictions. Here t, T, S, T and S are compact metric spaces, u’S R
and b are the control function and parameter, x and v(z) are given positive Radon measures, and is
a given functional transformation. These equations generalize differential and integral equations with
delays that are characterized by the additive coupling of the delays of the control functions. The paper
also includes a brief discussion of the ways of extending these results to conflicting control problems
defined by similar equations containing the additional arguments Up(S), bp that refer to adverse con-
trols. The methods, concepts and arguments used here strongly rely on the author’s previous work
on similar problems in which the controls were not subject to pseudodelays.

1. Introduction. There is a fairly large and growing literature concerning
optimal control problems involving delays or, more generally, functional-integral
equations (see, e.g., [1]-[2], [4]-[6], [8]-[12]). Two types of such problems have
attracted particular attention. The first type involves equations such as

(1.1) dy(t)/dt f(t, y(hl(t)), Y(hk(t)), u(t)) a.e. in It0, tl]

or, more generally,

(1.2) y(t) f(t, "c, y, u(’c))lu(dz) (t T),

where, for each z, f(t, "c, y, u(r)) may depend on the function y and not only on
y(r), and thus the state function y may be subject to delays or more general trans-
formations. The second, more general, type involves equations such as

(1.3) dy(t)/dt f(t, y(h(t)),..., y(hk(t)), u(ll(t)), U(l(t)) a.e. in [to, tl],

or, more generally,

(1.4) y(t) ff(t, r, y, U)l(dz) (t T),

where both the state function y and the control function u may undergo trans-
formations.

For a large class of problems of the first type there exists a reasonably com-
plete theory, including existence theorems for various kinds of optimal .solutions
(relaxed, ordinary, and approximate), statements about the interrelationship of
these solutions, and necessary conditions for both relaxed and ordinary minima;
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and this theory encompasses functional restrictions such as, for example, the
"unilateral" restrictions of the form y(t)A(t) (t T), or, more generally,
g(y)(p) A(p)(p P), where P may, but need not, coincide with T. This theory is
worked out in detail in 14, Chaps. VII, VIII] for equations of the form

(1.5) y(t) ff(t, , (y)(), u(), b)l(d) (t T),

where T is a compact metric space, / a nonatomic positive Radon measure in
T, u is a control function subject to a restriction of the form u(t) R # (t)/-a.e., b is a
control parameter, the state function y is an element of either C(T, [’) or L(/, ),
and is a differentiable transformation between appropriate Banach spaces.
Moreover, as we shall see below, the same methods can be applied with relatively
small modifications to the general problem defined by equation (1.2).

The situation appears to be quite different for nonlinear problems of the
second type. With one exception, all of the published results in this area are con-
cerned with either necessary or sufficient conditions for ordinary minima. The
one exception concerns problems defined by equation (1.3) for which it is assumed
that each h or/ is either the identity, or an iterate of some function h, or of its
inverse h- . Subject to this special assumption, there exist results [13, pp. 119-120,
[14, pp. 402-406] similar to those previously mentioned for problems of the first
type, as well as results of Sabbagh [12] applicable to certain special variational
problems.

Our present purpose is to derive an analogous theory for a class of problems
of the second type, in which the delays or their analogues are additively coupled.
Specifically, we consider functional-integral equations of the form

(1.6) y(t)= fT fsf(t, s, b)v(’c)(ds) (t T),

where Tand S are compact metric spaces and tc (resp. v(:) ( T)) is a given positive
Radon measure in T (resp. S). In its general form, equation (1.6) provides an
example of an optimal control problem with state functions y and control functions
u defined on different domains, namely T and S. In the special case where S T

[to, tl] E, 6a denotes the Dirac measure at fl, x is the Borel measure in T,

(y) (yo hi,"’, y ha), v(r) 6.)
j=l

and

equation (1.6) reduces to the functional-differential equation

(1.7)
dy(z)

f(z,/i(z), y(h(z)), y(h(z)), u(/j(z)), b) a.e. in T.
d’ j=

In particular, if/j(r) r (j 1, 2, ..., l, : T), then it is proper to say that the
control function in (1.7) is subjected to delays. By analogy, we refer to the control
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function as it appears in (1.6) as a control with pseudodelays. Thus a pseudodelay
is a transformation which, in special cases, may involve discrete or continuous
delays and advances but which can also be defined in situations where there is
no past or future.

We shall limit our present investigations to the case where the state functions
y are continuous. However, entirely parallel arguments can be applied, on the
pattern of [14, Chap. VIII], in the case where y is chosen from Lp or even Orlicz
spaces.

Our approach to equation (1.6) is conceptually quite simple. A relatively
simple assumption about and v (Assumption 2.1(i)) ensures that there exist a
nonatomic Radon measure/ in S and Radon measures 2(s) (s S) in T such that

(d’c) f h(’c, s)v(’c)(ds) l(ds) f h(’c, s)2(s)(dz)

for appropriate functions h, and thus equation (1.6) can be rewritten in the form

(1.8) y(t) f qS(t, s, y, u(s), b)lt(ds) T),

where

c(t, s, y, u(s), b) ff(t, r, s, (y)(r), u(s), b)2(s)(dr,).

We then study equation (1.8) in much the same way as we studied the equation

y(t) if(t, , (y)(:), u(:), b)la(d’c) T),

in [14, Chap. VIII.
Existence theorems for optimal solutions (ordinary, relaxed, and approx-

imate) are presented in 2. In 3 we discuss necessary conditions for ordinary
and relaxed optimal solutions, as well as necessary conditions for the existence
of a strict q/-solution, that is, an optimal ordinary solution that is not optimal
among relaxed solutions. In 4 we discuss, without going into detail, ways of
extending these results to conflicting control problems with "simultaneous"
pseudodelays. Finally, the proofs appear in 5.

2. Definitions anl existence theorems. We shall use, with slight modifications,
the notation of [14], and we briefly summarize the pertinent portions of it here.
If X is a compact metric space, we denote by C(X, ") the Banach space of con-
tinuous functions on X to N" with the sup norm[. [op, by Znoel(X) the a-field
of Borel subsets of X, and by frm (X) the set of all Radon measures in X identified
with C(X)* (the topological dual of C(X) C(X, N)) and endowed with the weak
star topology; then frm + (X) (resp. rpm (X)) represents the subsets of frm (X)
whose elements are positive (resp. probability) measures. We denote by C(X, W)
the set of all h C(X, ") such that h(X) W ". For given 2 frm + (X),
p e [1, ] and me {1,2,...}, we represent by LP(2, N’) the usual space LP(X,
2;o,(X), 2, N’), by L(2, V) the set of all h e LV(2, R’) such that h(x) V 2-a.e.,
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and we write LP(2) for LP(/],, ). We denote by A the interior and by A the closure
of a set A, by ’(Z) (resp. (Z)) the space of all nonempty (resp. compact and
nonempty) subsets of a metric space Z (with the topology of the Hausdorff semi-
metric (resp. metric)), and by d[x, A] the distance from a point x to a set A. We
also write ___a for "equal by definition" or "is defined as".

We assume given compact metric spaces P, R, S and T, a set B of "control
parameters" which is a convex subset of a real vector space with a sequentially
compact topology in B, closed sets W = " and V c Item, a nonzero measure
x frm + (T), and functions

4"C (T, W) L(x, V), v’T frm + (S), A’P :([,,2),

f:T T S V R B’, g=(go,gl,gz)’C(T,V) B

--, R x m x C(P,

We now state our first set of assumptions.
ASSUMPTION 2.1.
(i) v" T frm + (S) is K-measurable [or, equivalently, r .fc(s)v(’c)(ds) is x-

measurable for each c C(S)], 0 < x-ess sup v(’c)(S) < , v(-c)({s})x(d-c)= 0 for
each s S;

(ii) f(.,.,.,v,r,b)is Borel measurable on T T S for each (v,r,b)
V R B; f(t,r,s,.,.,.) is continuous on V R B for each (t,r,s) T
xTxS;

suPt,r f f lf(t, "c,s,.,’,’)lsupV(’c)(ds) < o(3"

,,--,,limf(dr)flf(t,’c,s,.,.,.)-f(t’,-c,s,.,.,.)lu,v(r)(ds)-O (t T);

(iii) g and are continuous.
We can deduce from Assumption 2.1(i) that the relation

p(E) f v(z)(E)x(dz) [Ee XBorel(S)]

defines a nonzero nonatomic measure p e frm + (S). (The proof of this assertion
follows from [14, X.I.1, p. 482] and the observation that a measure in frm + (S) is
atomic only if it has point atoms.) We assume given a (set-valued) mapping
R # "S- ’(R) and an "abundant set" // of "original control functions" as
defined in 14, IV.3, pp. 279-281] (with T replaced by S), but suggest that the
reader who is unfamiliar with these definitions restrict himself to the important
special case where R # is a/-measurable mapping on S to s((R) and q/is the set
of all /-measurable selections of R # (that is, functions u’S --, R such that u(s)
e R # (s)/-a.e.). We define 5 # as the set of all t-measurable a’S --, rpm (R) such
that ,:rR(s))= -a.e. The original control functions are imbedded in 9# by
identifying each u’S ---, R with the function s 6,c (where, as before, 6 is the

In other special cases, an abundant set" 0//of original control functions may be restricted to
include only/-simple or/t-piecewise continuous selections of R , and under certain conditions [14,
Remark, p. 287] we may even choose ’ as the set of all continuous u" T--, R.
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Dirac measure at r). The set* is, in turn, embedded in LI(/, C(R))* and endowed
with its relative weak star topology [14, Chap. IV]; the embedding is accomplished
by identifying each a 5# with the linear functional h ---, kt(dt)h(t, r)a(t)(dr).

The optimal control problem that we consider is specified, in its "original"
form, by setting

F(y, u, b)(t) - f  (dz) ff(t, z, s, (y)(z), u(s), b)v(z)(ds)

(y C( T, W), u Oll, b B, te T),

if this relation defines F(y, u, b) as an element of C(T, W) and, otherwise, setting

F(y, u, b)(t) - y(t) + (1,0,..., 0)6

and by letting

OF(q/) g {(y, u, b)e C(T, W) x ql x Bly F(y, u, b)}
and

#’(@’) {(y, u, b) #F(ql)lgl(y, b) O, g2(Y, b)(p) A(p)(p P)}.
A triplet (.9, fi, ) q’(ck’) is a minimizing ql-solution if

go(, ) inf {go(Y, b)l(y, u, b) ’(k’)}.
A sequence ((yj, uj, bj)) in oF(q/) is an approximate q/-solution if

lim (Igl(Yj, bj)[ + sup d[.g2(yj, bj)(p), A(p)]) 0.
pep

An approximate -solution ((.9, j, j)) is a minimizing approximate @/-solution if

lim go(.gj, bj) __< lim.infgo(yj, bj)

for every approximate q/-solution ((yj, uj, bj)).
We introduce the relaxed optimal control problem by setting

z, s, v, a(s), b) - fy(,, s, v, r,f(t, b)a(s)(dr)

((t,,s,v,b) T T S V B,a#),

and defining F(y, a, b), oF(Se), (Se#) and a minimizing 5e#-solution just as
before but with q/, u replaced by 5 #, a, respectively. We refer to a minimizing
5e #-solution as a minimizing relaxed solution.

We can now state our first existence theorem.
THEOREM 2.2. Let Assumption 2.1 be satisfied and,( #) be nonempty. Then

there exists a minimizing relaxed solution (., if, ).
Iffurthermore, is the unique solution in C(T, W) ofthe equation y F(y, #, )

and there exists a neighborhood G of in # such that the equation y F(y, u, )
has a (not necessarily unique) solution y for all u f’] G, then there exists a mini-
mizing approximate ql-solution ((yj, uj,)) such that limj(y, uj)= (,, if) in C(T,
W) x
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The applicability of the second part of Theorem 2.2 is contingent on our
ability to determine whether the equation y F(y, , b) has a solution y for
fixed a and b, and whether such a solution is unique. The uniqueness question
also comes up in the necessary conditions that we discuss in 3. We refer the
reader to Hale’s book [7] for results pertaining to functional-differential equations,
and to [14, II.5.A-C, pp. 200-210], where questions of existence are discussed for
fairly general functional-integral equations and uniqueness criteria are estab-
lished for "hereditary" functional-integral equations over an arbitrary compact
metric space T. (These equations are generalizations of Volterra-type integral
equations over an interval.)

The next theorem describes certain convexity conditions that ensure the
existence of a minimizing q/-solution, and it generalizes the well-known existence
theorem of Filippov [3, Thm. 1, p. 76], as well as [14, Thin. VII.1.4, p. 410] that
applies to problems defined by equation (1.5). Before stating this theorem, we
observe that it follows from Assumption 2.1(i) (see, e.g., [14, X.I.I-X.1.3, pp. 482-
487]) that there exist y frm + (T x S) and a /-measurable 2:S --, rpm (T) such
that

(2.3)

h(t, s)y(d(t, s)) ; x(dt) f h(t, s)v(t)(ds)

fl(ds);h(t, s)2(s)(dt) (k LX(y)).

THFOREM 2.4. Let Assumption 2.1 be verified, R # :S 3f(R) be a l-measurable
(set-valued) mapping, ql the set of all t-measurable selections of R e, and 5 # the
set of all p-measurable a:S ---, rpm (R) with r(s)(R#(s)) l-a.e. Let

qS(t, s, y, r, b) a__ .ff(t, z, s, (y)(z), r, b)2(s)(dr)

[(t,s,r,b)e T x S x R x B, yeC(T, W)],

and assume thatx(5’#) is nonempty and there exists fl frm + (T) such that fl(E) > 0

for every open E T and, for l-a.a, s S and all b B and y C(T, W), the set

{4(., s, y, r, b)lr Re(s)}
is a convex subset of the vector space of all (equivalence classes of) -measurable
functions on T to [".

Then for every choice of a minimizing relaged solution (,, & b) (of which at

least one must exist by Theorem 2.2), there exists ql such that (., ft, b) is a mini-

mizing relaxed solution (and, a fortiori, a minimizing -solution).
Remark. It is easily verified that the assumption about the existence of/3

can be replaced by the assumption that there exists a dense subset T’ of T such
that, for/-a.a, s e S and all b e B and y e C(T, W), the set of functions

(/)(., s, y, r, b)lr,lr e R # (s)}
is convex, where 05(., s, y, r, b)lr, is the restriction to T’. Indeed, given such a set
T’, we may choose a dense denumerable subset {:1, :2, "} and let

fl(E) __a . 2 E e Y’Borel(T) ].
rjeE
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3. Necessary conditions for relaxed and original minimum. In order to discuss
necessary conditions for a minimum, we shall require some additional definitions
and assumptions. We shall apply, in particular, the concept ofa (Fr6chet)derivative
relative to a set 14, p. 167]. Specifically, if f and are Banach spaces, A a con-
vex subset of f with a nonempty interior, a A, and h:A - , then we say that
h’(a) is the derivative of h at a whenever h’(a) B(, o) (the Banach space of con-
tinuous linear operators on to ) and

limlAxl-Xlh(a +Ax)- h(a)- h’(a) Axl =0 as Ax0, AxA-a, Ax0.

We define partial derivatives accordingly, and write h(a, b) or lh(a, b) and
hb(a, b) or @2h(a, b) for the derivatives of h(., b) at a and of h(a,. at b. If A is a
convex subset of a vector space, a Banach space, fi, a A, and h:A , then
we denote by

Dh(gt;a ?t) a=. lim -[h( + (a ))- h()]
+0

the directional derivative of h at fi in the direction of a. We write Dlh(fi, ; a 2)
and D2h(, b" b b) for the partial directional derivatives of a function h(.,. ).
Finally, we denote by + the simplex

(0,...,0")e’’+110i0, 0;
j=O

and define s ---, 2(s)" S --, rpm (T) as in (2.3).
THEOREM 3.1. Let (., & b) be a minimizing relaxed solution, and assume that

(i) has a continuous derivative;
(ii) v satisfies Assumption 2.1

(iii) A(p) is a convex body (i.e., a closed convex set with a nonempty interior)
for each p P and the set

G(Ao) a__a= {(p, v)e P x

is an open subset of P x
(iv) for each choice of L a_. (bo, ..., bm) Bin+ there exist a closed convex

neighborhood VL V and a closed convex neighborhood --L of 0 in -,, + such that
(;) is in the interior of L(:, VL) and the functions

and

(t,z,s,v,r,O) fL(t,.c,s,v,r,O) a__ t,z,s,v,r, + O;(bj- )
j=O

Tx Tx S x VL x R x ’-L___n

(y, O)- gL(y, O) g y, + OJ(bj -) "-l(L(tc, vL)) -L
j=O

--, [ x x C(P, m)

have the following properties"
(a) f(t, z, s,., r, has a derivative f(,o(t, z, s, v, r, O) for all (t, z, s, v, r, 0)

e T x T x S x V x R x and both f and f satisfy the same conditions(v,O)
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as f in Assumption 2.1(ii) (with b replaced by 0); and
(b) gL(.,. is continuous and has a derivative at (, 0).

We assume, furthermore, that
(c) the equation Ay Ay has Ay 0 as its only solution in C(T, "), where

is defined by

(,Ay)(t) f c(dz) ff(t, , s, (.)(z), 8(s), )(’(.) Ay)(z)v(z)(ds)

(Aye C(T, N"), e T).

Then I has a continuous inverse, (I )-1 I is a compact operator
in C( T, "), and there exist 1o >= O, Nm, frm + (T), L 1(, ,,), o) frm + (P)
and L a(o), Nm2) such that

I((t)]-- (teT), lob(p)]-- (peP), lo +l/al +co(T)>0,

(1) (t).x(t)(dt) _, lilgi(f,)(I- )-Ix
i=0

+ f 69(p) [ag2(., )(I ff)-lx] (p)og(dp)

(x e C(T, ");

((dt) f ((t) f(t, z, s, (.)(z), (s), )2(s)(dz)

(2)
/((dt) |((t).f(t, z, s, ()(z), r, [)2(s) (dz)

for p-a.a, s S

f ((dt) f .(ds) f ((t). D6f(t, r, s, (y)(r), if(s), ;b-)2(s)(dz)

(3)
+ E li" D2gi(f:, ; b [) + (p). D2g2(., ; b )(p)o)(dp) _>_ 0

i=0

(beB);

(4) (P)" g2(2P, b)(p) max (Y_o(p) a for co-a.a, p e P.
aA(p)

THEOREM 3.2. Let og be an abundant set (or consider the special case where og
is the set of all p-measurable selections of a p-measurable R # :S SU(R)), and let
all the assumptions of Theorem 3.1 be satisfied except that (.P, tY, ) is assumed to be
a minimizing all-solution and not necessarily a minimizing relaxed solution. Assume,
furthermore, that for each choice of L a_ (bo, bm) Bin+ a, a b’# and 0 -L,
the equation

y=F y,a, + OJ(bj- )
j=O
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has a unique solution y yL(a, O) in -X(L(T, VL)). Then the conclusions of
Theorem 3.1 remain valid.

The next theorem refers to strict #-solutions, that is, minimizing q/-solutions

that are not at the same time minimizing relaxed solutions. We shall refer to a
point (,9, if, ) C(T, W) x # x B as admissible if it belongs to s’(5 #); we shall
call it extremal if there exist corresponding/o,/1, CO, (, and (, as described in the
statement of Theorem 3.1, and that satisfy together with (y, 7, b) the relations
(1)-(4) of that theorem. Thus Theorems 3.1 and 3.2 assert that, under appro-
priate conditions, every minimizing relaxed or g-solution is admissible and
extremal (but, as it is well known, the converse is generally not true). We refer to
an extremal point as abnormal if there exists an appropriate choice of corres-
ponding lo, 11,12, O9, , , with lo 0.

THEOREM 3.3. Let be an abundant set,

{(y, a, b)s’(5#)lgo(y, b) __< g0(Y,/)},
and assume that every point (y, , b)e satisfies all the assumptions made in
Theorems 3.1 and 3.2 about (y, , ) except that it need not be a minimizing (ll- or
relaxed) solution. Then (y, , ) is a strict #-solution only if it is extremal, the set

{(y, r, b) s’(5 #)]go(Y, b) < go(Y, g)}
is nonempty, and every element of is extremal and abnormal. (It follows there-
fore, under these conditions, that the problem can have a strict #-solution only if
every minimizing relaxed solution is abnormal.)

4. Cnflieting controls with pseufloflelays. We observe that the results of
[14, Chaps. IX and X] are applicable in the case of conflicting control problems
with both controls subject to "simultaneous" pseudodelays. Let Re and Be be
compact metric spaces, Rff "S ’(Rp) defined similarly to R
replacing R, and let // be an abundant set of "adverse" original control functions

ue’S Re. Let the "original" conflicting control problem be defined by the
equations

(1) y(t)= f (d) f(t,,s,(y)(),u(s),b)v(z)(ds) (t T),

(2) 9(t) f (dz) ff(t, z, s, u(s), b, Up(S), bp)9(z)(ds) (t T),

We assume that these equations have unique solutions y(u, b)and .9(u, b, Up, b,),
and that the problem consists in choosing (u, b) // x B to minimize Xo(U, b)- ho(y(u, b)) subject to the restrictions

x x(u, b) h (y(u, b)) 0

x2(u, b)(Up, bp) h2(.9(u, b, up, bp)) A ’ for all (Up, bp) qlp Bp.

We may assume that and v , otherwise determining the Radon-
Nikodym derivatives of and with respect to + and of v(z) and (z) with
respect to v(z) / (z), and modifyingf and f accordingly. With this accomplished,
we determine the corresponding p frm + (S) and "relax" the problem, replacing
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u by a p-measurable a:S -, rpm (R) and up by the corresponding hyperrelaxed
control function [14, Chap. X]. We can verify (by arguments analogous to those
of Theorem 2.2) that the conditions of the existence theorem [14, X.1.8, p. 493]
for optimal relaxed and approximate solutions are satisfied when f satisfies
Assumption 2.1(ii) and f its analogue. It appears that the necessary conditions of
14, X.2.4, p. 499] can be applied by methods analogous to those used for
autonomous ordinary differential equations in [14, X.3.5]; but we have not
carried out the details of these derivations or determined the exact form of con-
ditions that must be imposed on f, f, and hi.

5. Proofs.
5.1. Proof of Theorem 2.2. Let 7 and 2 be defined as in (2.3) and 05 as in the

statement of Theorem 2.4. By Assumption 2.1, (2.3), and Fubini’s theorem, for
each (y, a, b) (5e #) and T the function (z, s) f(t, z, s, (y)(z), a(s), b) is
7-integrable and

y(t)= f  (dr) ff(t, r, s, (y)(), b)v(z)(ds)

f.(ds)f2(s)(d )ff(t, , s, (y)(r), r, b)a(s)(dr)

p(ds)fa(s)(dr)ff(t, r, s, (y)(r), r, b)2(s)(dr)

(t, s, y, r, b)a(s)(dr)

f qS(t, s, y, r(s), b)p(ds),

where, as.we did for f, we write

4,(t, s, y, r(s), b) for f d/)(t, S, y, r, b)a(s)(dr).

Furthermore, we have

and

[y(t)[ f If(t, z, S, (y)(z), r(s), b)lv(r)(ds)

<= sup K(d’c) ; ’f(t’’ z’ s’ )lSupv(z)(ds)

[y(t) y(t’)l <= fro(dr)ylf(t,r,s,.,.,.)-f(t’,r,s,.,., )lsuvV(r)(ds) ,, O.

Thus the set Y __a {yl(y, a, b)e z/’(9 )} is bounded and equicontinuous and there-
fore conditionally compact in C(T, "). Since 5# is sequentially compact [14,
IV.3.11, p. 287] and so is, by assumption, the set B, it follows that every sequence
in (Se#) has a convergent subsequence.
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Now let (yj, aj, b) e s( #) (j 1, 2, ...) and lim (yi, o, bj) (y, & b) in
C(T, R") x # x B. Since V and W are closed, it follows that y(T)c I4/and
(y)(z) e V x-a.e. Thus, for all (t, s, r) e T x S x R and x-a.a, z e T,

lim J’(t, r, s, (y)(z), r, b) f(t, z, s, (y)(z), r, b),

and, since f(t, z, s,., .,. is continuous and R is compact, the convergence is
uniform for all r e R. It follows, by a variant of the dominated convergence theorem
[14, 1.4.36, p. 87], that

lim [qS(t, s, yj, r, bj) qS(t, s, ., r,/)]

lipa. If(t, "c, s, (yj)(q:), r, bj) f(t, z, s, (.)(z), r, b)]2(s)(dr.)

=0 for all(t,s) eTx S, uniformly rotteR"

hence

lim [4(t, s, y, a(s), b) 4(t, s, ., o-(s),/) 0 [(t, s)e r x SI,

and, again by the dominated convergence theorem,

liy.n f loS(t, s, yj, a(s), b) dp(t, s, , a(s), )]p(ds) 0 (t r).(2)

Next we observe that, for each (t, y, b) T x C(T, W)x B, the function
(s,r) dp(t, s, y, r, b) belongs to Ll(p, C(R)). It follows [14, IV.I.ll, p. 272] that

lipa f dp(t, s, f, aj(s), )la(ds) f dp(t, s, f, (s), )p(ds) (t T).

We combine this relation with (1) and (2) and conclude that

yj(t) lim f dp(t, s, yj, aj(s), bj)p(ds)lim
J

f qS(t, s, .p, (s), )p(ds)

F(y, 8, b)(t) (t 6 r),

and

(gl(Y, ), g2(.P, )(P)) lim (gl(Yj, bj),g2(Yj, bj)(p))e {0} x A(p) (peP).

Thus (.p, & ) e se’( # ), showing that s’(_9 # is sequentially compact andFI( #

sequentially continuous. The existence of a minimizing relaxed solution now
follows from [14, V.I.1, p. 296].

To prove the second part of the theorem, we observe that the same argument
as above shows that v,f(,9 #) is sequentially compact and F[( *) sequentially
continuous. Then our conclusion follows from [14, V.1.2, p. 297]. Q.E.D.
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and
5.2. Proof of Theorem 2.3. Let (y, 7, ) be a minimizing relaxed solution,

h(t, s, r) a__ c( t, s, y;, r, ).
Then the arguments of Theorems IV.3.14 and VII.1.4 of [14, p. 291 and p. 410]
apply directly, with (t,z), T x T, v x / replaced by (t, s), T x S, fl x /, res-
pectively" our conclusion follows from [14, Thm. VII.1.4], as modified. Q.E.D.

5.3. Proof of Theorem 3.1. Let K ((ao, bo), ..., (a,,, bm)) (//# x B)"+ 1,
L a_ (bo,..., bin), Yu, a__ -X(L(t, vL)),

and

a(0) - + 0J(rj- ), b(O) + OJ(bj- ),
j=O

fK(t, z, v, O) a--4 ff(t, , s, v, (O)(s), bK(O))v(z)(ds)

fL(t, "C, S, V, al(O)(s), O)v(z)(ds)

(t, r e T, v e V, 0 (0,
ffi(y, O) a___ F(y, al(O), bI(O)) (y e YI,O -L).

Then we verify (essentially as in [14, p. 415, Step 2]) that

O)(t) ff(t, r, (y)(z), O)x(dz) (y Y, 0 L, T),

and ff has a continuous derivative such that

ff(y, 0)(Ay, A0)(t) ..o,(t, , (y)(r), o)((’(y) y)(r), AO)x(dr)

(Ay C(T, "), AO + ).

It follows that Fr(, & b) ,
DF(, (, b) (a, b) (, b))(t) (dr) If(t, r, s, ()(r), a(s) (s), b)

(5) + D6f(t, r, s, (y)(r), e(s), 5’

b- 5)]v(z)(ds)

((a,b)e x B, t6 r),

and, by [14, II.5.5, p. 207], ff is a compact operator, I has a continuous
inverse, and (I )- I is compact. We may therefore apply [14, V.2.3, p. 303]
to conclude that there exists (lo, l,/2) e [0, ) x R x C(P, R)* such that
10,

/[g(y, )o (I )-D2f(P, (, ) (, b) (, )) + D2g(, )] 0
(6)

((a, b)e* x B),
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and

(7) /2(gz(Y,/)) 12(c) (c e C(P, Nm2), c(p) e A(p), p e P).

We can represent le (e.g., [14, 1.5.9(2), p. 117]) by co efrm + (P) and
6) e L1(o, Nm2) such that

16)(p)l=l (peP)and lex=J6)(p).x(p)co(dp) (xeC(P,N":)).

We may similarly represent lolg(,)o(l- )-1 by efrm+(T) and
e LI(, "), and these two combined representations and :/: 0 yield statement

(1) of the theorem. Statement (4) of the theorem follows from (7) and [14, V.2.5,
p. 307]. When we apply these representations and (5) to relation (6), we obtain

(8)
+ D6f(t, z, s, (.)(’r), (s), b" b )]v(z)(ds)

f+ l,D2g,(f, " b ) + 6)(p)" D2g2@, ’b )(p)o(dp)
i=0

>= 0 ((a,b)e&#* x B).

For a cy, this relation and (2.3) yield statement (3) of the theorem.
It remains, therefore, to prove statement (2) of the theorem. We set b b

in (8), and apply (2.3) and Fubini’s theorem to obtain

(9) f .(as) r e(at) f (t). f(t, ,s, ()(), a(s) ff(s),)2(s)(dz) >= O

Because of our choice of R e (see [14, IV.3.1, IV.3.2, pp. 280-281]; in particular,
by a theorem of Castaing [14, 1.7.8, p. 152] if R#(s) is closed tt-a.e.), there exists an
at most denumerable set {u, u,...} of tt-measurable selections of R e such that
{u(s), u2(s), ...} is dense in R*(s) for tt-a.a, s e S. For each j l, 2, and each
/-measurable set E, we set

(s) (s E).
Then (9) yields

(10) >= f (dt) f (t) f(t, z, s, ()(z), if(s), )2(s)(dz)

(j 1,2, g-a.a, s e S).

Since the function r (dt)((t) f(t, z, s, (p)(z), r, )2(s)(dz) is continuous for
/-a.a. s e S (as a consequence of the Lebesgue dominated convergence theorem)
and {ul(s), Uz(S), ...} is dense in Re(s) for t-a.a. s e S, statement (2) of the theorem
follows from (10). Q.E.D.
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5.4. Proof of Theorem 3.2. We shall continue to use the notation introduced
in the proof of Theorem 3.1. We shall also write

and

Fr(y, tr, O) a__ F(y, tr,

If we replace B, f by ,fr in the proof of Theorem 2.2, then this argument
effectively shows that F/I YK 5e is continuous. (This argument remains
unchanged if we choose the convergent sequence ((yj, aj, 0j)) in Y # ,
its limit remaining in the same set because Y 5 is closed.) Furthermore,
the same argument shows that the set 37L(5# ) is conditionally compact in
C(T, n). These observations and the properties of ff derived in the proof of
Theorem 3.1 show that [14, V.3.2, p. 310] is applicable and there exists, therefore,
a nonzero (1o, 11,12) [0, Z(3) I C(P, m2), satisfying relations (6) and
(7) in the proof of Theorem 3.1. From this point on, our arguments proceed as
in that proof except that the set {Ul,U2, ...} (with {Ul(S),U2(S), ...} dense in
R #(s) p-a.e.) is chosen out of ’. Q.E.D.

5.5. Proof of Theorem 3.3. By [14, V.3.4, p. 314], is nonempty and
every element (y, tY, b) of it is extremal and abnormal in the sense of [14, Def.
V.2.0, p. 298]" that is, there exists a corresponding nonzero (/o, 11,/2) [0, )

ff" C(P, m.). such that relations (6) and (7) in the proof of Theorem 3.1
are satisfied and lo 0. It follows then, as in the proof of Theorem 3.1, that
(, & b) is extremal and abnormal in the sense defined here. Q.E.D.
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ON THE PROBLEM OF EVADING THE ENCOUNTER IN
DIFFERENTIAL GAMES*

E. F. MISHCHENKO

Abstract. In this paper is given a sufficient condition for evading the encounter in a differential

game with nonlinear controls.

Introduction. At present, several works are well known which advanced the
solution of the problem on evading the encounter in differential games quite far
(see, e.g., [11, I21 and [3i). However, the result of[1] remains simplified and, at the
same time, made sufficiently broad for applications. In this paper, a generalization
of this result is given to the case of games with nonlinear controls. This generaliza-
tion has been obtained by me together with N, Satimov.

1. Statement of the problem and formulation of the result. We shall consider
the differential game given by the equation

(1) Cz + f(u, v),

where z is a vector of an n-dimensional Euclidean space R", C is a constant square
matrix, u and v are the control parameters with u P and v Q, P and Q are
given nonempty compact subsets of p- and q-dimensional Euclidean spaces R"
and Rq, respectively, and f(u, v) is an arbitrary function, continuous in both of its
arguments, defined on Rp Rq. We shall assume that the set of game terminations
M is a linear subspace of the space R".

We shall say that it is possible to avoid the encounter in the game (1) (or that
it is possible to flee) if the following is true" for any initial value Zo R" with
z0 q M of the vector z, and for any measurable function u(t) according to which
the parameter u changes, there exists a measurable change v(t) of the parameter v
such that the point z(t), which is the solution of the equation

(2) Cz + f(u(t), v(t)), Zo z(O),

does not enter M for any value of the time t, 0 < < . In this connection, in
order to find the value v(t) of the parameter v at every instant of time >= 0, one
is allowed to make use only of the values u(s) and z(s) of the parameter u and
vector z for s __< t, and one is not allowed to utilize these values for s > t.

We now pass to the formulation of the result. We denote by L the orthogonal
complement of the subspace M in R", and let dim L v. Further, let W be a
linear, so far arbitrary, subspace of the space L. We denote by r the operation of
the orthogonal projection from R" onto W.

We shall say that the evasion condition is satisfied in the game (1) if there
exist a two-dimensional subspace W of the space L and a positive integer k such
that"

(a) each of the sets

rf(P, Q), rcCf(P, Q), rcC2f(P, Q), rcC- f(P, Q)

* Received by the editors May 29, 1973. This translation into English was prepared by K.
Makowski.

" Steklov Mathematical Institute, Academy of Sciences of the USSR, Moscow B-333, USSR.
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consists of a single point, and
(b) the set

R C-f(u, Q)
uP

contains an interior (with respect to W) point.
Henceforth, we shall denote by the distance from the point z to M, and by

r/ the distance from the point z to W. We shall denote by M the orthogonal
complement of W in R", and by a the distance from the point z to M

THFOREM (The theorem on evading the encounter). If the conditions (a) and
(b) are satisfied in the game (1), then the evasion is possible. Moreover, by an ap-
propriate choice of the evasion control v v(t), one can guarantee the following
estimate of the distance (t) from the point z(t) to M"

(t) _>_ ](0)TIr/(t)] for all >_ 0 and 0 < a(O) < ,
(3)

(t) kl(’Cl)7[r/(t)] for all >__ T and 1(0)--0,

where y[r/] is a monotonically nonincreasing function of its argument, is a positive
number which depends only on the game (1) and does not depend either on the initial
point of the game or on its progress, and r is a positive number which depends only
on the initial point of the game but not on its progress.

2. The proof of the theorem on evading the encounter. In this section, e, c,
co, c c2, c3 and c4 denote positive constants which depend only on the game
(1) but neither on its initial point nor on the controls u(t) and v(t). We shall denote
by the orthogonal projection of the point z onto W" rz . We shall assume
that an orthogonal coordinate system has been chosen in W and denote the co-
ordinates of the point " in this system by a and 2.

ASSERTION A. Since the set R contains an interior (with respect to W) point,
there exist a vector e R and a constant ca such that if a vector w W satisfies
the condition

(4) [wa[ < c,

and u(s) P is a measurable control, the equation

(5) rcCk- f(u(s), v) + w

given on the interval 0 <= s <= 3, has a measurable solution v(s) Q, defined on the
interval 0 <_ s <_ 3.

Proof Let be an arbitrary interior point of the set R. If the constant c is
sufficiently small, then, obviously, all the points + w belong to R for Iw] < c.
Therefore, for an arbitrary u e P, we have

(6) + w e rcC- f(u, Q).

In particular, + wl C- f(u(s), Q).
We consider the equation

(7) rcC- f(u(s), v)= + w 0 <= s <= 3.

By virtue of (6), there exist one or many solutions of (7). We shall show that a
measurable one can be chosen among them. For this purpose, we shall make use
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of the procedure which was employed in [4]. Namely, of all the values v(s) which
satisfy (7), we shall always choose v(s) (vl(s), vq(s)) whose component vl(s)
is smallest" from these, we shall always choose the ones whose component v2(s)
is smallest, and so on. (Smallest values do exist since, due to the continuity of the
function f, the set of v(s) which satisfy (7) is closed.) We denote the solution thus
obtained by Vo(S).

We shall prove by induction that the function Vo(S), 0 <= s <= , is measurable.
We assume that the components v(s), v(s),..., Vo (s) of the vector-valued
function Vo(S) are measurable on the interval 0 =< s __< r (there is nothing to assume
for r 1) and prove that the component Vo(S) is also measurable on this interval.
According to the well-known theorem of N. N. Luzin, there exists, for an ar-
bitrarily small number 6 > 0, a closed subset F of the interval [0, r] such that

r-1meas F > r 6 and the functions u(s), v(s),..., vo (s) are continuous on F.
We shall show that for any number a, the set of s F for which Vo(S) <= a is closed.
If this is not true, then there exists a sequence s, F, n 1, 2, ..., such that

6 >0(8) s.-, , Vo(S.) <__ Vo() ,
Since Iv(s)l const, for all 1, 2,..., q and s, a subsequence can be chosen
from the sequence s, on which the values of all the functions v(s) converge to

~i 2,... q. Obviously, ( )6Q. It follows fromsome limit values vo
the continuity of the functions v(s), 1, 2, ..., r 1, on the set F and from
formula (8) that

(9)
V’o=V i= 1,2,
< v()-VO 1"

,r-l,

Passing to the limit in the identity

Ck- f(u(s), v(s), vqo(s)) + wl

along the subsequence chosen, and making use of the continuity of the function
f, we obtain

r-I ))__ /_t_ Wl(10) 7tC- f(u(), v(D, vo (D, o,
By virtue of (9) and (10), v() is not a smallest value of v which satisfies the
equation

r- vqo)__l+ wa7zC-f(u(D,v(D,’’’,vo (D,Vo,"
which contradicts the definition of the function Vo(S). Thus, the function Vo(S) is
measurable on F and, since meas F > 6, where 6 is arbitrarily small, Vo(S)
is measurable for 0 < s < r.

Substituting the control Vo(S chosen into (7), multiplying the identity thus
obtained by (t- s)-/(k- 1)!, _< r, and carrying out the integration, we
obtain

(11)
(k 1)!

(t s)- rcC- If(u(s), Vo(S)) ds wt + l(t),

where
w w/k!, l(t) tkl/k!.
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Thus, in the game (1), there exists a constant c such that if any vector we L satis-
fies the constraint Iwl < c, and u(s) is any measurable control given on the interval
0 __< s __< r, then there always exists a special control Vo(S) for which the relation
(11) holds. In this connection, the vector-valued function l(t) does not depend on
u(s) and Vo(S).

ASSERTION B. Let the game (1) start at Ofrom the point zo, =Zol 1,o < 1,
and let it develop, for a given vector w which satisfies the constraint wl < c, under
the influence of the control Vo(S chosen in accordance with Assertion A. Then the
projection of the game trajectory onto W can be written down for <= in the form
(12) (t)= o + alt + + aktk + wtk + h(t)t,
where al, a2, a are constant vectors which depend on the point Zo but not on
the controls u(s) and Vo(S), and h(t) is a vector-valued function which, although it

depends on the choice of the controls, satisfies the constraint

(13) Ih(t)l < cz(1 + r/(0))t,

where c2 is a constant. Moreover, the constant C2 can be chosen such that the
following inequalities hold"

(14)
lal < c2(1 4- r/(0)), 1,2,..., k,

Ir/(t)- r/(O)l < c2(1 + r/(O))t.

Proof. According to the Cauchy formula, we have

(15) (t) rc eCzo + rc e-sCf(u(s), vo(s)) ds

Expanding the first term into series in powers of t, the integrand into series in
powers of s, and taking into account the condition (a) of and relation (11),
we obtain formula (12). The estimates (13) and (14) are obvious.

Assertions A and B reduce the problem of evading the encounter on the time
interval 0 =< __< r to the problem of choosing a vector w w(zo) wo constant
on this interval and such that inequality (3) holds for the curve (12).

The following three assertions C, D and E show that such a choice of a vector
w is possible if the length of the interval [0, :] is reasonably limited. In order to
prove this, we choose in the space W a coordinate system such that the point
has the coordinates (0,0), and let, in this coordinate system, a (a,a:),
w (w, w) and h(t) (h(t), h(t)). Then the equation of the curve (12) can be
rewritten in the form - (a +w +h (t))t,(t) o + at + + ak_ +
(16)

2 2 W22 2(t at + + ak_ + (a + + h2(t))t.
ASSERTION C. There exist constants e <= 1, Co and w such that, for

(17) :o Co[x/( + q(0))]

and w w, the following inequality holds for the first component of the curve

(16)-

(18) [l(’co) >_ /[-1 4- r/(’Co)]k.
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Proof. We choose

(19) Co ,-/c, e <= 1/(Co,/-oC2).
Further, we set

(20) wg
t.-’c

) > 0if(o + alto + + ak

) < 0.if(o + aro + + ak

It can be verified directly that the following inequality holds for w

(21) I’(o)1 2/[1 + (0)].
Therefore in order to prove Assertion C, it is sufficient to prove that decreasing,
if necessary, the number e, we obtain the inequality

(22) 2e./(1 + q(0)) => e/(1 + q(o))k,

or, equivalently, the inequality

(23)
+ r/(0) + r/(Zo)

1()- (o) >-- o.

By virtue of(!4), we have

(24)
r/(Zo)- q(O) < C2Co/-.+ r/(O)

Therefore (23) holds for a sufficiently small e, and Assertion C has been proved.
We first fix the value of e chosen and then, by the end of the proof of

Assertion D, decrease it again if needed.
Remark. We choose w in an entirely determined way w 1/2c or w -1/2c

(see (20)). However, it is not difficult to see that any w chosen, e.g., on the interval
[1/2c, 1/4c] or, correspondingly, on [-1/4c, -1/2c], is suitable.

The following assertion is most essential in the proof of the theorem on
evading the encounter.

ASSERTION D. Let the initial point o of the curve (16) satisfy the condition

Then there exist a vector w wo (w, w) and a monotonically nonincreasing
function 7 such that the following inequality holds on the interval 0 <= <__ Zo"

(25) I(t)l => 4],o[t/(t)].

In this connection, the first component w of the vector wo can be chosen in such a
way that inequality (18) holds simultaneously.

Proof. We denote the polar coordinates of the point ((t) of the curve (16)



EVADING THE ENCOUNTER 305

by p(t), q)(t). Further, we set

(26)

Then we obtain

(27)

Wak + + hi(t),
2 W2fl =a + + h2(t).

p(t)costp(t)= o+a]t+ + ak_ltk- + tk,
2 tk-p(t) sin (p(t) at + / ak- 4- fitk.

Multiplying the relations (27) successively by 1, t, t2, k- 1, we obtain

tk-1p(t)cos (p(t)= o + alt + + ak_ + tk...,

.k +tp(t) cos q(t) 0 + ot + + a_ 2tk- + ak_ + tk "",

(28) 2 fk-p(t) sin (p(t)= 0 + aZt + + ak_ + fltk ",

2 tktp(t) sin tp(t) O + a2t2 + + ak_ + fltk + "",

We shall consider these relations as a system of 2k linear algebraic equations in
the unknowns 1, t, z, ..., 2k- 1. Solving it formally with respect to the unknown
l, we find

(29) D

where D is the determinant of the system (28), and D is the determinant obtained
from D by replacing thefirst column by the column of the free terms of system
(28). We take out the common factor p(t) from the first column and set

(30) D p(t)D.

Then we obtain

(31) p(t)fi D.

Therefore, in order to obtain an estimate for p(t), one must estimate the deter-
minants/ and D.

The determinant D is a function of the parameters and ft. We denote this
dependence by the subscripts cz, fl" D D,. Moreover, this determinant depends
on o, ak-1, a, 2 which in turn depend on zo We shall not..., ak_l,
explicitly denote this dependence. We shall prove that given any fixed rectangle
H determined by the inequalities

(32) c__<=<02, fl_<fl=</32

there always exist a point (0o,/30) H and positive numbers r and 6, which depend
only on the size of the rectangle H and on the number k but not on o, a], ...,

2 such thatak- ak- 1,

(33) IDo+a,ao+aal >= r] o,

if only

(34)
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Indeed, one can see directly that D,,a is a polynomial in parameters and fl
of the following form"

k-1

i,j=O

Let p be the coefficient of the polynomial (35) with the largest absolute value. Then

(36) D,,a- p da, IPl klo,
where da belongs to the set {d} of polynomials of bounded degree, in each of
which there is at least one coefficient equal to one and all the remaining co-
efficients are not larger than one. This set is compact. Hence it follows easily that
there exists a positive constant which bounds from below the maximum values
of the modules of all polynomials of the set. Since the derivatives with respect to
and fl of a polynomial belonging to the set {d} are uniformly bounded from

above, the existence of numbers r and 6, which provide inequality (33), has been
proved.

We shall now choose an entirely defined rectangle 1-I. Namely, we shall
choose numbers e and (z2 such that, if the inequality

(37) el (Zk "+" W 2

holds, then the number w guarantees that (18) holds (see Assumption C). Then
we choose numbers fl and f12 such that, if the following inequality holds"

(38)

then the inequality

2 W2

(39) (w)2 + (w2)2 =< c

holds. Let (xo, flo) be a maximum point of polynomial (35) on this rectangle.
We set

2(40) w o ak, wg flo ak.

Then, obviously, we have

(41) D D,a Do+ hl(t),flo + h2(t).

Finally, we choose e so small that the following inequalities hold on the entire
interval 0 __< =< ro (see Assumption C)"

(42) ]h[(t)[ < 6, ]hZ(t)[ < 6.

Then the following estimate from below for the determinant D follows at once
from (33)"

(43) IOI->_ r,o,
We shall now estimate from above the module of the determinant/3. It follows

from inequality (14) that there exists a constant c3 such that the following in-
equality holds for 0 =< =< to"

(44) 131 C3(1 -1- r/(0))2k-.
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Comparing the inequalities (43) and (44) and setting

(45) 71 [r/o]

we obtain from (31)

r

C3 [1 + q(0)] 2k-1’

(46) p(t) >= 1Er/(O)] o

for any in the interval [0, ro]. Obviously, 71[r/] is a monotonically decreasing
function of its argument, which depends only on the game.

We now define the function 7o[q] by the following formula"

(47) o[] ,[n + CoCci.
Obviously, we have then for 0 =< =< o,
(48) 70[r/(t)] , [r/(t) + c2c0] 71 [/(0) + r/(t) r/(O) + c2c0] =< 71 [/(0)],

since Ir/(t) r/(0)l <- C2Co. Hence (25) follows from this and from (46). Assertion D
has been proved.

ASSERTION E. Let zo M \M. There exists a positive constant vl such that,
for all [0, r l] and for arbitrary controls u(s) and v(s) given on the interval
0 <= s <= 1, the point z(t)--which is the solution of(2)Jdoes not enter M. Further,
there exists a constant w] such that, for w w] the following inequality holds for
the first component of the curve (12)’

(49) I(,)1 >= (c/4)r].

Proof. The first part of this assertion is an obvious consequence of the com-
pactness of the sets P and Q, and of the continuity of the function f(u, v).

One can always assume that

Further, we set
1 -<- c/(4c2[1 + r/(O)]).

C
ifo+arl + +akrk1_>_0,

C- if0 + ar.1 +"" + a,rk < O.

Then (see (13))
CIC()l >__ [1/2c -Ih(l)l] >= [1/2c c2(1 + t/(0))Zl]zk 77k,

Assertion E has been proved. We note that, since z can be decreased as needed,
one can assume that Iz()l < (because Iz(0)l 0),

2.1. Proof of the theorem on evading the encounter. Let the evasion conditions
of be satisfied for the game (1). We choose a number e in accordance with the
assertions C and D, and denote by S the (n 1)-dimensional surface in the space
R" determined by the equation

(s) /( + ).
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Thissurface subdivides the space R" into two nonintersecting domains’the in-
terior one S_, which contains the subspace M and the exterior one S+. There
are only three possibilities for the initial point zo of the game (1)"

(i) Zo e S+,
(ii) zo M zo e S_,
(iii) zo e M \M, zo e S_.
If the initial point of the game belongs to the domain S/, then a control

v(t) can be chosen arbitrarily during some period of time. Let to be the first instant
of time at which the point z(t) hits the surface S. We take this time to as the new
beginning of time count, and the point z(to) as the initial point of the game. Ob-
viously, 1,o < e. Therefore, according to the rule in the discussions of Assertions
B, C and D, the vector Wo (w, wg) can be assigned to this point, and then,
according to Assertion A, also the special control vo(t) determined on the interval
0 __< N to. This control will provide the following inequality for the trajectory
of the game on this interval"

(52) Irz(t)l-- l(t) e
(1 + q(t))k2"

For :o, the point Z(o) will again appear in the domain S+. After this, the
process can be repeated.

Now, let the initial point zo of the game belong to the domain S_, but let
z0 M1. Then the control Vo(t can be activated at once, which will provide, by
virtue of Assertion D, the following inequality for 0 __< _< :o"

(53) Iz(t)l >_-

and, for o, the point Z(Zo) will again be in the domain S+.
Now, let the initial point zo satisfy the condition Zo e MI\M, zo e S_. In

this case, we choose the constants 1 and wl (w2 can be chosen in an arbitrary
way). Then the point z(t) will not enter M up to and including the time 1 (see
(49)). By virtue of the remark made at the end of the proof of Assertion E, we have
Itz()l < e. We take the point z(:l) as the initial one. Obviously, z(zl)M,
z(zl) e S_. Therefore, the following inequality holds for >__

(54) l(t)

The theorem has been proved.

3. Examples.
3.1. A control example. The motion laws of the pursuing and evading objects

are given by the respective equations

(55) 5 + e2 pu,

(56) j) + //.9 o-v.

Here, x, y, u and v are vectors of a Euclidean space E of dimension y >= 2, x is
llhe geometric position of the pursuing point, y is the geometric position of the
evading point, u and v are control parameters with lul _-< 1, Ivl _-< 1, and e,/3, a
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and p are positive numbers, where

(57) r > p.

The pursuit is assumed to be terminated at the time when x y. The problem is
posed whether the object (56) can evade the object (55).

We pass over to the corresponding differential game. To this end, we set

(58) z (z,, z2, z3) (x y, So, ).

Thus, z is a vector of the three-dimensional Euclidean space R E x E x E, and
the game is given by the following system of differential equations:

(59) 1 Z2 Z3, 2 --(Z2 + Du, 3 --/z3 -- 0).

The set P consists of all vectors (0,-pu, O), the set Q consists of all vectors
(0, 0, av), and the set M of game termination is given by the equation z 0.
Any two-dimensional subspace of the space L can be taken as W. It can be verified
directly that rcP rcQ 0. The set rtCQ is a two-dimensional ball of radius a,
the set rcCP is a two-dimensional ball of radius p. Therefore, the evasion conditions
are satisfied for a > p with k 2.

In view of the presence of friction > 0 and > 0, the velocities )?(t) and
.f(t) of the motions of objects (55) and (56) which start from the rest state ( 0
and 1 0)are bounded"

I>k(t)l p/o, 13(t)l r/p,

and the projection of the point z(t) onto M remains within a compact subset of
M for any t. Therefore, inequality (3) hasa particularly simple form for the game
(58), namely,

(60) [cz(t)[ c4[CZo[ 2,

where c4 is a constant which depends only on the game.

3.2. The problem of a "boy" and an "alligator". The motion laws of the
pursuing and evading objects are given by the equations

(61) 5/=u, .9= v,

where x, y, u and v are vectors of a Euclidean vector space E, v > 2, u and v are
the control parameters with lu] _-< and Iv] =< 1, x is the geometric position of
the pursuing object--the "alligator"-- and y is the geometric position of the
evading objectBthe "boy". The pursuit is assumed to be terminated when x y.

Setting z (z, z2, z3) (x, 9, y), we obtain the differential game with the
matrix

lt
Translator’s note. translated the Russian "crocodile" as "alligator", because this problem was

named after Prof. L. W. Neustadt’s famous pet alligator, Cookie. [K.M.]
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the termination set M {z, 0} and the sets P {(0, u, 0)} and Q {(0, 0, v)}.
It can be verified directly that the assumptions of the theorem on evasion are
satisfied also in this game, with k 1, and that, therefore, the inequality

(62) Irtz(t)l >_-

holds for any t.
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THE CHARACTERIZATION OF THE WEAK* CLOSURE OF
CERTAIN SETS OF INTEGRABLE FUNCTIONS"

CZESLAW OLECH

Abstract. Let K be a set of integrable functions from a Hausdorff metrizable topological compact
space T with a given regular Borel measure on it into an Euclidean space E. We assume that K has
the following property (P): for each measurable subset A of T and any two functions ul, u2 from K,
the function

)(,all "3t- )(.Tatl2 - K,where Za is the characteristic function of the set A.
In this paper we give the characterization of the closure i( of set K having property (P) in the

weak topology of the conjugate space C* of the space C of continuous functions from T into E. In
particular, we also obtain conditions under which the set K is closed in the weak topology w(L, C).

Introduction. The motivation to study the weak* closure of sets of L1 having
property (P) comes from the theory of optimal control, in particular from the
existence theory of optimal solutions to some optimal control problems. In this
theory one needs to know whenever a set K, which is the set of integrable selections
of a given set-valued function, is closed in a weak topology. We refer the reader
to the author’s papers [4], [5] and [6] for examples. The result we present here
is in fact a generalization of the lemma from [4] and [5] which the author has
used to obtain some existence theorems for optimal solutions. This paper can
also be considered to be a continuation of the work of A. Lasota and the author
[1], [2], where the problem of closedness of the set of solutions to differential
equations with multivalued right-hand sides were considered.

In a recent paper, R. T. Rockafellar [7] has given a characterization of the
closure in question in a special case. This he obtains by deriving a formula for
conjugate functionals to a given integral functional on C(T, E), hence by a rather
different method.

Finally, the result given here was applied by the author to obtain a necessary
and sufficient condition for lower semicontinuity of integral functional on L1
of the form

I(u) f, f(t, u(t)) dt,

again with respect to the weak topology w(L, C) on L1 (cf. [6]).
We will not discuss those applications in more detail. We hope that the

problem itself may be of some interest to the reader.

1. Notations and assumptions. By Twe denote a metrizable compact Hausdorff
topological space. Let us fix a regular nonnegative Borel measure/ on T. We
shall refer to this measure as dt and assume that it is complete nonatomic and
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that the support of it is the whole space T; that is, any open subset of Thas positive
measure. The latter assumption does not restrict the generality of our considera-
tions. All terms like measurability, integrability and absolute continuity will always
be meant with respect to this fixed measure unless an opposite is specifically stated.

E will stand for an Euclidean n-space and (., . will denote the scalar product
in E. Let LI(T, E) and C(T, E), or simply L1 and C, be the spaces of integrable
and continuous functions from T into E, respectively, with the usual norm. By C*,
as is customary, we denote the space of linear continuous functionals on C,
that is, the space of E-valued regular Borel measures on T. Frequently we shall
identify L with a subspace of C*, identifying an integrable function u L with
the functional u(tp) fT (u(t), p(t)) dt on C or with a regular absolutely continuous
measure given by re(A) A u(t)dt for each measurable A T.

Let K L be nonempty and have the property

(P) ZAUl + ZT\AU2 K if Ul, u2 K and
For each q e C we put

A m T is measurable.

(1) , ess sup (u, q).
uK

That is, for each u e K we have the inequality

{u(t), p(t)) <= Jo(t) a.e. in T

and vice versa" if for some measurable v" T R U + ov we have the inequality
(u(t), q(t)) <= v(t) a.e. in T, for each u e K, then O0(t) __< v(t) a.e. in T.

The function o can assume + values, is defined uniquely up to a set of
measure zero, and is measurable in t.

For each fixed t, we put

(2) D(t) {o(t)lq e C and q% is integrable on a neighborhood of t}.
PROPOSITION 1. D(t) is a convex cone.

Proof. If qJ0 is locally integrable at t, then so is qJz0 for each 2 > 0, hence
O(t) is a cone. If q%, and qJ02 are locally integrable at o, then by (1), for any
2 between 0 and we have the inequality

__< 2J,(t)+ (1 )(t)J,, + ( ),2(t)
which implies that o+(1-) is also integrable on a neighborhood of to. There-
fore 201(to) + (1 .)qz(to) belongs to D(to) also, which shows that D(t) is convex
for each t.

Let us recall that a set-valued function D(t) from T into subsets of E is lower
semicontinuous if for each open set G = E, the set

D-G {t[D(t) f) G }
is an open subset of T. Let us recall at this point also that if D-G is measurable
for each compact G, then D is called measurable in and if it is closed for each
compact G, then D is called upper semicontinuous.

PROPOSITION 2. D(t) given by (2) is lower semicontinuous.

Proof. Let G = E be open and suppose D(to)f3 G- ; then there is a
q e C such that Oo is integrable on a neighborhood N of to and p(to) D(to) f3 G.
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But qg(t) D(t) if N, and since tp is continuous there is a neighborhood N of to
such that tp(t)e G if e N Hence we conclude that N VI N1 c {riD(t) I’] G 4: },
which proves the proposition.

2. Preliminary results. Denote by K the weak* closure of K in the weak*
topology of the conjugate space C* of the space C. That is, K c C* is a set of
regular E-valued Borel measures and a measure m K if and only if there is a
generalized sequence {u} c K such that for each 99 C we have

(3) lim fr (q(t), u(t)) dt fr (q(t), dm).

Because of property (P) assumed for K, the closure K is a convex subset of C*.
This is a well-known fact, but for completeness of exposition we shall prove it now.
Namely, we will prove that

(4) f’){meC* fr(o(t),dm)<=froo(t)dt}
Proof of (4). Denote the right-hand side of (4) by K. If m is a weak* limit

of a net {u} c K, then the inequality j" (q)(t),dm) f. ,o(t)at follows from (1)
and (3). Thus K c K1. Suppose now that m belongs to K, And let qgl,..., Ok
be any fixed finite sequence contained in C. Set

B= {ifT(cP,(t),u(t))dtl uK} c Rk.

Because of property (P), the set B is convex. This follows from a generalization
of Lyapunov theorem; cf., for example, [3]. We shall prove that {.r (Pi, din)}
belong to the closure B of B. Indeed,

B ["l x
_
R aix <__ sup aib

aR i= beB 1"-"

But SUPbn aib supper r (=1 airPi(t), u(t)) dt fr r.a,o,(t) dr.
The latter equality follows from property (P). Hence for each a sRk,

:1 air (pi, dm) <- fr @z,p,(t)dt, which proves that {r (p,dm)} belongs to .
Thus for any e > 0 there is a u e K such that

w(CPi(t),

u(t)dt din) < e for each i.

Therefore, we have proved that any neighborhood of m K in the w* topology
of C* contains a point from K, which proves that K K and completes the
proof of (4).

There exists a denumerable set {p} C such that

(5) CI m (p,(t), dm) <__ t/Jo,(t) d
n=l

Indeed, let B(N) denote the closed ball in C* of radius N. The topology
w(C*, C) restricted to B(N) is metrizable. Therefore from (4) and the Lindel6f
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theorem, there exists a denumerable subset ON c C such that

B(N) f-I B(N) fI f’I fm lTo, dm) <__ fTq(t)dt})
Putting {q.} if= ON, we find that the latter implies (5).

We may, of course, assume that each qo, in (5) is integrable on T. For the
sequence {q,} in (5), put

(6) Q(t)
n=l

and

(7) C(t) {x e E (On(t), x) <_ O, n 1,2,...}.
PROPOSITION 3. The set-valued function Q given by (6) is measurable in t, and

the asymptotic cone ofQ(t) is equal a.e. in T to C(t) given by (7).
Proof Let G c E be compact. By (6),

Q-G fl {tlmin (q),(t),x) <= qo,(t)},
n=l

and therefore it is a measurable set, which proves that Q is measurable in t.
The asymptotic cone CQtt) of a closed and convex set Q(t) is the largest cone

with the property that if q Q(t), then q + CQto Q(t). By (6) and (7) it is clear
that C(t) Ce(t) if Oo,(t) is finite for each n; thus the latter equality holds a.e. in
T, which completes the proof.

PROPOSITION 4. The cone-valuedfunction C given by (7) is upper semicontinuous.

Proof Let G c E be compact. Then C-G f’l,%
_
{tlmin (q.(t) x)

__< 0}. Since minima (opt(t), x) is a continuous function of t, thus C-G is closed,
which was to be proved.

Denote by Ke the set of integrable selections of ; that is,

(8) K {u L lu(t) Q(t) a.e. in T}.
We have by (1) and (6) the inclusion K Ke. We shall need the following.
PROPOSITION 5. If Q and Q are two measurable, closed and convex set-valued

functions on T and Ko. Ko, then Q(t) Q l(t) a.e. in T.
Proof To prove this we shall use the following characterization (due to

Rockafellar [8]) of a closed, convex set-valued measurable mapping. Namely, a
mapping Q is measurable if and only if there exists a denumerable sequence of
measurable selections {u,} of Q such that {u,(t)} is a dense subset of Q(t) for each t.
Let {u,} and {v,} be such sequences for Q(t)and Ql(t) respectively. Since v,(t) Q(t)
a.e. in T for each n, thus there is a set N of measure zero such that v,(t) Q(t) for
each n and T\N. Since Q(t) cl{v,(t)}, therefore Q(t) Q(t) a.e. in T. The
opposite inclusion holds for the same reasons, so the proposition is proved.

3. The main result. Following Rockafellar, we say that a measure rn is
C-valued, where C is a cone-valued function, if for any scalar measure p such that
rn is absolutely continuous with respect to p, (dm/dp)(t) C(t) p-a.e, in T.

The characterization of the closure K" of K is given by the following.
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THEOREM. Suppose K c L I(T, E) satisfies property (P). Then there is a measur-
able set valuedfunction Pfrom T into closed and convex subsets ofE, defined uniquely
up to a set of measure zero, such that the asymptotic cone Cp(t) is equal to the polar
D(t) {el(e, d) <= Ofor each d D(t)} of D(t) given by (2) and such that m , ifand
only if

dm
(9) -ft (t) P(t) a.e. in T

and

(1 O) m is D-valued,

where m and m are the absolutely continuous and singular parts of m, respectively.
Proof First we will prove the existence of P by showing that (9) and (10)

hold for Q and C given by (6) and (7). Let us notice that K c KQ. If m K, then
there is a generalized sequence {u,} c K such that for any q C,

(11) fw (q(t), u(t)> dt fr (c(t), dm>.

Take q9 such that o is integrable on T, and put

rfi(A) fA ((rp(t), u,(t)> /o(t)) at,

where A c T is measurable.
By (11), {rfi} is weak* convergent to rfi, where

r(A) fA (gO(t), dm) fA g/(t) dt

for each measurable A T.
Since each rfi, is nonpositive, so is th. Therefore both the absolutely continuous

part rfi and the singular part tfi of rfi are nonnegative. But

dt
(t)= go(t),--d-t-(t Oo(t) <= o,

and for any nonnegative measure p such that ms is absolutely continuous with
respect to p,

q9 dms(t) (t),-d--p (t) __< 0 p-a.e, in T.

The first inequality applied to each tp, in (6) gives (9) and the second gives
(10). On the other hand, ifm satisfies (9) and (10), then fT (qg,(t), dm <= fT ,(t) dt
for each n, and thus m by (5).

If (9) and (10) hold for another P Q, then the sets Ke and KQ are the same
since each has to be equal f’) L Therefore by Proposition 5, P(t) Q(t) a.e.
in T. Hence P(t) is uniquely defined up to a set of measure zero, and since C(t) is
the asymptotic cone of Q(t) a.e. in t, thus C(t) Ce(t) a.e. in T.
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It remains to show that C(t) D(t), where D(t)= {a (a, d) <_ 0 for each
d e D(t)} is the polar cone of D(t). Manifestly we have the inclusion D(t) C(t).
To prove the opposite inclusion, take an arbitrary d C(to), with to e T fixed, and
take any u e K. Let m e C such that dma/dt u and ms dbto, where 6to is the
Dirac measure concentrated at to. Take an arbitrary e e D(to); there is a 99 e C
such that q(to) e and qo is integrable on a neighborhood N of to. Since T is a
normal space, there is a continuous function 2 such that 0 __< 2(0 _-< 1, 2(to)
and 2(0 0 ift e T\N. It is clear, then, thato is integrable on T. Since the above-
defined in m is an element of , thus we have by (4) the inequality

f (2(t)go(t), dm) fs (2(t)go(t), dm)

s (2(t)go(t), u(t)) dt + (e, d)

<= r gae(t) dt f gJ xo(t) dt.

Since this inequality holds for arbitrary N, it implies that (e, d) =< 0. Since e was
an arbitrary point of D(to), therefore d D(t). Hence C(t) D(t) and C(t) D(t).
This finishes the proof of the theorem.

4. Closedness conditions for K. From the theorem we now deduce necessary
and sufficient conditions for a set K m L having property (P) to be weakly closed
with respect to the topology w(L, C). The first of them is an immediate conse-
quence of the theorem and is stated in the following.

COROLLARY 1. A set K L satisfying property (P) is closed in the topology
w(L1, C) ifand only ifK is the set ofintegrable selections to a measurable set-valued
mapping Pfrom T into closed convex subsets ofE such that P can be represented up
to a set of measure zero by countable product

(12) f’l {x I(x, 99,(0) -< ft,(t)},
n=l

oohere the 99, are continuous and the t are integrable on T.
Proof If K is w(L, C)-closed, then by the theorem there is a P(t) such that

K Kp and P(t) Q(t) a.e. in T, where Q is given by (6). This proves the necessity
part. On the other hand, if K Kp and P is given by (12), then K fqK,, where
K,-- {u L(T, E)’(u(t), q.(t)) <= ,(t)}, and one can check directly that K, is

w(L, C)-closed; thus so is K and we are done.
Remark 1. In [2], the sufficiency part of the above result is essentially proved,

though only in the case when P(t) does not contain a line for each t. A different
topology is considered there.

In the next corollary we shall give necessary and sufficient conditions for
K Ks to be w(L, C)-closed in terms of the support function of S.

Let S be a mapping from T into closed and convex subset of E. The support
function f of S(t) is given by

(13) f(t, p) sup {(x, p)lx e S(t)}.
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For each fixed t, f is convex and lower semicontinuous in p. If S(t) is not
bounded thenf(t,. assumes + oo values. In this case, the set

A(t) {p f(t, p) < + o}
is a proper subset of E. A(t) is called the effective domain off(t,. ). It is easy to check
that A(t) is a convex cone for each t. If S(t) is measurable in t, then so is f(., p)
for each fixed p and A as a function of t. One can also see that for each continuous
(p, f(t, q)(t)) is measurable as a function of t. We shall denote by intr. int. A(t) the
intrinsic interior ofA(t), that is, the interior of A(t) relative to the smallest subspace
of E containing A(t).

COROLLARY 2. Let S be a measurable mapping from T into closed and convex
subsets ofE.

Then Ks is w(L C)-closed if and only if the support function f of S satisfies
the following condition:

(H) there is a set N c Tofmeasure zero such thatfor each T\N and each
a e intr. int. A(t), there is a (pc C such that q)(t)= a and f(t, q)(t))is
integrable on a neighborhood of t.

Proof Sufficiency. Assume condition (H). Manifestly Ks satisfies property (P).
Therefore, by our theorem ( 3), there is a set-valued mapping P from T into
closed and convex subsets ofE and a sequence {tp,} c C such that Kp is the closure
of Ks in w(L C) and

(14) P(t) fl {xl(x, q),(t)) <_ f(t, q,(t))} a.e. in T,
n=l

(15) Cp(t) D(t)= C(t) a.e. in T,

where f(t, tp,(t)) is integrable for each n, C(t) is given by (7) and D(t) is given by
(2). Notice that in our case, in the definition of D(t), Or(t) f(t, q)(t)).

From (14) it follows that

(16) S(t) P(t) and Cs(t Cp(t) a.e. in T,

and from the assumption (H) that

(17) intr. int. A(t) c D(t) a.e. in T.

But Cs(t A(t), where A(t) is the polar cone of A(t), and (17) implies that
D(t) A(t) a.e. in T, which together with (15) and the second inclusion of (16),
gives that

(18) A(t) Cs(t Cp(t)- D(t) a.e. in T.

Let Z be a denumerable dense subset of the positive cone of R", and put

O= {(p:tp =a,tp,, +... + a,tp,,,tp,,e{tp,},(ax,...,a,)eZ}.
The set is denumerable and for each e T\N, {q(t):tp e } is a denumerable
dense subset of O(t) and (by (18)) also of A(t), where N is of measure zero.

By the convexity of f(t, p) with respect to p, for each (p e O, f(t, q)(t)) is in-
tegrable on T. Set

Q(t) fl {x (x, q)(t)) <= f(t, (p(t))}.
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Since p(t) p } is a dense subset of A(t) if T\N1, thus Q(t) S(t) a.e. in T,
and by (14), Q(t) P(t) a.e, in T. By Corollary 1, KQ is w(L, C)-closed. But
K0 Ks is w(L, C)closed, which was to be proved.

Necessity. If Ks is closed, then S(t) P(t) a.e. in T, where P is given by (14).
By (15), A(t) Cs(t) D(t) a.e. in T. Therefore intr. int. A(t) c O(t) a.e. in T,
which together with the definition of D(t), implies condition (H). This finishes the
proof of the corollary.

Remark 2. If S(t) in Corollary 2 does not contain a line for almost all t, which is
equivalent to saying that A(t) has nonempty interior a.e. in T, then the condition
(H) can be replaced by the following: there is an N = T of measure zero such that
for each T\N and each a int. A(t),f(t, a) is integrable on a neighborhood of t.
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AN EXISTENCE THEOREM WITHOUT CONVEXITY CONDITIONS*

LAMBERTO CESARI"

Abstract. We state and prove existence theorems for problems of optimal control which are linear
in the state variables. As in previous work by L. W. Neustadt and C. Olech, no convexity condition is
required. Examples are given.

Introduction. The present paper concerns problems of optimal control which
admit a Mayer-type formulation as indicated below, linear in the state variables.
By suitable combination of lower closure arguments as in previous papers by
Cesari [1], [2], [3], and measure theoretical arguments as in previous papers by
Neustadt [4] and Olech [5], [6], we obtain here an existence theorem for which, as
in Neustadt’s and Olech’s existence statements, no convexity conditions are
needed. Various corollaries follow for Lagrange problems, as well as for free
problems of the calculus of variations. Examples are given.

1. We consider first the Mayer problem of the minimum of the functional

(1.1) I[x, u] g(tl, X(tl) t2, x(t2)),
with differential system

(1.2) dx/dt A(t)x(t) + C(t, u(t)),

Its, t], a.e., with boundary conditions

(1.3) (tl, x(tx) t2, x(t2) B

and constraints

(1.4) u(t) U(t), [t 1, t2), a.e.

We denote by A a slab in the tx-space E,+ defined by A [to, T] E,, o, T
finite. Thus, the state variable constraint usually written in the form (t, x(t))e A,
< -< t2, reduces here to the requirement to < < t2 _--< T. Here we denote by

B a given subset of the tlXlt2X2-space Ezn + 2. For every e [to, T], we denote by
U(t) a given subset of the u-space E,,, and then we denote by Mo the set of all
(t,u)E,,+ with o <= T,u U(t). We also denote by A(t) a given n n
matrix with entries defined on [to, T], and by C(t, u) a given n matrix with
entries defined on Mo, so that the usual functionf(t, x, u) (fx, "’", f,) of Mayer
problems is here defined by f(t,x,u)= A(t)x + C(t,u), (t,x,u)M0 E,.
Finally, we denote by g(t 1, x 1, 2 x2) a given scalar function defined on B.

A pair of functions x(t)---(x x, "", Xn), u(t)--(ul, U"), __< __<
2, is

said to be admissible, provided x is absolutely continuous (AC) in [tl, t2], u is
measurable in It 1, t2] o <= 2 T, and relations (1.2), (1.3) and (1.4) hold.
For the sake of brevity, we may use the notation q(x) to designate r/(x) (t 1, X(tl),
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tz,X(t2)), and then (1.1) and (1.3) take the form I[x,u] g(rl(x)), and rl(x)B,
respectively.

In both Neustadt’s [4] and Olech’s [6] work, the control space U was assumed
to be a fixed compact subset of Em. In Olech’s work it was assumed that [C(t, u)l
__< (I)(t) for all (t, u) Mo and some fixed L-integrable function tI)(t) => 0 in [to, T].
No condition of this type will be required here, and the sets U(t) will be assumed to
be closed but not necessarily compact.

Given a set S of points (x, y) E Ek, we shall denote by {x}s the set {X}s
{x Ehl(X, y) S for some y Ek}.

2. Mayer problemswithflinearinx. We proceed now to our existence
theorem for Mayer problems (1.1-1.4).

THEORE 2.1 (An existence theorem for Mayer problems with no convexity
conditions). Let , n, 0 _< <= n, be given integers, and for x (xl, x"), let
y,z denote y (x l, x’), z (x+1, x"), so that x (y,z). For every

[to, T], let U(t) be a given nonempty closed subset of the u-space E,,, and let
mo Em+ be the set of all (t, u) with [to, T], u U(t). Let us assume that mo
is closed. Let A(t) [aij(t), 1, n,j 1, ] and C(t, u) [cl(t, u),

1, ..., n] be n x and n x matrices with entries continuous in [to, T] and Mo,

respectively. Let H(t, u) be a scalar continuousfunction on Mo, and let us assume that
H(t, u) and ca+ , c, are not negative on Mo.

Assumption (m)" For every e > O, there is a number N >= 0 such that Ici(t, u)[
<= eH(t, u), 1,’", o, and <= eH(t, u)for all (t, u) Mo with lul >= N.

Assumption (m2)" There is an L-integrable scalarfunction (t) >= O, [to, T],
and a constant G >= 0 such that Ic(t, u) <= q(t) + GH(t, u), + 1,’", n,for all
(t,u)6Mo.
Let B be a closed subset ofthe tyzt2Y2Z2-space E2, + 2 such that the corresponding
set {Zl)n is bounded and {z2}n E,_; hence B is certainly of the form B B0

E,_, where B0 is a closed subset ofE,+2+ . Let g(tl, y,z,t2, y2, z2) be a real-
valued continuousfunction defined on B which is monotone nondecreasing with respect
to each component x2+x ,..., x2 of z2. Let P be a compact subset of Ao [to, T]
x E, and let f be the class of all admissible pairs x(t),u(t),t <= t2, with

to <= t 2 <= T, whose trajectories x contain at least one point (t*, y(t*)) P, and
for which H(t,u(t)) is L-integrable in [ta,t2] and tt,H(t,u(t))dt <__ ml for some
constant M >= O. We assume that f is not empty. Then thefunctional I[x, u] g(rl(x))
has an absolute minimum in f.

Note that in this existence theorem, we are concerned with the problem of the
minimum of the functional

(2.1) I[x, u] g(t, x(t,), 2, x(t2)),

with differential system

(2.2) dxi/dt aij(t)x + Ci(t U(t)), i= 1,’", n,
j=l

with constraints

t2

(2.3) u(t) U(t), H(t, u(t)) dt M
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and boundary conditions

(2.4) (t 1, x(/-1) t2, x(/-2) B,

where A [to T] E,, where B Bo E,_, is independent of x+1,..- ,x2,"
+1 As we haveand where g is monotone not decreasing with respect to x2 x2.

seen in [2], the constraint in integral form is often implicit in the data. In Lagrange
problems it may be the cost functional itself (cf. 3). We denote below by lYl the
Euclidean norm, and by A any norm of the matrix A such that IAyl <= IIA lY].

Here the sets U(t) are closed but not necessarily compact. Under this hypoth-
esis, even an Olech-type condition that there is an L-integrable function (I)(t) > 0,
to =< =< T, such that

Ic(t, u)l O(t) for all (t, u) Mo and 1,..., n,

alone does not guarantee the existence of the minimum. This can be seen by the
following simple example. Take n m 1, f (1 + u2) -1 l--0, 2 --1
x(0) 1, I g x(t2) H 1. Then, x(t2)> 1, infx(t2)= 1, and the
minimum does not exist. Note that the continuity requirements in Theorem 2.1
can be disregarded at the points of sets whose projections on the t-axis are finite.

Remark 1. As we shall see in the proof of Theorem 2.1, Assumption (ma) will
guarantee that the elements y of the class {y}a are equiabsolutely continuous. Thus,
the requirement (t*, y(t*)) P will guarantee that the same elements y are equi-
bounded. We shall show that Assumption (m2) implies that the total variations of
the elements z of the class {z}n are equibounded. Then the requirement that the
set {Zl} be bounded will imply that the same elements z are equibounded.

Remark 2. Variable sets R(t) of EN, to =< =< T, are said to satisfy Property (Q)
at a point [to, T] provided R()= fq cl co I..J R(t), where [A is taken for all

[to, T] with It l -< e. Below, we shall say that the sets R(t) have Property (Q)
if this property holds at almost all e [to, T]. For every [to, T] let Qn(t) denote
the set of all =(z,za,...,z")E.+a such that z>=H(t,u), zi=ci(t,u),

1, ..., , z >_ ci(t, u), + 1, ..., n, for some u U(t). We shall need these
sets in the proof of Theorem 2.1. These sets need not be convex, but the sets
co Qn(t) are certainly convex. The closedness of Mo and Assumption (ma) will
guarantee that the sets co Qn(t) are closed and satisfy Property (Q) on [to, T].
Assumption (m a) in Theorem 2.1 can be replaced by the following weaker set of
assumptions.

Assumption (m’a)" Given e > 0 there is a scalar L-integrable function q(t)
=> 0, [to, T], such that [Ci(t U)[ <- (t) + ell(t, u), 1, , for all (t, u)
Mo.

Assumption (m’;)" The sets co Qn(t) satisfy Property (Q) at every point t[to, T]
with the exception perhaps of a set of measure zero. Growth condition (m’l) is
known to be weaker than (ml). Growth condition (m’1) alone still guarantees that
the elements y of the class {y}n are equiabsolutely continuous, but is too weak to
imply Property (Q) for the sets co Qn(t). We shall denote by Q(t) the set of all
z (z 1, ,z") such that z ci(t, u), 1, ,,z >= ci(t, u), + 1, ,n.

Whenever an Olech-type condition is verified, say, Ici(t,u)l <_ (t) with
(t) >= 0, to _-< =< T, L a, then we may well take n, x y, the functions
y {y}n are equibounded and equiabsolutely continuous, and we need only to
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know that the sets co Qn(t) have Property (Q). If no H is given, then we need only
to know that the sets co Q(t) have Property (Q).

Remark 3. Assumption (m l) could well be replaced by the stronger assump-
tion of the Tonelli-Nagumo type which is often easier to verify"

Assumption (mT)" There are constants C,D >_ 0 and a continuous scalar
function tO(f). 0=<(< + oo, such that q(()/(- + do as ( + oo, n(t,u)
>= tp([ul), ]ci(t, u)[ <= C + DluI, 1,..., a, for all (t, u) Mo.

Remark 4. In Theorem 2.1, the requirement H(t,u)>_ O, c(t, u) >_ 0, i=
a + l, ..., n, could be replaced by the weaker assumption" there is some scalar
L-integrable function qt(t) >__ 0 such that H(t,u) -qt(t), ci(t, u) >= -(t), i-
/ 1,..., n, for all (t, u) Mo.

Proof of Theorem 2.1. As usual, we denote by {u} the class of all control
functions u relative to admissible pairs x(t), u(t), _< __< 2 actually in the class f.
Thus {c(t, u(t))} will denote the class of functions c(t, u(t)) for all u {u}n. Let us
prove that the classes {ci(t, u(t))},, 1, ..., a, are made up of functions which are
equiabsolutely integrable in their interval of definition. Indeed, let e > 0 be an
arbitrary number, take e’= (2M)-e, and let N >__ 0 be a number such that
Ic(t,u) <__e’H(t,u),i= 1,...,a, for all (t,u)Mo with lul_>_ N. Then the set

M3 {(t, u) Mol lul -_< N} is compact, and there is another constant N’ > 0
such that ]ci(t, u)] _<_ S’ for all (t, u) M, i- 1, ..., a. Let 6 e’M(N’)-, and
for any admissible pair x(t), u(t), _-< __< rE, in f, let H denote any measurable
subset of [tx, tEl of measure IHI =< 3. If H denotes the subset Hi {t HI lu(t)l

N}, and HE H H, then for every 1,..., a, we have

fn[ci(t’ u(t))l dt fn + n) [ci(t’ u(t))[ dt

<__ N’ + ’ g(t, u(t))dt <= 2’M .
< < 2 of the classLet us prove that the vector functions y(t) (x 1, xa), tl

{y} are equiabsolutely continuous and equibounded in their intervals ofdefinition.
We know that (t*, y(t*)) P for at least one point t*, o N tl =< t* __< 2 =< T. Hence,

(2.5) y(t) X(t, t*) y(t*) + X-

where y(t) (x!, xa), C1 (c l, ca), h [aij(t), i, j 1, 0], and
X(t, t*) is the fundamental a x a matrix of solutions of the homogeneous system
dy/dt A l(t)Y with X(t*, t*) I. If N1, N’I denote the constants N, N’ above for
e= 1, then we have Ic,I _-< for lul and levi _-< n for lul >_- In any case,
we have Ice(t, u)[ <__ N’ + n(t, u) for all (t, u) 6 Mo, 1, ..., a. In (2.5), (t*, y(t*))
P where P is compact, and the entries of X(t, t*), X-l(t, t*) are certainly con-

tinuous, equiabsolutely continuous, and equibounded for o =< t, t* =< T. Hence,
for some constant Me > 0, we have

’X- l(z, t*)Cl(’c, u(’c)) dr =< M202[(T- to)N’ +
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Thus, for any system of nonoverlapping subintervals [as, fls],s 1,
[t 1, t2] we have, for a suitable constant

Z lY(fls) y(0q)[ =< (M2 + M202((T to)N’ + M1) IX(fls, t*) X(0s, t*)[

We have proved that the vector functions y of the class {y). are equiabsolutely
continuous in their interval of definition. Since (t*, y(t*)) P, where P is compact,
and 0 t t* 2 T, we conclude that the same functions y are also
equibounded.

Let us prove that the AC vector functions z(t) (x+ x") t < < 2

of the class {z). are equibounded with uniformly bounded total variation. Indeed,
for some constants G and M2, we have 1%(t) M2, ly(t)[ M2, Ici(t, u)l (t)
+ GH(t, u), and

Hence

dxi/dt aij(t)x + ci(t u(t)), 0 + 1,--’, n.
j=l

[dxi/dt[ zM2 + (t) + GH(t, u(t)), t2, i-- 0 + 1,’", n,

’-,dx’/dt, at <= M(T to)+ k(t) dt + O H(t, u(t)) at

<= oM22(T to) + M2 + GM1.

On the other hand, the initial point Z(tl)= (x"+ (tl),...,x"(t)) belongs to the
set {z a} n, which is bounded by assumption. We have proved that the vector
functions z(t), t _<_ =< 2, of the class {z}, are equibounded with equibounded
total variation.

We shall now consider the generalized solutions x(t)= (y(t),z(t)),p(t),
u*(t),t <__t<= t2, of problem (2.1)-(2.4) under consideration, with the same
functional J(x, p, u*) g(r/(x)). Here x(t) (xl, x"), p(t) (p, ph), u*(t)

(U), .", Uh)), t <= <= t., we can take h n + 2, and then p(t)e F {Ps O,
P +"’+Ph= 1},uS)(t)eU(t),s= 1,...,h,

dxi/dt aij(t)xJ(t) + ci(t, p(t), u*(t)), 1,’", n,
j=l

ci(t, p, u*) PsCi(t,

H*(t, p, u*) psH(t,
s"l

We shall consider the class fl* of all generalized solutions x(t) (y, z), p(t), u*(t),
o <= ti <= <= 2 T, whose trajectories x possess at least one point (t*, y(t*)) e P,
with (tl,x(t),t2,x(t2))_B with H*(t,p(t),u*(t)) L-integrable in [t,.,t2] and
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ttH*(t, p(t), u*(t)) dt <_ M1. The argument above can be repeated, and we conclude
that the vector functions y(t)= (x 1, X), __< __<

2, of the class {Y}n, are
equiabsolutely continuous and equibounded, and that the vector functions
Z(t) (X+1, Xn), =< _-<

2, of the class {z}n, are equibounded with equi-
bounded total variation.

We conclude that the endpoints q(x) (tl,x(tl), tz,X(t2)) of the generalized
trajectories x form a bounded subset of B, that f c f*, that the numbers
j infn, J(x, p, u*), infa l(x, u) are finite and that j __< i.

We shall now apply statement (2.3.iii) of [2]. We conclude that the sets
co Qn(t) are all closed and satisfy Property (Q) on [to, T]. We shall now apply a
modified form of existence theorem (5.3A*) of [2]. Indeed, first we consider a
minimizing sequence Xk(t)= (Yk(t),zk(t)), pk(t), U’(t), tlk <=t <--t).k, k 1,2, "",

with J(Xk, Pk, U’)---, j as k oe. By taking a suitable subsequence, we can well
assume that tk --, t, t2k t2, to <= t <-- t2 <-- T, that Yk converges in the uniform
topology toward an AC function y(t), tl <=t<__ t2, and that Yk(tlk)--’
Yk(t2k)--’ Y(t2), and also Zk(tlk)---’ ZO for some Zo e E,_,. Now we take

Yk(t) Yk(tlk) + Al(Z)yk(’C)d’c + Yk(t),
lk

Zk(t) Zk(tlk) + A2(Z)yk(Z)dz + Zk(t),
lk

Yk(t) CI(T pk(’r2), Ig(T)) tiT,
lk

Zk(t) C2(’c, pk(’C), Uk(’C)) dr.
lk

Thus, Yk and zk are decomposed into two parts, the first of which converges uni-
formly. It is enough now to repeat on the second parts Yk, Zk the same arguments of
(5.3A*) of [2], in particular of closure theorem III of (3.1) of [2].

We conclude that the problem under consideration has a generalized optimal
solution x(t), p(t), u*(t), t <= <__ t2, with

J(x, p, u*) g(tl, X(tl) t2, x(t)_)) j,
h

dx’/dt a,(t)xJ(t) + Z P(t)ci(t,u)(t)),
j=l s=l

(2.6) u)(t) e U(t), s 1, "", h,

(t*, y(t*)) e P, (t, x(t), t., x(t)) e ,
s=l

i-- 1,..’,n,

Hence, for 1, 2, we have

(2.7) Y(ti) X(ti, t*) y(t*) + -l(z, t*)Cl(z, u)(z))dz
s=l
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t tt

(2.8) z(ti) z(t*) + A2(t)y(t dt + p(z)C2(z, u()(z)) dr,
s=l

where A2(t [aij, + 1, n,j 1, z], C2(t) [ci, + 1,-.., n].
Relations (2.8) can be written also in the form

z(ti) Z @ Ps(T) C2(T, u(s)(T))
s=l

(2.9)
+ A(t)X(t, t*)X- (r, t*) dt C(r, u(r)

where

Z z(t*) + A2(t)X(t, t*)y(t*) dt, 1,2.

By applying (2.iv) of [3] to the sums with respect to s in (2.6), (2.7) and (2.9), we see
that each interval It*, ti], 1, 2, can be decomposed into h disjoint measurable
subsets Eil,"’, Eih such that

f H(t’u()(t)dt<=M’
i=

s=l

z(t)-- Z / C.(, u()()) / A(t)X(t,t*)X-(z,t*)dt C(,u()()
is

Let us consider now the (usual) control function fi(t), t =< =< 2, defined by taking
(t) u(s)(t) for e Es, s 1, ..., h, 1, 2, and let us define the (usual) trajectory
(t), t =< _< t., by taking

dYc/dt A(t)Yc(t) + C(t, (t)), t <= <= t2, a.e.,

(t*) x(t*),

that is, (t)= (Y,D, t =< <_ t2, with y(t*)= y(t*), (t*)= z(t*). We see im-
mediately that (t) x(t), 1, 2, that is, (t) y(t), (t) z(t), 1, 2, and
hence

=< I[:, fi] g(tl, (t), t2, (t2) g(tl, X(t), t2, X(t2) J(X, p, u*) j.

Since j =< i, we conclude that I[., fi] j, that is, , fi is a usual optimal pair for
the original problem (2.1)-(2.4).

Remark 5. The requirement {z2}n E,_ in Theorem 2.1 can be replaced
by the following one, which is relevant in applications. Indeed, it is enough to know
that the boundary conditions concerning Z2 Z(/2)= (Xa+ (/2), "’", xn(t2)), are
of the types:

either zi(t2) Ea, or zi(t2) <= i, < (i <= -b ,
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+ 1, .", n, where (i are given numbers (or + as stated). This can be seen
from the proof of (5.3.A*) in [2].

Remark 6. In many applications, H(t, u) is one of the ci(t, x), + 1, ..., n,
say n(t, u)= c,(t, u), (t, u) Mo, and it is not known a priori that ftt21H(t, u(t))dt
=< M for some constant M1. In this situation, we may need the following lemma.

LEMMA 2.2. Let H(t, u) c,(t, u) >= O, and assume that the boundary conditions
are so given that x"(tl) can take only values Ix"(tl)[ <= M, and the only requirement
on x(t2)is oftheform x"(t2) ",for some constants M and ". Under the remaining

t2conditions ofTheorem 2.1, there is a constant M3 such thattH(t, u(t))dt M3

Proof Let M2 [". Let dx"/dt A,(t)y + c,(t, u(t))denote the nth equation
(2.2), so that A,(t) is a x matrix. Let us choose constants D, Lo, L > 0 so that
T- to D, the compact set P is completely contained in the set {(t, y)lto

T, [Yl Lo}, and

x(t, t*)l, I]x-’(t, t*)ll, IA,(t)[ L, to t, t* T.

Let us take a number e > 0 so small that nDL3e . Then there is a number
N(e)>0 such that ot T, ueU(t), [ulN(e) imply [c(t,u)lec,(t,u)

eH(t,u), 1, . Now the set Mo {(t,u)lto T, ue U(t), [u[ N(e)}
is compact. Hence, there is a constant L > 0 such that [ci(t, u)[ L for all
(t, u) e Mo, 1, ..., . Finally, for the vector Cx(t, u) (cx, .", G), we have
]Cx(t u)[ L2 nL2 for all 0 T, u U(t), ]u[ N(8), while we have
Ice(t, u)[ eH(t, u) nell(t, u) for all to T, u U(t), [u[ N(e). Note that
(2.5) yields

[y(t) [Ix(t, t*) y(t*) + x-x(r, t*)ll [CI(T U(T))[ d

We denote by E’ and E" the subsets of It*, t] where [u(t)[ N(e) and u(t)[ > N(e),
respectively. By splitting the integral above into integrals extended over E’ and E"
and noting that [E’[, E"[ D, we have

Finally, from the nth equation (2.2) we obtain, by integration on [t 1, t2],

(, u(O) dt c(t, u(Ol at

xn(t2)- Xn(tl)- An(t)y(t)dt

< M + M + LD LLo + nDLL + nLe H(t,u(t))dt

where nDLe <__ 1/2. Thus

u(t)dt <= 2(M + M + DLLo + nDLaL)= Ma.
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3. Lagrange problems with fo and flinear in x. We consider now the Lagrange
problem of the minimum of a functional

(3.1) I[x, u] [Ao(t)x(t + Co(t, u(t))] dr,

with differential system

(3.2) dx/dt A(t)x(t) + C(t, u(t)),

constraints

(3.3) u(t) e U, or u(t e U(t),
and boundary conditions

(3.4) (t x(t 1), 2 x(t2)) e B.

Here x (xl, xn), u (ul, u’) and, with the usual notations, fo(t, x, u)
Ao(t)x + Co(t, u), f(t, x, u)= A(t)x + C(t, u), where Ao, Co, A, C are 1 x n,
x 1, n x n, n x matrices whose entries are functions defined on some fixed

interval [to, T] or the set Mo, respectively.
By introducing the auxiliary variable xn+ with differential equation dx+1

Ao(t)x + Co(t, u), and initial data x"+ 1(tl) 0, the problem above is reduced
to a Mayer problem relative to the n + state variables 2 (xl, ..., x",x/ 1)

(x, xn+ 1), the same control variable u (ul, u"), and functional I[x, u]
g(r/()) x+

A pair x(t), u(t), =< _< t2, is said to be admissible for the problem (3.1)-(3.4)
provided x is AC, u is measurable, relations (3.2)--(3.4) are satisfied, and Co(t, u(t))
is L-integrable in It1, t2]. We shall assume below that A, C,Ao, Co are all con-
tinuous, to =< =< t2 =< T, for some fixed to, T, and we shall take for A the slab
A [-to, T] x E, (or A [to, T] x E+ in the Mayer form).

We shall now apply our existence theorem (Theorem 2.1). In applying
Theorem 2.1 we shall take n, H(t, u) Co(t, u). By Mo we denote, as usual, the
set of all (t, u) Era+ with e [to, T], u U(t). In searching for the minimum of
I[x, u], we may well limit ourselves to the admissible pairs (x, u) with I[x, u] <= L
for some constant L. Thus, we have for x"(t), tl -< <= t2, the boundary conditions
xn(tl) 0, xn(t2) I[x, u] <= L. Because of Lemma 2.2, we conclude that for some
constant M3

_
0, we have fn(t, U(t))iodt M3 for all admissible pairs x, u with

1Ix, u] <= L. The following tlieorem now a corollary of Theorem 2.1, and of
Lemma 2.2.

THEOREM 3.1 (An existence theorem for Lagrange problems with no convexity
conditions). Let A [to, T] x E,, o, T finite, and for every [to, T], let U(t)
be a given subset ofthe u-space E,. Letfo Ao(t)x + Co(t, u),f A(t)x + C(t, u),
where Ao(t), A(t), and Co(t, u), C(t, u) are x n, n x n, x 1, n x given matrices
with entries continuous in [to, T] and Mo, respectively. We require the set Mo to be
closed, and Co(t, u) to be nonnegative.

Assumption (fin 1)" For every e > 0, there is an N > 0 such that If(t, u)l =< Co(t,u),
and <= eCo(t, u) for all (t, u) Mo with ]u >= N.
Let B be any given closed subset of the tlxlt2x2-space E2,+2, let P be a compact
subset ofA [to, T] x E, and let f be the class, which we suppose is not empty, of
all admissible pairs x(t), u(t), <= <= 2, whose trajectories x contain at least one
point (t*, x(t*)) P. Then the functional (3.1) has an absolute minimum in f.
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4. Examples.
Example 1. Let us consider the Mayer problem with n 3, m 1,

system x’=(1- t)x+ y, y’= u, z’= 11- u21, U= E, tx 0, tz 1,
x(0) xl, y(0) Yl, z(0) 0, x(1) x2, y(1) Y2, functional I[x, y, z, u] z(1).
The sets A [0, 1] x E3, M A x El, B (0, xl, Yl, 0, 1, x2, Y2) x E are
closed. Here A [1 t, 1, 0; 0, 0, 0; 0, 0, 0], C (c 1, c2, c3), with Cl 0, c2 u,
C3 [1 u21. We take n 2, H(t, u)= 11 u2}. Here 11 u2[-o +
I1 ul/lul + as lul-o + ;hence, given e > 0, there is some N(e) > 0 such
that lul > N(e)implies 1<  HI ,u),lul <= and consequently Ic11,1c21
<= ell(t, u). Thus, requirement (ml) of Theorem 2.1 is satisfied. Since c3 H(t, u),
also requirement (m2) of Theorem 2.1 is satisfied with 0, G 1. Here B has
the property required in Theorem 2.1, since {zl}B {0} is a fixed point and
{z2}B E. Finally, g z(1) increases with z(1). Here c3 and H.are not negative,
and j’ H(t, u(t))dt c3 dt z(1) g. Thus, in the search for the minimum of
I z(1), we can limit ourselves to the class f2 of (usual) solutions with H dt

I __< L for some constant L. Moreover, every trajectory starts at the fixed point
(x l, Y l, 0) at tl. Thus, whenever we can satisfy the boundary conditions, then,
by force of Theorem 3.1, the functional I z(1) has an absolute minimum under
the constraints. Note that the sets Q(t,x,y)= {z= (1- t)X-k-y,z2-- U,

z3 => ]1 uZ], u e El} are closed but certainly not convex.
Example 2. Let us consider the Mayer problem with n 2, m 1, system

x’= (1 t)x + t2y + t-1/2 cos u,

y’ --tzx + (1 + t)y + t-1/2 sin u,

control space U E1, 0, t2 >= 0, x(0) a, y(0) b, and functional I[x, y, u]
(x + y)1/2 + t2 where x2 x(tz),y2 Y(t2). Since I - + as 2 +

uniformly, we can limit ourselves to admissible pairs (usual solutions) defined on
intervals [0, t2] with 0 < t2 =< T for some T > 0. Thus A [0, T] E2, M A
E1, B (0, a, b) [0, T] E2, We have here A [1 t, t2; -t2, + t],

C(t, u) (cl, c2). The sets Q(t) (as defined in Remark 2) are certainly closed, but
not convex. On the other hand, Icll,lczl <= -1/2 for all 0 __<t__< T,- < u
< + . Thus, Olech’s assumption is satisfied-with @(t) t-1/2. The initial point
(0, x l, yl) is fixed, and the set U E is independent of t. By force of the last line
in Remark 2, the functional I (x + yz)1/ + t2 has an absolute minimum under
the constraints.

Example 3. Let us consider the Mayer problem with n 2, m 1, system

x’- (1 t)x + t2y + t(1 t)u,

y’-- --t2X q-- (1 + t)y + t(1 t)[ul,

with U El, tl 0, t2 1, x(0) a,y(0) b, constraintj’ t2u2 dt <_ M1, where
a, b, M are constants, and we assume that a, b, M are so chosen that the system
is compatible. Let I[x, y, u] x + Y2 x(1) + y(1) be the cost functional. We
take here H(t, u) t2u2, 2, the 2 x 2 matrix A(t) has continuous entries, and
C(t, u) (Cl, c2), with c1 t(1 t)u, c2 t(1 t)lul. The sets Q(t) are here Q(t)

{(zl, z2)[z t(1 t)u, z2 t(1 t)[u[}, and, for - 0, 1, these sets Q(t)
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{(Z 1, Z2)lZ2 Izll, < z < -- (3(3} are certainly not convex. We have now,
for any e > O,

[Cl(t U)I [C2(t U)I tlU 2(2-113-1/2)(gl/2tlUl)

<__ 2- 2e- + etZu2 d/(t) + ell(t, u),

where O(t) is the constant function 2- 2e- 1. Assumption (m’l) of Remark 2 is
satisfied. Assumption (m’) is trivial, and Assumption (m2) is empty here since e n.
The initial point (x(0), y(0))= (a, b) is fixed, and we take t*= 0, P {(a, b)}.
Existence Theorem 2.1 can now be applied.

Example 4. Let us consider the Mayer problem with n 3, m 1, system

x’ (1 t)x + t2y + t(1 t)u,

y’ -rex + (1 / t)y + t(1 t)lul,

z’= tx+(1 t)y+(t2 + 1)u2,

with U El, x(0) y(0) z(0) 0, x2(1) + 3;2(1) <= 1, z(1) <= 1, and cost func-
tional I[x,y,z,u]= 1-(x2(1)+y2(1))l/2. We take here e=2, H(t,u)=c3

(t2+ 1)u2. As seen in Example 3, c l, c2 satisfy the growth condition with
respect to H c3. By force of Lemma 2.2, there is some constant M such that

: H(t,u(t))dt < M3 for all admissible pairs x(t) u(t) 0 < < 1. We can now
ll
apply Theorem 2.1.

Example 5. Let us consider the Lagrange problem with n 2, m 1, system
x’ fl tx + y,y’ f x ty + u, withf0 (1 + t)(1 u)2,tl O,t 1,
x(0) a, y(0) b, given numbers, x x(t), y y(t2) both undetermined, and
controlspace U E1.ThesetsA [0,1] E2,M A U,B (1, a,b, 1) E2

are closed. We have here Ao(t O,A(t) [t, 1, -t], Co(t, u) (1 + t)(1 u2),
C(t, u) (c 1, c), c O, c u, and obviously Assumption (1) of Theorem 3.1
is satisfied. The initial point is fixed. By force of Theorem 3.1, the functional
I j’(1 / t)(1 uZ) dt has an absolute minimum under the constraints.

Example 6. Let us consider the Lagrange problem with n 2, m 1, same
system as in Example 3, with x(0) y(0) 0, x(1) + y2(1) =< 1, U E 1, and cost
functional

[tx /(1 t)y / (tz / 1)u2]dt.

We can apply Existence Theorem 3.1.

5. Existence theorems for free problems. We are concerned here with the
problem of the minimum of functionals of the type

(5.1) I[x] fo(t, x(t), x’(t)) dt,
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with the only constraints

(5.2) (t, x(t)) A, (/:1, X(tl),/:2, x(t2))
We need only consider admissible trajectories x(t), _<_ t2, that is, AC

functions x(t) (x 1, ..., x"), [tl, t2] satisfying (5.2), and such thatfo(t, x(t),x’(t))
is L-integrable in Ill, t2]. As is well known, free problems can be thought of as
Lagrange problems with rn n, f u, U

We assume here that fo(t, x, u) is of the form

(5.3) J(t, x, u) Ao(t)x + H(t, u),

where now Ao is a n matrix with entries continuous in [to, T], and H(t, u) is a
continuous scalar function in [to, T] E,.

THEOREM 5.1 (An existence theorem for free problems with no convexity
conditions). Let A [to, T] E,, o, T finite, let B be closed, let fo(t, x, u) be of
the form (5.3), and let us assume that there is a scalar function q((), 0 <__
such that q(()/( --. + o as + , and H(t, u) >= tO(lul)for all (t, u) [to, T] E,.
Let P be a compact subset of A, and let be the class ofall admissible trajectories x,
each ofwhich possesses at least one point (t*, x(t*)) P. Then thefunctional (5.1) has
an absolute minimum in .

This statement is a corollary of Theorem 3.1 and remarks.
Examples. The functions

fo x + (1 U2)2, /’/ l,

fo tx + (1 + t2)y + (1 /12 /)2)2, r/ 2,

fo tx + tl/Zx + y + (2 + cos t)(u u2)2 + /)2, n 2,

fo X2 -+- y2 + (2 + t2)(1 /,/2 /)2)2, n 2,

satisfy the conditions on fo of Theorem 5.1.
Thus, if we take m 1, and we consider the free problem of the minimum of

I[x] (1 X’2(t))2 dt

with boundary conditions x(0)= x(1)= 0, existence Theorem 5.1 applies, and
I[x] attains an absolute minimum. Of course, it is easy to see here that Xo(t 2-1
-It- 2-11, 0 =< =< 1, is one of the infinitely many optimal solutions and
l[xo] 0. Actually, any AC function x(t), 0 __< =< 1, with x(0)= x(1)= 0, and
[x’(t)l a.e. is an optimal solution. Let us consider for comparison’s sake the
corresponding generalized problem. It concerns the minimum of the functional

with

J[y, p, v] [px(t)(1 v2(t))2 + P2(t)(1 v2(t))2] dt

dy/dt pl(t)v + p2(t)v2(t),

y(O) y()= o,
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where p--(Pl,P2), v--(v l, v2) 0 Pi 1, i-- 1,2, P nt-P2-- 1, v e E2. Then
y(t) O, Pl(t) p2(t) 1/2, vl(t) 1, vz(t 1, 0 < 1, is an optimal general-
ized solution, and J 0. Here y can be approximated as close as we want by
(optimal) usual trajectories x satisfying the same boundary data [3].
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A DIFFERENTIAL GAME OF EVASION WITH
NONLINEAR CONTROL*

R. V. GAMKRELIDZE AND G. L. KHARATISHVILI

Abstract. A differential game of evasion in which the state is governed by an nth order differential
equation is studied. The equation is linear in the state and its derivatives. Control is exercised through a
nonlinear forcing term. A sufficient condition for evasion is given and the evasion strategy is obtained
as a generalized solution of a Volterra integral equation. The generalized solution is approximated by
ordinary measurable functions by constructing a sliding regime.

1. Introduction. This paper contains the development of results on the theory
of linear differential games of evasion (of. ]). In the paper we consider a differential
game described by an nth order differential equation

z" + A z"- + + A,_ + A.z f(u, v),
(1.1)

Z fl

where the A are constant square matrices, and f(u, v) is an arbitrary continuous
function of the point (u, v)e U x V, U and V being compact.

Equation (1.1) differs from that considered in [11 only in that f(u, v) is an arbi-
trary nonlinear function of the control parameters, whereas in [1] f was assumed
to be linear. However, this development now requires a completely new formulation
of the sufficient condition for evasion (cf. 4), rather than in [1, although the
estimates obtained are the same. Moreover, in order to determine the strategy of
evasion under the formulated sufficient condition, it is necessary to solve, in a certain
generalized sense, an integral equation of Volterra type which is not soluble in the
ordinary sense. In 6 we indicate a method of successive approximations by which
it is possible to calculate the generalized solution (measure). This generalized
solution is then approximated by ordinary measurable functions by the method of
constructing a sliding regime (cf. [2]).

2. Statement of the problem. In order to define a game, we must define, in
addition to (1.1), a subspace M ofE" ofdimension __< m 2. The object ofthe player
controlling the parameter u U is to transfer the point z to the subspace M, while
the object of the player controlling the parameter v V--and we shall identify
ourselves with this player--is to choose the control v(t) in conjunction with the
control u(t) so that the corresponding solution z(t) of (1.1) does not meet M any-
where.on the infinite time axis 0 <__ < o if z(0) M. Thus, to form the value v
at an arbitrary instant t, we may use the value u at the instant or at all preceding
times, but not at subsequent times.
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For a precise formulation of the problem it is convenient to introduce the
notion of strategy.

We shall define a strategy v,(t" Zo) to be a mapping defined on the set of
arbitrary measurable controls u(r), 0 =< r < , u(r) U" this mapping depends
on the time parameter > 0 and on the vector Z0 (Zo, z, ..., z0 1)) of initial
conditions of (1.1), and possesses the following properties"

(i) For arbitrary measurable u(r), 0 =< r < and for arbitrary fixed Zo,
the mapping vu(t" Zo) is measurable as a function of and assumes values
in V"

(ii) If ul(r) and Uz(r), 0 __< r < , are two controls which coincide almost
everywhere on 0 =< r =< 0, where 0 is arbitrary, then v,l(t" Zo) and
v,2(t" Zo), as functions of t, also coincide almost everywhere on the
interval 0 < < 0 for equal values of the parameter Z0.

The second condition reflects the fact that the strategy vu(t’Zo) is defined on
0 =< =< 0 for given Z0 only for the values u(r), 0 =< r < , on the same interval
0 =< r =< 0, and does not depend on the values u(r) for r > 0.

Our problem may now be formulated in the following way. In the "con-
figuration" space E of (1.1) we prescribe a subspace M of dimension __<m 2.
We are required to select a strategy v,(t" Zo) such that the solution z(t), 0 <= < ,
of the equation

z(") + A1 z("- 1) + + A,z f(u(t), v(t" Zo))

with the initial condition

(z(0), z’(0), z("- 1)(0)) Z0, z(0) M,

does not intersect the manifold M for any >= 0 for every control u(t) and vector Z0.
For this it is still necessary to give a lower bound for the distance from z(t) to M,
for arbitrary >= 0,. as a function of z(t) and its first n derivatives z’(t),...,
z(,-1)(t).

The solution of the problem consists in finding a sufficient condition for the
existence of such a strategy ( 4), which we shall call an evasion strategy, in deter-
mining a procedure allowing us to calculate the evasion strategy as a function of
u(r), 0 =< r < , and Z0 ( 6), and in obtaining the indicated bound ( 5).

3. Use of the convolution symbolism. In order to formulate and prove the
basic results, as well as to calculate the evasion strategy, it is convenient to use the
convolution technique. Therefore we devote this section to the concepts and
notation of the convolution symbolism which we shall find necessary.

Let K be the set of real functions on 0 =< < o which are integrable on every
finite interval. K becomes a commutative ring if we define the sum and difference
of two arbitrary functions x(t), y(t) of K in the usual way and if we define their
product as the convolution

x(t) * y(t) x(t- r)y(r) dr.

The convolution of an arbitrary function x(t) of K with the function which is
identically equal to unity will be denoted in the sequel by S, and will be equivalent
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to the integration of x(t):

S * x(t) x(t)* S x(r) dr.

The ring K obviously contains no unit elements, and moreover, no element
inverse to S: however, since S is not a divisor of zero (that is, S * x(t) 0 implies
x(t) 0), K can be embedded in a ring /containing a unit element and an element
inverse to S. We may take for Vf/ the equivalence classes of all possible pairs
(x, Si), x K, a positive integer, if we define in the well-known way the equivalence
relation and the addition and multiplication of classes; the equivalence class of the
pair (x, Si) will be written as a fraction x/S. The subring in / consisting ofelements
of the form S * x/S, x K, will be identified with K, and the unit element in
will be 6 S/S: the element inverse to S will be

D SIS2 D*S =S’D=6.

We shall call the ring //a Mikusihski ring,. If x(t) is n times differentiable, then
we immediately have the fundamental formula

D * x(t) xti)(t) + D * x(O) -k- Di- , x’(O) -- + D * xi-
(3.1)

O<i<n.

To every number 2 corresponds the element, D, 2////,
and, in particular,

]’= D*I =D,S=6.

Numbers (i.e., constant functions) will be called numerical constants, and the
elements of/f/corresponding to them will be called constants of the ring////or
simply constants. Obviously,

x(t) xt), .
Every entire function x(t) may be written in the form

2

X(t) X -{-- -.X2 + .IX3 + S * 1 -]-" $2 * 2 -]- $3 * 3 +
where x,x2, are numerical constants and ,2, are the corresponding
constants of /.

In the formula as written, the powers of the element S are to be clearly under-
stood in the sense of ring multiplication, i.e., the convolution, and the power series
in is to be understood in the usual numerical sense.

We shall call an element of the form

an entire element of the Mikusihski ring, where
2

S:I -+- $2 92 -+- x + tx2 -]-..x3 -1-

is an entire numerical function of the numerical argument t.
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We shall also consider entire square matrices of arbitrary order over ,ffff, that is,
square matrices whose elements are entire elements of,#. Every matrix of this type
can clearly be written in the form

A A(S)=.3.0 + S,I +$2,22 + "",

where the .3. are constant square matrices (whose elements are constants and which
are in one-to-one correspondence with the numerical matrices Ai), and where the
series

2

S’21 -- 82*22 "- A + tA2 +A3 +

is an entire matrix function of the variable in the ordinary numerical sense.
The determinant of every entire matrix A(S), calculated in the ordinary

formal way using ring multiplication, is an entire element in since the sum and
product of two entire elements from //{ or of entire matrices is again an entire
element or an entire matrix; we shall denote this determinant by dt A(S).

Let ] be the unit matrix, that is, a diagonal matrix of the corresponding di-
mensionality with the element 6 along the diagonal. We shall show that an arbi-
trary entire matrix of the form

A(S) i + S , Yi + S2,22 +
has the inverse entire matrix A-1(S)"

where

and

The series

A-1(S) * A(S) A(S) * A-(S) ,
A-(S) I + C(S) + C2(S)+

c(s) -(s + s + ...).

c(s) + c(s) + ...,
where the powers are clearly understood as being formed in the sense of the ring,
will be considered as a series of entire matrix functions C of the variable t, where
will be allowed to assume complex values. We shall show that this series converges
uniformly in an arbitrary disc Qr of radius Twith center at the origin in the complex
t-plane, from which the assertion will then follow from the well-known theorem
of Weierstrass. We denote by mr the maximum of the numerical function

S’2 + S2"2211 +
on the disc Qr" here is a certain matrix norm. Then, for e Qr, we have

C(S)I[ mr,

C2(S) _< mZrdr mZrt <= mZrT,

fl ti- Ti-
Ilci(s)ll. {Ici-lllllCId <- mr(/22 i). mr(i_ lI,.
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and consequently, for Qr,

IlC(S) + C2(S) + _-< mT( + Tmr - (TroT)2 TmT)
_

...).
2! i

The bound which we obtained shows the uniform convergence of the series
C + C2 + on the arbitrary disc QT. According to the Weierstrass theorem cited,
the derivatives with respect to of the entire function C + C2 + are equal to
the series of the corresponding derivatives of C, C2, hence, in calculating the
coefficients in the power series expansion of C + C2 + ..., we must combine the
coefficients for equal powers in the power series expansions of C, C2, ....

We shall now apply the results we have obtained to finding the solution of a
linear differential equation with constant coefficients.

Let us rewrite (1.1) in the form

z("+ , *z("-l+ + ,*z f(u,v),

and express the derivatives of z by means of (3.1)" then we obtain

(D + 2, *Dn-’ + + 2n_ *D + 2n)*Z
=(D" + t *D"- + + i,_ *D)*zo

+(o"- + ] *O"-2 + + A,-2 *O)*z’o

+ + (D" + 2 D), Zo"-’ + D Zo"- + f(u, v).

If we multiply both sides of the equation by S" and keep in mind that S is not a
divisor of zero in /g, we obtain

(i + s, + + S"- ,1,_ + S", fi,),z
=(i + S, + + S"-,2,_),Zo

+ S*O + S, + + S"-,,_),Z’o
-[- Of" Sn-2* (i "-1- S * 1)* Z{on-2)’’[- Sn-l * Z(on-l) .qt_ S

+ S" f(u, v).

If we multiply both sides of this equation by the inverse matrix of i + S * 1
At- 32 * 2 @ -+" Sn * n, the resolvent of (1.1), i.e.,

R(S) I + C(S) + C2(S)+ ..-,

c(s) -(s + + s", ,),
and if we carry out the simple transformations, we obtain the formula for the
solution z of (1.1)"

Z=zo+S*zo+ + S" X*Zo"
(3.2)

-[- sn * (q)o * Zo "11- - (49n * Z(on-l)) -- Sn * R(S) * f(u, v),

where oo,..., q,_ are certain entire matrices over // which may easily be
expressed in terms of the A, 1, ..., n, but whose form will not have any special
significance in what follows.
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As a conclusion to this section we shall show that every entire k k matrix
A(S) with nonvanishing determinant has a representation of the form

(3.3) A(S) H1) * A(/1,..., k) * Ht2),

where

H(i)= /() -+- S */li) -1 S2 * /r() q_ i-- 1, 2,
*are entire invertible matrices, i.e., det 0 and A(I1, ..., k) is the diagonal

matrix

If we assume in this connection that 11 lk, then !1, "", lk forms a sequence
of entire nonnegative numbers independent of the representation" we shall call
these numbers the indices of the matrix A(S). In particular, the index of an entire
element of the ring //// is that index of the first nonvanishing coefficient in the
expansion into (nonnegative) powers of S.

For the proof we introduce the usual concept of elementary transjbrmations
of an entire matrix A(S), where we mean by this the interchange of two rows (or
columns) of A(S), the addition to an arbitrary row (or column) any other row (or
column) multiplied beforehand by an arbitrary entire element of /, and finally
the multiplication of a row (or column) by an arbitrary entire invertible element of
,///, that is, by an element of the form

20 + S " 21 + "", 20
We denote by m the least of the indices of the ruth order minors of the determinant.
It is easy to see that under the elementary operations on the matrices, the numbers
m remain invariant. From this and from the fact that every elementary operation
on rows (columns) is equivalent to multiplication on the left (on the right) by an
entire invertible matrix, we easily obtain in the usual way the desired representa-
tion and the invariance of the indices for the matrix A(S).

4. Formulation of the sufficient condition. Suppose that we are given the series

(4.1) go(u,v) + S* gl(u, v) + ...,
where gi(u, v) Ek are continuous functions of the point (u, v) e U x V and have an
entire majorant

’0 qt_ S * i qt_ S2 , i2 ..1_ ..., Ig(u, v)l _-< 2,
for all (u, v) U x V. By a representation of the original series we shall mean any
description of the series in the form

(4.2) go + S * g + A(S) * (o(U, v) + S * (u, v) + ...) + (t),

where the right-hand side satisfies the following conditions:
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(i) A(S)= fi’o + S* fi’l +"" is an entire matrix over the ring /{, and
dt A(S) ,/: O.

(ii) The coefficients i(u, v) E of the series o + S * 1 + are continuous
functions of the point (u, v) e U x V, and the series has an entire majorant
in the sense indicated above.

(iii) The function a(t) does not depend on u, v. (It follows from the first two
conditions that a(t) is entire.)

We denote by leo(U, v)] the smallest linear manifold of Ek containing all the
points o(U, v), (u, v) e U x V. A representation will be called canonical if, in addi-
tion to the three conditions enumerated, it satisfies still a fourth condition"

(iv) Among all representation of the series, the linear manifold leo(U, v)] E
has the largest possible dimension.

It is clear that the canonical representation is not completely defined uniquely by
the original series.

Let co o(U, v) denote the convex hull of the set of all points o(U, v), v V,
for fixed u U. We give the following basic definition.

We shall say that the parameter v in (4.1) has complete maneuverability if there
exists a representation (4.2) of this series such that the set

(4.3) f’l CO/;o(U, t) E
ueU

contains interior points.
Every representation satisfying this condition is obviously canonical. It is

not hard to show that if some canonical representation satisfies condition (4.3),
any other canonical representation also satisfies it.

For convenience in formulating the sufficient condition of evasion, we
shall adopt the following convention. By an m-dimensional space E" we shall
mean, in this paper, the arithmetic space of m-columns with the scalar square
of the vector equal to the sum of the squares of its coordinates. Let L be an arbi-
trary subspace ofE of dimension k =< m, and let P be the orthogonal projection of
E" onto L, that is, P is a symmetric matrix satisfying the equation p2 p and the
condition PE L. Let B denote an orthogonal matrix satisfying the condition’
Z L if and only if the vector Bz has zero coordinates starting from the (k + 1)-st.
Then the matrix BP gives an orthogonal projection onto L followed by an orthogo-
nal transformation of coordinates in U" in such a way that the image BPz of an
arbitrary point z E" has zero coordinates in the last m k places. Consequently,
every subspace L = E" defines, up to an orthogonal transformation, a linear
mapping 7’E --, g corresponding to an orthogonal projection of E onto L.
The fact that 7 is defined up to multiplication by an orthogonal matrix will not
have any significance for us, since all of our assertions concerning 7 will be invariant
under orthogonal transformations. We shall call the k m matrix the projection
of E onto Ek corresponding to the orthogonal projection of E onto L, or simply a
projection corresponding to the subspace L.

We return now to the game and consider the expression R(S) f(u, v) in the
formula for the solution (3.2). Since the resolvent R(S) is an entire m m matrix
over /, i.e., R(S) ?. / S * / ..., the expression

R(S) * f(u, v) f(u, v) + S * * f(u, v) +
fo(u, v) + s L(u, v) +
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is a power series in S with an entire majorant"

for all (u, v) e U V and O, 1, .... Moreover, if is a projection of E onto E
corresponding to some subspace L Em, then the expression

rc(R(S) * f(u, v)) fr * R(S) * f(u, v)

* fo(u, v) + s ,.f(u, v) +
is a series of the type (4.1), so that we may speak of representations of this series in
the form (4.2), and in particular, we may speak of canonical representations.

THEOREM 4.1 (Sufficient condition for evasion). Let L be a subspace of dimen-
sion k >= 2 lying in the orthogonal complement of M E’, and let rc be a projection
of E onto Ek corresponding to the subspace L. If the parameter v in the expression
f * R(S) * f(u, v) has complete maneuverability, then there exists an evasion strategy.

Thus an evasion strategy exists if it is possible to find a canonical representation

(4.4) fr * R(S) * f(u, v) H(S) (o(U, v) + S * l(u, v) + ...) + x(t)

such that the set

(4.5) f) cOvo(U, v) = E
ueU

contains interior points.
The proof of this theorem is contained in the following two sections, where we

construct the evasion strategy on the basis of the representation (4.4) satisfying
(4.5) and where we give an estimate for the distance between z(t) and M.

From what has been said, it is clear that if we know in advance that the para-
meter v in fr R f(u, v) possesses complete maneuverability, then it is important
for us to find the canonical representation of this expression. It is possible to
describe a procedure for finding a canonical representation for an arbitrary pre-
scribed series (4.1) in a finite number of steps. It would be desirable to have effective
criteria by means of which it would be possible to infer, on the basis of the expres-
sion R * f, the existence of a projection such that v possesses complete maneu-
verability in the expression * R *f, and, if such a projection exists, how to
calculate it.

5. Derivation of the estimates. We assume the hypotheses and notation of
Theorem 4.1, and we assume for convenience that the origin in the space E is an
interior point of the set (4.5). We denote by Q the closed k-dimensional cube with
center at the origin and with sides parallel to the axes, and contained in the interior
of the set f3,v cov00(u, v); the diameter of the cube can be arbitrarily small.

We denote by p(z(t), M) the distance of the point z(t) to the subspace M’
we denote by P the orthogonal projection of E" onto the orthogonal complement
of M. Clearly,

p(z(t), M)= Pz(t)[ __> 1 * z(t)l.

If we take advantage of (3.2) and (4.4), we may write

fr z(t) p(t" Zo) + S" * H(S) * 6o(U, v) + S * l(/d, U) --[- "],
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where

o(t" Zo) *[z0 + S * zo + + S" * Zo
+ S", (Oo * Zo + + o,_ 2o"-) + rt(t)

is an entire function of which depends linearly on the coordinates of the vector Z0

of initial conditions. Moreover, let the matrix H(S) be represented in the form (see
(3.3))

(5.1) H(S) H{I)(S) * A(I1, , k) * H2)(S),

where H(1)(S) and H(2)(S) are entire invertible matrices and where 1 =< =< lk 1.
In the following section we shall show that for sufficiently small diameter of Q

there exists a fixed interval 0 __< =< T on which the integral equation in v

(5.2) S" * m(s) * [@o(U, u) -- S * @l(U, v) + ...’] --tn+l
may always be solved to any degree of precision for any point " e Q and any meas-
urable control u(t) U. In other words, for any e > 0 there exists a measurable
function v(t) V, 0 < <= T, such that

(5.3) IS" * H(S)* (0(u, v) --Ji- S 01(u, v) .ql_ ...) + gn+l ,
for 0 __< =< T and for arbitrary preassigned u(t) U and " e Q. Thus, to calculate
the solution v(t) at the instant t, we use the point " and the values u(r) on the interval
0<z<t.

For every u(t) U, Q and e > 0 we choose one of the possible functions
v w(t" u, , e) satisfying (5.3) and we call it an evasive maneuver corresponding to
the control u(t), the point Q and the prescribed degree of accuracy e > 0.

We now give two simple preliminary estimates.
Let z(t) be a solution of (1.1) with initial condition Zo (Zo,Z’o, ..., Zo"-)),

and denote by IZ0 the quantity Iz01 + + Iz0 )l. If p(Zo, M) > O, there exists a
) so large that

p(zo,M) p(zo,M)
(5.4) p(z(t), M) >__ .for 0 <_ <_

2 A( + IZol)"
The proof follows immediately if we remark that for sufficiently large 2, we

2
IPz’(t)l -( + Zol),

have the bound

p(z(t), M) IPz(t)l Pzo + Pz’() d

>= p(zo, M) Pz’ dr >__ p(zo, M) (1 / IZol) dr

>= p(zo, M)
P(Zo,M) P(zo,M)

2 2

We have

O<_t<T.
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The second estimate concludes with the following assertion.
If T is sufficiently small, then there exists a v such that, for an arbitrary vector

Zo of initial conditions,

(5.5) v(1 + Iz(t)l) + IZol, 0 T,

where

Z(t) (z(t), z’(t), z(n-1)(t)),

Z(t) z(t)l + Iz’(t)l + -4- z"- 1)(t)

Proof. If we differentiate successively the left and right sides of the formula
(3.2) for the solution, we obtain for 0 __< =< T and for a sufficiently large constant

Z

whence

Iz(t)l Izol- tz(1 + IZol),

Iz’(t)l I%1- tz( + IZol),

Iz("- 1)(01 > [Zo 1)l- tZ(1 4-- IZol),

4--[Z(t)l (1 tnz)(1 4-- IZol) (1 Tnx)(1 4-- [Zol).

We obtain the inequality Tnz > O.
Finally, we formulate the following lemma (cf. [1 ]), a simple proof of which we

give at the end of the section.
LEMMA 5.1. There exists a 0 > 0 so small that for an arbitrary initial vector Zo

there exists a point (Zo) e Q satisfying the condition

Io(t" Zo)- t"+tC(Zo)l _-> Ot"+, 0 _< _< T.

Now it is possible to proceed to the description of the conduct of the game
itself and to the construction of the evasion strategy. This conduct of the game is
identical to that described in [1.

We choose a positive number r > 0 satisfying the following inequalities

(5.6) o < 1/20T"+, o < 2T, o/2 > 0(o/2)"+.

The last inequality is compatible with the first two, since , can be made arbitrarily
large.

At the beginning of the game at the instant 0, let the distance between z(0)
and M be greater than . Then we assign to the control v an arbitrary value and
we pay attention only to the distance between z(t) and M. As soon as this distance
becomes equal to or, let us say for we define the control v(t) on the interval

< 4-- T by means of the "evasive maneuver" formula

v(t) w(t t u, (z(t,)), ),

where we now give an upper bound for e, and the point ((Z(t 1)) e Q satisfies the
condition (Lemma 5.1)

).+l )"+ <t<t1+ T.(5.7) Icp(t- t,,Z(tl))- (t- t, C(z(t,))l O(t- 1-’-



342 R. V. GAMKRELIDZE AND G. L. KHARATISHVILI

As a result of this "maneuver" v(t), =< < + T, we have the following
estimates"

p(z(t), M)> 0() n+l

( + Iz(t,)l)"+

p(z(t + T), M)>= OT"+l e.

Indeed, for

<-t<t +T,

l(z(t ), M)

we have, on the basis of (5.4) and (5.6),

p(z(t), M)

_
0

n+l

>0
n+l

(1 + IZ(t)[)
Moreover, for

<_t-t <= T,
).(1 + IZ(ta)l)-

we have, on the basis of (5.3)and (5.7),

p(z(t + T), M) > OT" +

If we choose

f: < min 1/2o
( + iz(t,)l).+ ,,-}oT

"+’

we obtain, for =< =< + T,

p(z(t), M) > 1/20
(1 + Z(t,)l)"+ l’

p(z(t + T), M) >= 1/20Tn+l > 7.

Finally, if we take advantage of (5.5), we obtain the final estimates
n+l

(1 -+-IZ(t)l)"+’

const.

(1 + IZ(t))"+" tt + T,

p{z(t -+- T), M)> o’.
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Thus, in the course of the entire "maneuver", the first estimate is effective with a
constant in the numerator which is independent of the method of conducting the
game, but is determined only by the game itself, that is, by (1.1), by the sets U and
V, and by the subspace M. At the end of the maneuver, the point z is outside the
a-neighborhood of the subspace M, so that we are in the same position that we
were in at the beginning of the game at the instant 0, so that we can repeat the
process described an infinite number of times. Since T is fixed, we can continue the
game as long as we please, and, moreover, obtain a universal bound (5.8) for the
distance p(z(t), M). From the construction of the evasion control v(t) described, it
also follows that it is an evasion strategy in the sense defined in 2 since the value
of the solution at the instant is expressed in terms of the initial condition and the
values of the control u(z) on the interval 0 <= z <_ t.

If z(0) is inside a a-neighborhood of M at the beginning of play, then if we
conduct the game in the way described, we obtain the earlier estimate (5.8) for

_>_ T, and on the interval 0 =< =< T, we have

(P(z(O),M))"+1p(z(t), M) >__ 1/20 -f (1 / IZ(t)l)"

Proof of Lemma 5.1. It is enough to prove the lemma for the case k 2"

q o The derivatives
q2

cPt-+ + q n + + (49

t2(n+l 1,2,

have a finite number of zeros on the interval 0 __< __< T, and these do not depend
on Z0 since the numerators consist of entire functions of which depend linearly
on the coordinates of Z0. Consequently, for each Z0 the segment 0 < =< T can
be partitioned into N intervals (N does not depend on Z0 but in general depends on
T), on each of which pi(t’Zo), 1, 2, is monotone, and hence in the Nth order
subdivision of Q into squares there exists a square into whose interior the curve
q/t,+ l, 0 <= T, does not pass. If we take (Z0) as the center of this square, then
we have

(Z0) >
n+l aN

where IQ] is the length of the side of the square Q.
6. Solution of the integral equation. Since the diameter of the cube Q can be

decreased arbitrarily, we can solve, instead of (5.2), the equation

S * H(S) * (lo(U, u) At- S * ll(U, u) Av ...) + Sn+l * O, O.
We write the left-hand side in the form

S’-’ * H(S)* {S * E(o + S ll AV ") AV H-’ * Sl*

where the expression

co(t) H-1(S) S * ,
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is an entire function of by the representation (5.1) and by the inequalities k

=> => 11. For 0 <_ __< T, the values of o9(t) lie in some closed k-dimensional
sphere Q1 of arbitrarily small diameter (for a sufficiently small cube Q) with center
at the origin. Consequently, it is possible to assume that

1(6.1) Q1 COv0o(U, v)

where [. ]o denotes the interior of the set contained in the brackets. Therefore it is
clear that instead of (5.3), it is sufficient to solve the inequality

(6.2) IS * lifo(U, v) + S * ff(u, v) + ...) (t)][ < e

for 0 T and for arbitrary, prescribed, measurable u(t) U and (t) Q1.
It is easy to see that the equation

s (o(U, v) + s (u, v) + ...) (t) 0,

or, equivalently, the equation

(6.) o(U(t),v)+ s,(u(t),v)+ (), u(t)eu, (t)eQ1,

cannot be solved for v, since the set of points o(U, v), u e U, v V, generally lies
far from the sphere Q and hence, for sufficiently small e,

o(U, v) (t)l > Is * , + "1.
Moreover, it is clear from the same considerations that (6.3) cannot be solved
approximately with the desired precision in the La-norm, that is, we cannot have

[(o(U(t), v) + ,(u(t), v) +S (t)[ dt

for sufficiently small e. However, if we introduce a weaker norm (in the sense
of the induced topology) by the formula

p(t) = sup p()dr

then, by an approximate solution of(6.3) to within e in this norm we mean a solution
on 0 N T of the inequality

(@o(U(t), V) + S * @l(U(t), v) -k- ...) o(t)ll e

for arbitrary prescribed measurable u(t) U, oo(t) Q l, that is, a solution of the
inequality (6.2) to which we now turn our attention.

For every fixed value u U there exists, by (6.1), a finite number of points
Vo,..’, vr in V such that the convex hull of the points q0(u, Vo),’", Oo(U, vr)
contains the sphere Q in its interior. A simple argument using the compactness of
U and the continuity of fro(U, v) shows that for every u U it is possible to choose
values vi(u) V, i= O, 1,..., r, where r is independent of u U, such that the
functions vi(u) are Borel measurable. If we set

po(U) Co(U, Vo(U)), ..., p(u) qo(U,
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then

[ 1(6.4) VI co (po(u), pr(u)) Q1.

We now take advantage of an approximation lemma by which we shall
construct an optimal sliding regime (cf. [2]), and which we formulate in the follow-
ing way.

APPROXIMATION LEMMA. Let qo(t),
k-dimensional vector functions and/to(t),
functions satisfying the conditions

qr(t), 0 <= <= T, be bounded measurable
.., lt,(t), 0 <= <= T, measurable scalar

(6.5) pi(t) -= 1, /ti(t) __> 0, 0, 1,..-, r.
i=0

Then, for arbitrary e > 0, there exists a function q,(t), 0 <= <= T, depending on
p p(t) (po(t), #r(t)), which assumes at each time instant one of the values
qo(t), "", q,(t) and which satisfies for all [0, T] the inequality

that is,

i Ii=oli(z)qi(z) q.(’c)1

To construct qu(t), the interval [0, T] must be partitioned into sufficiently
fine subintervals I (the mesh depends on qi(t) but not on li(t)), and each of the
intervals Is must be subdivided into r + mutually disjoint subintervals I,

0, 1,..., r, of length

meas. Ii f_ fli(t) dt, O, 1,..., r.

The function qu(t) can then be defined by the relations

qu(t) q(t), 6 Ii, O, 1,..., r.

We consider now, instead of the insoluble equation (6.3), the following
equation in the unknown functions/0(t), l(t), "", (t), 0 < =< T:

(6.6)
[o(U(t), vg(u(t)))lai + S * Ol(U(t), vi(u(t)))l + ...] co(t),

i=0

u(t) . U, co(t) U_ Q1,

and we shall show that this equation may be solved on a sufficiently small interval
0 __< __< T, and that the solution (t) (/o(t), "’, #r(t)) will, moreover, satisfy
(6.5). The solution can be thought of as a function of t, namely, a positive unit
measure on the compact set V at the instant t, concentrated at the r + points

Vo(t) Vo(U(t)),... v(t)= v(u(t)),
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and the sum

d/j(u(t), vi(t))lai(t), j O, 1,2,...,
i=0

may be thought of as an average of the functions j(u(t), v) of v with respect to the
measure t(t)

i=0

We shall call the measure/(t) a generalized solution of the integral equation
(6.3), which is insoluble in the ordinary sense.

Suppose that we are given a generalized solution /(t)= (/0(t),...,
and a number e > 0. We choose N large enough so that, for 0 =< __< T,

(6.7) ISu +1 , I//N +1 -- SN + 2 , I[IN + 2 + el3

independently of whatever controls we substitute in the function 0N+j(u, v) in
place of the parameters u and v. This is possible since the series ’o + S * 1 +
has a majorant. According to the approximation lemma, the interval 0 __< _< T
can be partitioned into such fine segments I that if each of the I is further sub-
divided into r + 1 subintervals Ii, 0, 1, ..., r, of length meas. Ii .[i/(t)dt
and if the control v(t) is defined by the formula

v(t) vi(t) vi(u(t)), Ii, i= O, 1,..., r,

then the inequality

q,o(U(t), v(t))(t) + + s (u(t),
i=0

[Oo(U(t), v(t)) + + S * ON(u(t), v(t))] =< e/3

is satisfied. Consequently, if we combine this last inequality with (6.1), we obtain the
estimate

II[qo(U(t), v(t)) / S * qa(U(t), v(t)) / ...] co(t)llw

i--o
[9(u(t)’vi(t))lai(t)+S* (u(t), vi(t))i(t)+...-1

-[4o(U(t), v(t))+s,(u(t), v(t))+.. "]11 --<’w
which expresses the fact that (6.2) has a solution. We shall say that this control
v(t) approximates the generalized solution p(t) to within in the norm I1"

Before we proceed to the construction of the generalized solution, we shall
prove the following preparatory lemma.

LEMMA 6.1. In the notation pi(t)= pi(u(t))= d/o(U(t),vi(t)), i= O, 1, ..., r,
let the closed sphere Q2 contain Q in its interior and be contained in

Iq co(po(t),..., p,(t))]
t[0,T]
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(cf. (6.4)). There exist r + measurable scalar functions mo(t, q),..., mr(t, q) oj’
the point (t, q) [0, T] Q2 such that

(i) mi(t, q) >= O, 0, 1, ..., r,

mi(t, q) 1, mi(t,q)pi(t)= q.
i=0 i=0

(ii) Imi(t, q’) mi(t, q")l < CIq’ q"l,
i=0

where C is independent oj’t s [0, T] and of q’, q" s Q2.
In other words, there is a certain regular method of making each point q Q2

correspond to its barycentric coordinates with respect to the points po(t), "",

pr(t) (the convex hull of which contains Q2 in its interior)---a fact expressed by
condition (i) and by the measurability of the mi(t, q); condition (ii) asserts that these
coordinates not only depend continuously on q, but also that they satisfy a
Lipschitz condition in q with a constant C which is independent of the time.

Proof. We consider the fixed r-dimensional simplex E co(no,..., at)
and make the affine mapping

Pt’]2 co (Po(t),’", Pr(t))

by the equalities P(a) pi(t), 0, 1, ..., r.
The preimage Pt-(q) of an arbitrary point q Q2 is a closed convex set in ]2.

We denote by a(t, q) the center of gravity of a uniform distribution of unit mass on
the entire set P,-(q). The barycentric coordinates mi(t, q), 0, 1, ..., r, of the
point a(t, q) in the simplex ]2,

(6.8) a(t, q) mi(t, q)ai,
i=0

satisfy all the required conditions. The first condition is automatically satisfied
by the construction; to prove the second condition it is necessary to make a simple
estimate of a multiple integral, and the measurability of the functions mi(t, q) is
also easy to prove.

We proceed now to the construction of a solution of (6.6),

(t) (o(t), ..., O<_t<_T,

which satisfies (6.5). Let us rewrite (6.6) in the form

where

Pi(t)gi og(t) _, S * ji(t)lli,
i=0 j=l i=0

ji(t) j(u(t), vi(t)), j 1,2,..."

(/)(t) QI’

=0,!,-..,r.

We shall solve the equation by successive approximations, and as a zero-order
approximation,

#)(t) (#o)(t),...,/(t)),
we take the functions (cf. (6.8))

ltl(t) mi(t, og(t)), O, 1,..., r.
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If we have constructed the (l 1)-st approximation,

(- (t) ’- ())(t)

the/th approximation is defined as follows. The point

qCn(t) o(t) S * nj(t)- )(t),
j= i=o

is contained in Q2 for sufficiently small T since (t) Q = Q2], and the series

j= i=o

has the majorant

O<=t<=T,

which is independent oft [0, T]. Hence, by Lemma 6.1, wecan define the functions

Itl)(t) mi(t, qn(t)), i= O, 1,..., r,

which constitute the/th approximation tttn(t) (p)(t),..., ttn(t)). We have

q)(t) Pi(t)ltll)(t) (D(I) S * ji(t)ll- 1)(l), O, l, 2,....
i=0 j=l i=0

If we make use of the Lipschitz character of the functions mg(t, q) in q, property
(ii) in Lemma 6.1, we obtain

It)(t ,-"(t)l CIqt)(t)- q(l-
i=0

i=0

C (S * [1- 1)(t fil- 2)(t)[
i=0

This yields the final estimate

C-g=o =(I- 1)’
0 T,

which guarantees the uniform convergence of the successive approximations

to the desired solution p(t) (po(t),"., p,(t)) as .
We must call attention to the nonunique character of the generalized solution

p(t), which arises from the nonuniqueness of the barycentric coordinates of the
point qeco (P0,’", P,) relative to the points Po,’", P,.
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AN EXISTENCE THEOREM ON OPTIMAL CONTROL
OF PARTIALLY OBSERVABLE DIFFUSIONS*

N. U. AHMED AND K. L. TEO"

Abstract. In this paper we consider the problem of the existence of optimal control systems
described by the stochastic Ito differential equation. It is shown (Theorem 1) that Fleming’s existence
theorem [1, Thm. 3, p. 205] remains valid without the assumption that the drift coefficient f of the
system is linear in the control variable. Further, it is shown that the control restraint set U can be taken
as variable. Our result is based on the Fillippov technique (Himmelberg et al. [2, Thm. 3’, p. 281])
rather than the lower semicontinuity arguments as used by Fleming [1, 1968, Appendix 3, p. 213].
However, our result does not contain his.

1. Introduction. Let us consider the system described by the family ofstochastic
Ito differential equations S"

d(t) f(t, (t), u(t, (t)))dt + g(t, (t)) dw(t),

t0, T], 0< T< ,
(to) o (7o--initial probability measure),

u6D,

where for each [0, T],
(t) (l(t), , ,(t)) R"

is the dynamic state of the system,

(t) (l(t), ..., l(t))e R 0 <1< n

is (without loss of generality) the first components of this vector that the controller
can observe"

f: [0, T] x R" Rp -- R";

u’0, 7"] x R RP;

g’[0, T] R n x m matrices"

{w(t), [0, T]} is the m-dimensional Wiener process independent of o; and D,
to be defined later, is the set of admissible controls.

Let B be an open set in R (with compact closure) supporting the initial
probability measure no, and let the boundary c3B ofB satisfy the following property"
each point of cB has a neighborhood in which c3B is locally representable by
functions with H61der continuous second order partial derivatives.

Given the data (s) x with x B, s (0, T), let us stop the process at the
first time s =< z < T when (z) B; if (t) B for all Is, T), then we set z T.
The random variable z is called the first passage time from the cylinder
Q(O,T) B.

* Received by the editors January 25, 1973, and in revised form May 7, 1973.

" Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5,
Canada.
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Let us define the set of admissible controls on O by

D {u’u measurable on Q, u(t,Y)6 U(t,),(t,) Q},
where Q is the projection onto (t, ) space of the cylinder Q and U(t, ) is a
measurable set-valued function on Q with values that are nonempty compact
convex subsets of a fixed compact set 0 R. With the above preparations, we
may state our problem precisely. Subject to the dynamic constraints S, find a
control u D that minimizes the cost functional

(1.1) d(u) L(t, (t), u(t, (t)))dt

where L is a real-valued continuous function defined on Q 0 and Q is the
closure of the set Q. For convenience of further reference, this problem is called P.

In fact, the problem P can be reduced to the optimal control problem of an
equivalent distributed parameter system with controls appearing in the coeffi-
cients of the differential operator. For this reduced problem, Fleming [1, 1968,
Thm. 2, p. 203] presented interesting results on the necessary conditions of
optimality (Pontryagin-type) under sufficiently general conditions. However, as
far as the existence theorem [1, 1968, Thm. 3, p. 205] is concerned, the conditions
imposed on the drift coefficient fwere rather strong. In this paper it is shown that
these conditions can be substantially relaxed at the exnse of others. In fact,
Fleming’s existence theorem was based on the following assumptions"

(i) a(t, x) (g. g’)(t, x) is continuous and bounded on Q, where denotes
matrix transpose;

(ii) there exists a number c > 0 such that

aij(t, x). ziz C[Z[ 2 for all z R"
i,j=

uniformly on Q (uniformly parabolic);

a(t,x)- a(t,x) < M(iii) It- l + ix
where t, t [0, T, x, x and M is a constant;

(iv) f is a bounded measurable function on Q and is linear in u on U with
U a fixed compact and convex subset of R;

(v) L is a real-valued continuous function defined on Q x u and convex in
uon U.

Our result is proved under the assumptions (iiii) and condition A :f and
L are bounded measurable on Q for each u and continuous on for all
(t,x)Q. Further, the set-valued function F(t, x), (t, x) Q, defined by F(t,x)

{f(t,x,u)’u U(t,)}, is convex for each (t,x)Q, where f )is the

(n + 1)-vector constructed by adjoining L to the n-vectorf, and is the projection
ofx.

It is clear that condition A allows nonlinearity for the drift coecient
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2. Existence of optimal controls. For convenience, we denote by A the
following differential operator:

A"ff/ a__

i=1
fi(t, x, u(t, )) +

i,j=
aij(t x)c3xi c3xjJ

where u D; aij(t, x) a_ 1/2(g. g’)ij(t, x), i,j 1, n; and f is not necessarily
linear in u.

The proof of the existence of optimal controls for the problem P under the
new conditions is based on several lemmas. These results, as presented below, are
utilized to prove our main result (Theorem 1).

LEMMA 1. Suppose that a satisfies conditions (i), (ii) and (iii) given in and
that fu (f"(t, x) - f(t, x, u(t, YO)) is bounded measurable on 0_, for each u D. Then
the system S has a unique solution which is a strong Markov process.

Proof The proof follows from Corollary 3.2 and Theorem 6.2 of Stroock
and Varadhan [3, pp. 366-367, 392].

Using Ito’s lemma [3, Thm. 2.5, p. 352], it is not difficult to show that the
stochastic optimal control problem reduces to the optimal control problem of an
equivalent distributed parameter system as stated in the following lemma.

LEMMA 2. The problem P reduces to an equivalent problem P’ which consists

of the first boundary value problem S’ and the costfunctional (2.1):

c3t
A""(t, x) + L(t, x, u),

4"(t, x)10 0 for (0, T],

(t,:X) [0, T) x B,

ckU( T, x) O for x 6 B

u6D,

(2.1) min,o J(u) min,o fB 4)"(0, x)zto(dx).

In the sequel, we need the following.
LEMMA 3. Let f(t, 2,, v)(x a_ (,)) be a measurable (n + 1)-vector-valued

function of(t, , ) on Qfor each v and a continuousfunction ofv on Ofor each
(t, , c) Q. Then, if r(t, x) F(t, x) for all (t, x) Q is a measurable function, there
exists a measurable function v of (t, 2) on Q with values in U(t, ) such that r(t, x)

f(t, x, v(t, 2)) for all (t, x) Q.
Proof Let V(t, x) a_ {(u. O)(t, x)( a-4 v(t, x))’u measurable and u(t, 2) U(t, 2)},

where 0 denotes the projection of (t, x)-space onto (t, 2)-space and (u. O)(t, x)
u(O(t, x)) u(t, ). Clearly the set-valued function V on Q is equivalent to the set-
valued function U on 0. Therefore the proof follows from the application of this
projection and Theorem 3’ of [2, p. 281].

Based on the above lemmas, we have our main result.
THEOREM 1. Consider the system S. Suppose that a satisfies assumptions (i),

(ii) and (iii) ( 1) and that f and L satisfy condition A. Then, there exists a control
u* D that minimizes the costfunctional J.
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Proof In view of Lemma 2, it is sufficient to prove the existence of an optimal
control for the problem P’. For each u e D, the system S’ has a unique solution,
b" satisfying the following properties [1, Appendix 1, pp. 209-210]"

+ + <_
i= x ,=

and

(II) for 0 < 6 < and ," 05" or c3"/c3x,

IT"(t, x)l +
17"(c, x’) 7"(t, x)l

lit’- tl + Ix’- xl2]’V2 =< N2,

where N1 and N2 are constants independent of the choice of u e D.
Define the set X by X a_ {"’u6D} and the functional I on C(Q) by

1(ok) ok(O, x) drco(X). Clearly, the functional I is a continuous linear functional
on C(O). Therefore it is sufficient to prove that X is a compact subset of C(Q),
since this will guarantee the existence of a minimum for t,he functional h on X and
this in turn would imply the existence of an optimal control u* 6 D. For this, let
{k"’n 1,2, ...} be any sequence from X. Clearly, there exists a sequence
{u,’n 1, 2,...} c D such that q/" is the unique solution of the first boundary
value problem S’ corresponding to the control u,.

Let {f"(t, x)} _a {f(t, x, u,(t, 2))} and consider the set 4r defined by
__a {y "Y measurable on Q and y(t, x) F(t, x) for all (t, x) 6 Q}. Since by condition
A, F(t,x) is a compact convex set-valued function on Q and sup,,x)Qly(t,x)l
_<_ fl < o for all y e 4/’, it follows that f" is a weak* compact (weak* closed)
subset of L(Q). Therefore, one can select a subsequence {f".} c {f"} so that
f,.

_
yO in the weak* topology with the limit yO belonging to ,_. Thus, it follows

from Lemma 3 that there exists a control Uo 6 D so that y(t, x) f(t, x, Uo(t, ,))
for all (t,x)6 Q. Clearly, corresponding to the sequence {f,L,} there exists a se-
quence {u,.,} = {u,} c D which in turn generates a sequence {if,s} contained in
"}. Then it follows from [1, Appendix 1, the last paragraph ofp. 210] that "s

uniformly on , where q/ is the unique solution of the system S’ corresponding, to
the coefficient f yO and consequently to the control Uo D obtained before.
Thus k 6 X and this implies that X is a compact subset of C(C9). This completes
the proof.

Remarks. In case L is independent of the control variable u, the convexity
condition of F (condition A) reduces to that of the set f(t, x, U(t, )), (t, x) Q.
Under this situation our result contains Fleming’s as a special case.

Conclusion. In this paper, we have presented an existence theorem for optimal
controls for a class of stochastic systems in which the drift coefficient is not neces-
sarily linear in the control variable and the control restraint set U is not necessarily
fixed as assumed in Fleming [1, Thm. 3, p. 205]. However, it should be mentioned
that our result does not contain his as shown by the example

r(t, x) lul -<_ 1
u

which fails to satisfy the convexity condition as assumed in our paper. This point
was brought to our attention by one of the reviewers.
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NECESSITY AND EXISTENCE RESULTS ON
CONSTRAINED OPTIMIZATION OF SEPARABLE

FUNCTIONALS BY A MULTIPLIER RULE*

DANIEL H. WAGNER AND LAWRENCE D. STONEf

Abstract. Functionals E (extended real-valued) and C (vector-valued) are defined by E(q) x e(x,
q(x)) dlx and C(q) x c(x, q(x)) dlx, in a rather abstract setting, without differentiability assumptions.
If, among other assumptions, either t is a nonatomic measure or convexity conditions hold, then from
Blackwell’s generalization of Lyapunov’s convexity theorem and a separating hyperplane theorem, it
follows that for q* to maximize E subject to an equality (inequality) constraint on C, it is necessary that
there exist a vector 2 (nonnegative vector 2) such that q* maximizes E 2. C. For the latter to hold,
by yon Neumann’s selection theorem under the principal condition that e and c are Borel functions,
it is necessary that q*(x) maximize e(x, 2. c(x, for a.e. x e X. This much extends methods and
results ofAumann and Perles. Existence results are derived from "upper closure" of the range of (C, E),
under boundedness assumptions, as the range of a vector integral over selections from a set-valued
function. This development utilizes and extends results and methods of Olech and Blackwell. The
main result asserts existence of optimal functions under the principal conditions that the set-valued
function is upper closed, e and are Borel functions, C is bounded, and either # is nonatomic or E
is bounded above. Examples show that the results cannot be strengthened in various ways.

1. Introduction. This paper is addressed to functions q* which maximize a
real-valued "effectiveness" functional E subject to, e.g., a closed convex set con-
straint on a k-vector-valued "cost" functional C. Both E and C are separable
(sum of point-functions): e(q) x e(x, q(x)) d#x and C(q) x c(x, q(x)) d#x
when q(x) Y(x) for x X, with fixed X, Y, kt, e, and c. We give general conditions
under which such optimal q* exist. We further show under weak conditions that
it is necessary that for some vector 2, such optimal q* must maximize the La-
grangian E 2. C (a functional multiplier rule), and that for this it is necessary
that q*(x) maximize the Lagrangian e(x, 2. c(x, for a.e. x X (a pointwise
multiplier rule). In 2, the formal framework is given and the relevance of the
nonlinear forms of E and C is noted.

We make no differentiability assumptions, although in some cases convexity-
concavity assumptions on c(x, ), e(x, occur as alternative hypotheses, implying
one-sided differentiability. In contrast to related papers, we admit infinite values
ofE and C, Theorem 2.2 being a key tool for this purpose, and we impose relatively
few continuity or boundedness conditions.

We use rather abstract measure-theoretic and topological assumptions,
since this adds little difficulty. This has the advantages of identifying with greater
precision the properties that are needed to insure the conclusions of the theorems
and of enabling application to broader categories of situations, as compared, for
example, to using Euclidean space with Lebesgue measure or counting measure
(discrete summation). Such more familiar structures are related to some of the
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supported in part by the Naval Analysis Programs, Office of Naval Research, under Contract N00014-
69-C-0435.

" Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301.
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relatively abstract hypotheses by comments in the introduction to 5 and Remarks
2.3, 3.4 and 6.4.

Section 6 deals with existence, usually assuming bounded C and a-finite #.
Theorem 6.3 (ii) and from Theorem 6.10 to the end of the paper constitute new
results. The main result is Theorem 6.13 (iii) we use most of the paper in its proof.
The principal new features of our existence results are in permitting oe to be
attained, constraint sets to be rather general, and for x X, Z(x)= {(c(x, y),
e(x, y)):y Y(x)} k + tO be "upper closed" instead of closed. In circumstances
of interest (see Remark 6.4), upper closure permits e(x,. to be upper semicon-
tinuous instead of continuous. With Z(x) closed for x X, no topology on X is
needed (Theorem 6.9), but with the change to upper closure, Borel conditioning
must be imposed (see Remark 6.11). Theorem 6.13 then asserts that the range of
(C, E) is upper closed (which insures existence) if E is bounded above, and that
existence holds if either la is nonatomic or E is bounded above; Remark 6.14 shows
that existence may fail if the latter disjunction is violated. Theorems 6.3(i), 6.6,
and 6.9 depend on Z(x) being closed for x X and are adaptations, with modest
generalization, of work of Blackwell [5] and Olech [31], except that 6.9 depends on
6.3 (ii). A more systematic summary of 6 is given in its introduction.

Statements of necessity of the functional multiplier rule for optimality are
given in 3, without topologizing X. Necessity of the pointwise rule is given in 5.
The main necessity result is Corollary 5.2; all of the prior theorems are used in its
proof. In particular, the von Neumann selection result, Theorem 4.1, is needed,
requiring Borel conditions similar to those of Theorem 6.13. That necessity of the
pointwise rule may fail if e is not a Borel function but is Lebesgue measurable is
shown in Remark 5.5. Theorem 5.3 gives necessity of the pointwise rule under
countable X and convexity conditions.

The development leading to Corollary 5.2 is largely comprised of a Lyapunov-
type convexity theorem, a separating hyperplane argument, and von Neumann’s
selection theorem this pattern of proofs has also been previously used by Aumann
and Perles [3] to show necessity of a pointwise multiplier rule for optimality, but
under more restrictive conditions (see Remark 5.6). Our necessity results are thus
largely adaptations of prior work, in more general settings. Remark 5.5 is new,
the inclusion ofinfinite integrability appears to be new, and the distinction between
pointwise and functional rules is at least not usual. The generality of our necessity
statements is, moreover, needed in 6 and in [37] and [38].

Theorems 3.1 and 6.6 (ii) extend Blackwell’s generalizations [5] to vector
integrals of Lyapunov’s theorem [23] on the convexity and compactness of the
range of a vector measure, a history of which is given in [39]. For related results
see, for example, [1], [2], [4], [14]-[16], [27].-[32], and [34].

In a succeeding article [42], we prove necessity of the pointwise rule and
existence under a "coverability" condition pertaining to the concave envelope of
e(x, ), under c(x, y) y, y Y(x), x X. This avoids Borel assumptions and, in
existence statements, replaces the upper closure condition with an alternative.
It is interesting that coverability has a property similar to the property of Borel
functions that composition with a measurable function results in a measurable
function (see [42, Lemma 4 (iv)]), and that either coverability or Borel assumptions
yield necessity of the pointwise rule.
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Our results on functionals also apply to optimization of separable set-
functions, by identifying sets with indicator functions. In this way, one can obtain
the necessity and existence results of Dantzig and Wald [9] on the Neyman-
Pearson lemma, removing the finite integrability restriction from their necessity
statements.

2. Preliminaries. Let o9 be the set of positive integers and be the empty set.
For n 6 o9, let , be Euclidean n-space and 0" (0, ..., 0) ,. If a, b 6 ,, we
denote their inner product by a. b this is extended to vectors with +__ components
in the obvious way, being undefined if 0- or occurs. If A is a subset of
extended d,, we denote fin A A 0 , (the finite part ofA). A subscript on a vector
or a vector-valued function will always denote component. For B c ,, we denote
the closure, interior, and boundary of B by el B, int B, and bdy B. The range of a
function f is denoted rng f, u.s.c, means upper semicontinuous, and for a, b in
extended g,, a =< b means a <= b for 1, ..., n. Let f,+ , f) {a’a >_ 0"}.

We fix arbitrary nonvacuous sets X and Y(x) for each x e X. Defining

f {(x, y)’x e X and y e Y(x)},
we fix k e o9 and real-valued functions c, ..., c, and e on f. We denote c (c,

c,) and (c, e) (c, ..., c,, e), and we regard g,+ g, x .
We fix a measure # over X. Measurability always refers to #. Integrability of

f: X - . means that .x f d/ exists (possibly _+ ) for 1, ..., n. A measurable
set S is an atom of # if #(S) > 0 and S is not a union of disjoint measurable sets
having positive measure. We say # is nonatomic if it has no atoms, is purely atomic
if X is a union of atoms, or has finite substance if for each measurable P X for
which #(P) > 0, there exists a measurable Q c P such that 0 < #(Q) < (e.g.,
if # is a-finite). Subsets of X having # measure zero are ignored, i.e., if P = X and
Q = x, then "for x P" means "for t a.e. x P", and "P Q" means "#(P
Q) #(Q P)= 0."

For x X, we denote by c(x, the function mapping y into c(x, y) for y Y(x);
if q(x) Y(x) for x e X, c(-, q(. )) is the function mapping x into c(x, q(x)) for x X,
and similarly for e. We define

ee {q’q is a function on X and q(x) Y(x) for x X},
E q f’) {q’c(., q(. )) and e(., q(. )) are measurable functions},

E f) {q’c(., q(. )) and e(., q(. )) are integrable},

Ci(q) xCi(X, q(x)) d#x for 1, ..., k, q 6 ,
E(q) fx e(x, q(x)) d#x for q e .

Denoting C=(C1,...,Ck) and (C,E)=(C1,...,Ck, E), we say q* is
optimal if

E(q*) max {E(q)’C(q)= C(q*)}

In this and similar usage,, it is understood that E(p)6 {E(q)’C(q) C(q*)} implies that E(p)
exists.
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and we say q* is strongly optimal if

E(q*) max {E(q)’C(q) <_ C(q*)}.
Since q* appears on both sides ofthe formulas defining optimality, these definitions
do not refer to a preassigned cost; optimality (strong optimality) of q* merely
means that there is no q e such that C(q) C(q*)(C(q) <_ C(q*))and E(q) >
E(q*). In statements on existence of optimal functions, we shall, however, pre-
assign cost by requiring C(q) N, with closed N.

An equality constraint may be considered to be an inequality constraint by
noting that for a, b ,, a b iff (a =< b and -a =< -b).

Suppose 2 g,. We define the pointwise Lagrangian, lz, by

lz(x, y) e(x, y) 2. c(x, y) for (x, y)

and the functional Lagrangian, L, by

L(q) E(q) 2iCi(q) for q such that oo oo does not occur.

Note that if L(q) exists, then L(q) x l(x, q(x))d#x. Suppose q* . We say
that (q*, 2) satisfies the functional multiplier rule if L(q*) exists and

(2.1) Lz(q*) >= Lz(q) whenever L(q) exists.

We say that (q*, 2) satisfies the pointwise multiplier rule if

(2.2) l(x, q*(x)) >- lz(x, y) for y Y(x), x X.

If either rule is satisfied with 2 g-, we say the rule is strongly satisfied.
Traditionally, Lagrange multiplier rules are stated in terms of finding a

stationary point of a Lagrangian, requiring differentiability assumptions in
contrast to the formulations above. The usefulness of the present viewpoint,
maximizing a Lagrangian without differentiability assumptions, was pointed up
by Everett [10]. Earlier statements of multiplier rules in this vein were given by
Slater [36] and by Lehmann as Lemma 3 in [21, 3.6]. For more history, see
[22], [12] and [41 ].

We now define an additional set-valued function Z by

Z(x) {(c(x, y), e(x, y))’y Y(x)} for x X.

Note that for x X, while Z(x) + , Y(x) is an arbitrary set. We fix ff as the
set of integrable functions f on X such that f(x) Z(x) for x X and define

I(f) f f(x) d#x forf if, 1,..., k + 1,

and

By the Axiom of Choice, rng I rng (C, E). The nonlinear (C, E) and arbitrarily-
valued Y provide a more general framework than that of the linear I. We shall
subsequently condition e and c in ways which yield results not obtainable from
I alone.
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THEOREM 2.1. If 2 k, q* , E(q*) > --oe, and C(q*) is finite, then in the
following, (i) is sufficient for (ii) and (ii) is sufficient for (iii)"

(i) (q*, 2) satisfies (strongly satisfies) the pointwise multiplier rule;
(ii) (q*, 2) satisfies (strongly satisfies) the .functional multiplier rule;
(iii) q* is optimal (strongly optimal).
Proof. This is straightforward, with care to avoid
THEOREM 2.2. Suppose # hasfinite substance, q* , E(q*) and C(q*) arefinite,

and/l ok. Then thefollowing three conditions are equivalent"
(i) L(q*) >- L(q) whenever L(q) exists;
(ii) lz(x, q*(x)) >= lx(x, q(x)) for x e X, whenever q e
(iii) Lx(q*) >__ Lx(q) whenever E(q) and C(q) are finite.
Proof Obviously (i) implies (iii), and (ii) implies (i). If (iii) holds and (ii) fails,

then for some q e E, letting P {x’lx(x, q(x)) > l(x, q*(x))}, we have #(P) > 0.
For j e co, let

P P {x’le(x, q(x))l <= j and Ic(x, q(x))l <- j, 1,..., k}.
Then U o: p p, so for some Jo, g(Po) > 0. Take a measurable S c Po such
that 0 < #(S)< oe. Then e(., q(.))and c(., q(.)) restricted to S are finitely
integrable. Define p(x)= q(x) for x e S and p(x)= q*(x) for x e X- S. Then
p e and L(p) > Lx(q*) in contradiction, which completes the proof.

Remark 2.3. In Remark 3.4, Theorem 5.3, and Theorem 6.3, X is countable
and #({x})= for x e X, whence E(q)= xe(x,q(x)), and similarly for C.
These discrete summation byproducts of integration results also hold if summation
is defined as a limit of partial sums.

3. Necessity of functional multiplier rule for optimality. Corollary 3.3 below
gives the necessity of the (strong) functional multiplier rule for (strong) optimality.
Theorem 3.2 asserts necessity of a Kuhn-Tucker [19] condition, (iii), for strong
optimality for a given cost. These follow from a known consequence ofa separating
hyperplane theorem, applied with Theorem 2.2 and a generalized Lyapunov
convexity statement, Theorem 3.1. Theorem 3.2 ((ii) iff (iv)) has been given by
Meeks and Francis [26], [25] under stronger concavity and other conditions.

We say that the functionals C and -E are convex if

p {q’Ci(q) < oe for/= 1,..., k and E(q) >
is a convex subset of a real vector space and whenever 0 __<
we have C(eq + (1 e)p) __< eC(q) + (1 e)C(p) and E(eq + (1 e)p) >__ eE(q)
+(1 oOE(p).

TI:IEOREM 3.1 (Lyapunov and Blackwell). If # is nonatomic, then fin rng I,
i.e., fin rng (C, E), is convex.

Proof. Apply the proof of Theorem 3 of [5].
THEOREM 3.2. Suppose # has finite substance, V egk, U e rng C, u < v for
1,..., k, q*e c, E(q*) and C(q*) are finite, and C(q*) <- v. Suppose also that

either(a) is nonatomic or(b) C and E are convex. Then thefollowing are equivalent"
(i) E(q*) max {E(q)’C(q) <_ v};

(ii) E(q*)- max {E(q)’-oo < C(q) __< v,i- 1,..., k};
(iii) there exists 2 6 such that whenever q e and Lx(q) exists,

(3.1a) Lz(q) + 2. v <= Lz(q*) + 2. v <_ Ln(q*) + rl. v for rl e,
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and

(3.1b) 2. Iv C(q*)] 0"

(iv) there exists a 2 g such that (3.1) holds when E(q) and C(q) are finite.
Proof. Clearly (i) implies (ii); by Theorem 2.2 ((i) iff (iii)), we have (iii) iff (iv);

and the proof that (iii) implies (i) is straightforward. That (ii) implies (iv) is a
corollary (as pointed out by a referee) of Luenberger’s Theorem 1 [22, p. 217]
and its corollary by choosing the f of [22] to be fin {(w, d)’w >= C(q) and d <= E(q)
for some q e } this is easily shown to be convex, using Theorem 3.1 in case (a).

COROLLARY 3.3. Suppose # has finite substance, q* (I), [E(q*)l < , C(q*)
int rng C, and either (a) # is nonatomic or (b) C and -E are convex. Then for

q* to be optimal (strongly optimal) it is necessary and sufficient that for some
2 gk, (q*, 2) satisfy (strongly satisfy) the functional multiplier rule.

Proof. This follows from Theorem 3.2 by setting v C(q*) and noting that
q* is optimal iff E(q*) max {E(q)’C(q) <= v and -C(q) _< -v}.

Remark 3.4. Hypothesis (b) in Theorem 3.2 and Corollary 3.3 is satisfied if
for x X, Y(x) is a convex subset of a real vector space and c(x, and -e(x,
are convex functions. This is useful when X is countable and #({x}) 1 for x X
(so integration is discrete summation; see Remark 2.3), since hypothesis (a) does
not then apply. That necessity in Theorem 3.2 and Corollary 3.3 fails in this
discrete case, in the absence of convexity of -e(x, ), x X, is shown by example
in [37] and [43].

Remark 3.5. Suppose (I)o is a subset of (I) which is closed under "switching"
or "exchange" in the sense that if q, p e (I)o, P is measurable, r(x) p(x) for x P,
and r(x) q(x) for x X P, then r (I)o. Then Theorems 2.2, 3.1, and 3.2 and
Corollary 3.3 hold if in the definitions and statements involving (I), o is used
instead.

4. Von Neumann selection theorem. We now make topological assumptions,
under which we give a generalized version of von Neumann’s selection result,
needed in 5 and 6. This is given as Lemma 5 of[40] under more special conditions,
e.g., X gl; however, yon Neumann’s method of proof suffices also for the
present version. A new proof is given here, due to Professor Herbert Federer and
based on the proof of 2.2.12 of [11]. Professor J. C. Oxtoby has provided an
alternative formulation of this proof, also outlined below.

If A and B are topological spaces and f’A B, we say that f is a Borel
function if for each open G c B, f- I(G) is a Borel subset of A. If also g is a measur-
able function into A, then f g is measurable. Let Y 09’, the set of infinite
sequences of positive integers with the product topology formed from the discrete
topology on each factor o9; V is homeomorphic to the irrational numbers. Any
continuous image of V in a Hausdorff space is a Suslin set. Every Borel subset
of a metric space is a Suslin set. If open sets are measurable, so are Suslin sets.
The foregoing is found, for example, in 2.2 of [11].

THZOREM 4.1 (yon Neumann). Suppose X is a Hausdorff space, open subsets
of X are # measurable, 5e is a Suslin subset of a complete separable metric space W,
h’6 X is continuous, #(h(Se))< , and > O. Then there exist a compact
D h(5’)anda Borelfunctionf’D 5 suchthat#(h(5) -. D) <= e,andh(f(x)) x
for x e D.
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Proof (Federer). For S c 50, define 7(S)= #(h(S)). (This uses the measure
foundations of 11];if 17] is used, one replaces # by its associated outer measure.)
Let g map X continuously onto (see 2.2.10 of [11]).

Define Zo (W x X) (’1 {(w, cr)’w g(a)}. Then Z0 is closed. For (w, a)
e W x define q(w, a) w. Then q(Z0) C. Corresponding to e m, we induc-
tively choose z e m and closed sets Z Z0 so that

(4.1) Z, Z_ {(w,a)’a N } and 7[q(Z-)] y[q(Zi)] < e2-"

this is possible because defining Aij q(Zi- {(w,a)’ai N j}) for i, j em, we
have

U A=(Z_) and 7 A = U h(A) =lim(A).
j=l j=l j=l J

Hcrc wc have used the fact that a continuous image in W or X of a Suslin subset
of a complete separable metric space is also a Suslin set (scc 2.2. I0 of ]); hence
each Aj and h(Aj) is a Suslin set, and each h(Aj) is measurable.

Let K {’ r for e}. Then K is compact (by Tikhonov’s
theorem) and

Z=Zo O(Wx K)=(Wx ) {(w,)’eKandw=g()}.
i=I

Hence g(K)= r/(Zo 0 (W x K)) c 5. Let D h(g(K)). Then g(K) and D are
compact.

There exists a Cantor set F [0, 1] and a continuous map fl on F onto g(K).
Following [35, 7.1, Chap IX], for x e D, let a(x)= min {t’ h(fl(t)) x}, whence
(x) F. Let f fl . For t F, {x :(x) __< t} h(fl(F fq [0, t])) which is a Borel
set since h o/ is continuous. Thus, is a Borel function and, therefore, so is f.

It remains to show that #(h(50) h(g(K))) __< e. This will follow from (4.1)
if we show that g(K) n= r/(z) (the reverse inclusion is obvious), which
may be proved by following exactly the argument in 2.2.12 of [11] that C p[Zo
f-] (X x K)] (here W, r/, and f)= rl(Z) correspond respectively to X, p, and C
in [11]). This completes the proof.

An outline of Oxtoby’s alternative formulation is as follows: take , g, and K
as before, and choose r e V" and 4/’ Vo = V such that for it co,

V/= V/_ n {0’’0" Ti} and y[g(V/_,)] y[g(V/)] < e2-i;

then K f-)i V. Show that g(K) f)i lg(V) by a diagonal selection argument
similar to Sierpinski’s, given in [35, 5.3, Chap. II]. Then D h(g(K))serves as
before.

Remark 4.2. If in Theorem 4.1 we require # to be Borel regular ( 2.2.3 of [11])
and X to be a metric space, then by Lusin’s theorem ( 2.3.5 of [11]) we can obtain
f to be continuous. If t is Borel regular and r-finite, then any measurable function
is a.e. equal to a Borel function ( 2.3.6 of [11]); in that case, we can obtain f to be
a Borel function defined a.e. on h(50), without requiring #(h(50)) < oc. For related
results, see [6]-[8], [18], [20], [24], and [33].
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5. Necessity ofpointwise multiplier rule for optimality. We now apply the
above results to prove the necessity of the pointwise multiplier rule for optimality,
under some weak assumptions primarily of a Borel nature.

Defining rt(x, y) x for (x, y) f, we stipulate the following condition (also
used in Lemma 6.12 and Theorem 6.13 below):

Condition (00: X is a metric space, is a Borel subset of a complete separable
metric space, rt is continuous, c and e are Borelfitnctions, and # is Borel regular.

Note that Condition (00 is satisfied if, in particular, f is a Borel subset of ,,
rt projects f into ’m with rn < n, c and e are Borel functions, and/t is m-dimensional
Lebesgue measure. It also holds if X co and for x X, #({x}) and Y(x) is
a Borel subset of gk.

THEOREM 5.1. Suppose Condition () holds, # has finite substance, q* too,
E(q*) and C(q*) are finite, and e( q*( )) and c( q*( )) are Borel functions. Then
for 2 gk, for (q*, 2) to satisfy (strongly satisfy) the functional multiplier rule, it is
necessary and sufficient that (q*, 2) satisfy (strongly satisfy) the pointwise multiplier

Proof. Sufficiency follows from Theorem 2.1.
Suppose (2.1) holds but (2.2) fails. Let

{(x, y):lz(x, q*(x)) < la(x, y)}.

Then is a Borel set, so rt() is measurable. Since (2.2) fails, #(rr()) > 0. Choose
a measurable A rr() such that 0 < #(A) < oo. Since # is Borel regular, there
exists a Borel set Q = A such that #(Q)= #(A). Let 5 f3 rr-I(Q). Then

is a Borel set and 0 < #(rt(Se)) < oo.
By Theorem 4.1 (with h rt), there exists a Borel set P c r() and a Borel

function f:P such that rr(f(x)) x for x e P and #(P) > 0. Let c(x, y) y
for (x, y)ef and let p x of. Then for x P, (x, p(x))e, i.e., l(x, p(x)) > lz(x,
q*(x)). Let O(x) p(x) for x e P and O(x) q*(x) for x e X P. Since p, e, and c are
Borel functions, e E and Theorem 2.2 (ii) fails with q . Hence, Theorem 2.2 (i)
fails, contrary to hypothesis.

COROLLARY 5.2. Suppose the hypothesis ofTheorem 5.1 holds, C(q*) e int rng C,
and either (a) # is nonatornic or (b) C and -E.are convex (see 3). Then for q* to
be optimal (strongly optimal), it is necessary and sufficient that for some 2 ,
(q*, 2) satisfy (strongly satisfy) the pointwise multiplier rule.

Proof. This follows from Corollary 3.3 and Theorem 5.1.
THEOREM 5.3. Suppose X is countable and for x X, #({x})= 1, Y(x) c gin,

Y(X) is convex, and c(x, and -e(x, are convex functions. Suppose q*6 ,
IE(q*)l < , and C(q*) int rng C. Then the conclusion of Corollary 5.2 holds.

Proof. Apply Corollary 3.3, Remark 3.4, and the method of proving Theorem
5.1 without resorting to Theorem 4.1.

Remark 5.4. If # is a-finite, then by Remark 4.2, Theorem 5.1 and Corollary 5.2
hold without assuming e(., q*(. )) and c(., q*(. )) are Borel functions.

Theorem 5.1 and Corollary 5.2 have linear functional corollaries which are
easily formed by letting Y Z, and for (x, y) ), (c(x, y), e(x, y)) y. The Borel
condition on f becomes simply the condition that the "graph" of Z, i.e.,
{(x, z)’x X, z Z(x)}, be a Borel subset of gk + 1, where . is a completion
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of X, a separable metric space. The latter condition is not implied by the hypothesis
ofTheorem 5. Thus, Theorem 5.1 is not a corollary ofthe linear functional statement.

Remark 5.5. We show by example that the assumption in Theorem 5.1 (and
Corollary 5.2) that e is a Borel function may not be replaced by the assumption
that e is a measurable function with respect to a well-behaved measure over .

Let X [0, 1] and let # be the Lebesgue measure restricted to X. For x X,
let Y(x)= [-2, 2]; thus, 1)= [0, 1] x [-2, 2]. Let /* and/, be, respectively,
outer and inner Lebesgue measure on X (under the foundations of [11], kt =/*).
Choose DcX such that *(D)= and g.(D)=0; then *(X-D)= 1,
,(X D) 0, and D is not measurable. Let k 1, let c(x, y) y for (x, y) e ,
and defining

or

[ i for some era}xX-Dand[y[=
+2

let e be the indicator function of. Then e is a measurable function with respect
to two-dimensional Lebesgue measure, since (*x *)()= 0. However,
n( ([0, 1] x {})) D, so is not a Borel set, and e is not a Borel function.

Suppose q with E(q) > 0. Then e(., q(. )) and q, i.e., c(., q(. )), are measur-
able functions. LetP {x:e(x, q(x)) > 0},A [q(x):xP},andS {x:q(x) y}
for y A. For y A, S = D or S = X D, and, therefore, .(S) 0, whence
(Sy) 0, since S must be measurable. Therefore, (P) 0, since A is countable,
in contradiction to E(q) > 0. Thus for no q is E(q) > O.

Let q*(x) 0 for x X. Then C(q*) 0 E(q*) and E(q*) max {E(q):
C(q) 0}. Thus q* is optimal and (q*, 0) satisfies the functional multiplier rule.
Clearly, (q*, 2) does not satisfy the pointwise multiplier rule for any 2. Furthermore,
there is no (0, 2) satisfying the pointwise multiplier rule with C(0) C(q*). Thus,
Theorem 5.1 fails if e is not a Borel function, since all other hypotheses are satisfied.

Ifwe redefine e(x, 1) e(x, 1) 1 for x X, then e is "coverable" as defined
in [42] and the necessity conclusions ofTheorem 5.1 and Corollary 5.2 are restored.

Remark 5.6. More restricted versions of Corollary 5.2 (with hypothesis (a))
have been obtained by Zahl [43], Aumann and Perles [3], and Meeks and Francis
[26], [25], each using Lebesgue measure for . Although none of these is a
corollary of the other two, among them the treatment with the most strength is in
[3]. Indeed the pattern, of our development leading to Corollary 5.2 is similar to
the pattern used in [3], as noted in 1. However, the version in [3] unnecessarily
assumes that for x X, Y(x) g, and e(x,. is nondecreasing and nonnegative.

Theorem 5.1 will be applied in proving our main result, Theorem 6.13 (iii).
In [37] and [38], Stone applies Corollaries 5.2 and 5.3 to prove that, under weak
hypotheses, incrementally optimal separable allocations are totally optimal.

6. Results on existence and rng I being upper closed. We now give results
on existence of optimal functions, for cost constrained to a given closed set.
Results of Olech [31], [32] and Blackwell [5] are of fundamental importance to
this development; see Remark 6.7. Lemma 6.1, stated without proof, obviates
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explicit mention of the desired existence in most subsequent theorems by asserting
that it follows from the finite part of the range of a separable vector functional,
finrng I (=finrng(C,E)), being suitably bounded and "upper closed" (defined
below).

We usually assume below that rng C is bounded and # is a-finite.
Upper closure results when # is purely atomic, i.e., in effect when X is count-

able, are given in Theorem 6.3. Theorem 6.6 (ii) generalizes Lyapunov’s compact-
ness.-theorem and gives the desired existence when rng (C, E) is bounded and
Z(x) is closed for x X. Boundedness of rng E is weakened to rng E being bounded
above in Theorem 6.9. Theorem 6.10 asserts that if for one p, E(p) , then,
mainly under nonatomic/, every interior C value is attained by a q with E(q) .
For .this much, no topology on X is needed.

Suppose for x X, Z(x) is merely "upper closed" instead of closed. Then
Theorems 6.6 and 6.9 fail, as shown by example in Remark 6.11. However,
Theorem 6.13, which includes Condition () of 5 (Borel and other topological
assumptions), asserts existence if the constraint set is convex and either (a)/t is
nonatomic or (b) rng E is bounded above. Remark 6.14 shows by example that
existence may fail if both (a) and (b) fail. Theorem 6.13 also asserts that fin rng (C, E)
is upper closed if (b) holds and that fin rng (C, E) contains the extreme points of its
"upper boundary" if both (a) and (b) hold.

Suppose A c gk/l. We say A is upper closed if for (w, d) el A, there exists
b _> d such that (w, b) A. This specializes the concept given by Olech in [31] as
lower closure with respect to a given closed convex proper cone, here taking the
cone to be {0k} {a’a <= 0}. We define the upper boundary of A, denoted upldy A,
by

upbdy A el A f’) {(w, d)" d >= d’ whenever (w, d’) el A}.
If {d’(w, d) A for some w} is bounded above, then upbdy A is the graph of an
u.s.c, function on w "(w, d) A for some d}.

For w rng C, we define

v(w) sup {E(q) C(q)

This supremum is attained iff there exists an optimal function with cost w.
Wesayb is an extreme point ofS = fk+ ifb Sand thereexist no a, d

and 0 < < 1 such that b (1 )a + d. By ext S we mean the set of extreme
points of S.

LEMMA 6.1. /f rng C is bounded, rng E is bounded above, fin rng (C, E) is upper
closed, N c gk is closed, and N (’1 rng C , then v is u.s.c., and there exists
p* such that C(p*) N and E(p*) max {E(p) C(p) N}

LEMMA 6.2. Let g X gk / be a measurablefunction and g(x) Z(x) for x X.
Suppose <= j <_ k + 1, Ij(h) < for h , and fin rng I

Proof. We may take j k + 1. Suppose the conclusion fails, and choose
f such that !(f) is finite. Let h= g. For i= 1,..., k, inductively let
Pi {x :hi-(x) >= 0}, choose a measurable Qi such that Qi Pi or Qi x Pi
and j’o, h,_] d/ , and define hi(x)= hi- (x) for x Qi and hi(x)= f(x) for
xX- Q; then h, is integrable, for.n 1,..., i, and .xh+d . Thus
hk and I/ (h) v, which contradicts the hypothesis.
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THEOREM 6.3. Suppose # is a-finite and purely atomic. Then:
(i) /f Z(x) is closed for x X and rng I (=rng (C, E)) is bounded, then rng I

is compact (due largely to Blackwell [5]);
(ii) if Z(x) is upper closed for x X, rng C is bounded, and rng E is bounded

above, then fin rng (C, E) is upper closed.
Proof. We may assume fin rng I 4: , X is countable, and #({x}) 1, x X.

Suppose the hypothesis of(ii) holds and (w, d) cl fin rng (C, E). We must find g e
such that (Ix(g),..., Ik(g)) W and Ik+ x(g) >---- d. Choose h a, hE, o such that
I(h") -- (w, d). Now (h a, hE, ...) is a pointwise bounded sequence since (w, d) e gk + x,

rng (Ix, .-., Ik) is bounded, and rng Ik / is bounded above; by diagonal selection,
choose a subsequence (ha’, ha2, .) which converges pointwise, to h by definition.
For x X, h(x) cl Z(x), so since Z(x) is upper closed, we may choose b(x) >= hk + x(x)
such that g(x) =_ (hi(x),..., hk(X), b(x)) Z(x).

For x 6 X, by the upper closure of Z(x) and boundedness conditions, we
choose re(x) Z(x) such that mk + x(X) >--_ Zk+ for z Z(x). By Lemma 6.2,
Ifxmk+ d#[ < . By Fatou’s lemma applied to (mk+ h i,mk+ h x,’" "),

By similar argument, wi <= [.x hi d# <= wi for 1, ..., k, proving (ii).
By similar but easier argument, one proves (i) to complete the proof.
Remark 6.4. The hypothesis "Z(x) is upper closed for x e X" appearing in

Theorem 6.3 (ii) (and also in Theorem 6.13 below) is obviously satisfied if for
x X, Y(x) is a compact space, c(x, is continuous, and e(x, is u.s.c.

LEMMA 6.5 (Olech [31], [32]). Suppose # is nonatomic and a-finite, and
b e ext el fin rng I. Then there exist fx, f2, and f: X k+ such that
fJ(x) -* f(x) for x e X and x f d# b.

THEOREM 6.6. Suppose # is a-finite. Then (recall rng I rng (C, E)):
(i) if # is nonatomic and Z(x) is closed for x X, then tinrng I contains

ext el fin rng I (due to Olech [31 ], [32]);
(ii) /f Z(x) is closed for x X and rng I is bounded, then rng I is compact.
Proof. From Lemma 6.5, (i) follows. One proves (ii) by partitioning X into

purely atomic and nonatomic subsets as in [5], and applying (i) and Theorem 6.3 (i).
Remark 6.7. Theorems 6.3 (i) and 6.6 (ii) were given by Blackwell [5] for the

case where #(X) < oo and Z(x) is the same for each x e X. Lemma 6.5 and Theorem
6.6 (i) are due to Olech as noted (see Lemma 2, Theorem 3, and related discussion
in [31]). Also in [31] is a generalization of Theorems 6.6 (ii) and 6.9 below, when
/z is nonatomic. (Proof of the latter generalization, Theorem 7, can be simplified
by referring to [13] as in the proof of Lemma 6.8 (ii) below.)

LEMMA 6.8. Suppose F c gk+l is convex, K elF, {a:(u,a)e K for some u}
is bounded above, and u "(u, a) K for some a} is bounded. Then"

(i) ext upbdy K (ext K) f-) upbdy K
(ii) if ext upbdy K c F, then F is upper closed;
(iii) if F F + [,2 (vector sum) and F and [,2 are upper closed, so is F.
Proof. Denying (i), suppose (w, d) s ext upbdy K and (w, d) ext K. Choose

0 < a < 1, (w’, d’) e K upbdy K, and (w", d") K such that (w, d) a(w’, d’)
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+ (1 a)(w", d"). Pick (W’, b) K such that b > d’. Let a ab + (1 a)d". Then
(w, a) K and a > d contrary to (w, d) e upltly K, so (i) follows.

To prove (ii), because of the boundedness hypotheses, it suffices to suppose
(w, d) Upldy K and to show (w, d) F. Let A be the convex hull of ext K and
a’ {Ok} {a’a <= 0}. By Theorem 6 of 2.5 of [13], K c A + a’, since under
the boundedness hypotheses, either A’ or {0k+a} is the characteristic cone of K.
We have (w,d)= (u,a)+ (Ok,a’) with (u,a)A and a’<__ 0. Then a’= 0 else
(w, d) upbdy K. Hence (w, d) im= i(Wi, di) with i > 0 and (Wi, di) ext K

i 1. If for some j, (w/, dJ) upbdy K, take (w/, d’) Kfor 1,..., m and i=
with d’ > d, whence (w, d + i(d’ d)) K, contrary to (w, d)e upbdy K. Thus
for 1, ..., m, (wi, di) ext upbdy K by (i), so (wi, di) F. Hence, (w, d) F.

To prove (iii), suppose (w, d) e K. For n 6 o9 and 1, 2, choose (w"i, d"i) F
such that (w" + w"2, d"1 + dn2) - (w, d). Because of the boundedness hypotheses
and the fact that d"x + d"2 - d e ox, for 1, 2, {(w", d")’n 09} is bounded;
let it have (we, di) cl F as a limit point and choose (w, bi) F such that b >__ d.
Then (w,dx)+(w2,dE)=(w,d), so (w,b +bE)F and b +b2 =>d. This
completes the proof.

THEOREM 6.9. Suppose # is a-finite, rng C is bounded, rng E is bounded above,
and Z(x) is closed for x

_
X. Then fm rng (C, E) is upper closed.

Proof. If # is nonatomic, the theorem follows from Lemma 6.8 (i) and (ii)
(with F fin rng (C, E)) and Theorems 3.1 and 6.6 (i) (alternatively apply Theorem
7 of Olech [3 1]). Using this fact, Theorem 6.3 (ii), and the partitioning of X in the
proof of Theorem 6.6 (ii), one obtains the theorem from Lemma 6.8 (iii).

THEOREM 6.10. Let # be nonatomic and pc with C(p) finite and E(p)= .
Then"

(i) if w fin rng C, v(w) > -o, and 0 < < 1, then there exists an s dO
such that E(s) and [C(s)=w+(1-t)C(p) or C(s) =.(1- )w
+ C(p)];

(ii) if C(p) A c fin rng C, A is h line segment, and v(u) > - for all u A,
then for all v int A there exists a (strongly optimal) p* such that
C(p*) v and E(p*)

(iii) /f v(u) > for all u im rng C, then for all v int rng C, there exists
a (strongly optimal) p* such that C(p*) v and E(p*) .

Proof. By Theorem 3.1 and Remark 3.5, if v(u) > - for u int rag C, then
int rng C is convex, so (iii) follows from (ii).

Let the hypothesis of (i) hold. Choose r tI) such that C(r) w and E(r) > .
Again applying Theorem 3.1 and Remark 3.5, we choose a measurable S = X
and s, g such that s(x)= p(x) for x S, s(x)= r(x) for x X S, g(x)= r(x)
for x S, g(x)= p(x) for x X S, C(s) (1 a)w + aC(p), and C(g) aw
+ (1- a)C(p). Then E(s)= or E(g)= c, else E(p):/: in contradiction.
This proves (i).

Suppose the hypothesis of (ii) holds. Since v int A, we may choose j 09

sufficiently large that v + 2-J[v C(p)] e A. By inductive application of (i) with
a 1/2, one findsqsuch thatE(q) and C(q) v 2-[v C(p)].Anadditional
application of (i) yields the p* desired in (ii). This completes the proof.

Remark 6.11. We show by example that in Theorems 6.6 and 6.9, we may not
assume that Z(x) is upper closed, instead of closed, for x e X.
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Let #, k, X, Y, f, D, and c be as in Remark 5.5. Define

1-1/2[Yl fory:0, (x,y)f,

e(x, y) 2 fory=0, x e D,

3 fory=0, xX-D.

Then for x X, Z(x) is upper closed but not closed (the other hypotheses of
Theorems 6.6 and 6.9 are satisfied). There exists no optimal q* q) such that
C(q*) 0, although 0 rng C; hence, rng (C, E) is not upper closed. The example
also shows that although Theorems 6.6 and 6.9 hold if for x X, Y(x) is compact
and e(x, and c(x, are continuous, they fail if e(x, is merely u.s.c.

If we change Theorem 6.9 by letting Z(x) be upper closed instead of closed
and by adding Condition (), we obtain a valid statement, viz., Theorem 6.13 (ii)
below. In the hypothesis of Theorem 6.13, the Borel conditions are on f, e, and c,
while the upper closure condition is on Z. This adds complications to the proof
in going from the Y, C, E structure to the Z, I structure and vice versa. As in
Remark 5.4, a linear functional corollary is easily formed and proved whose
hypothesis is in terms of Z and I. An obvious corollary is also formed by noting
Remark 6.4. Both of these corollaries avoid the mixed structure nature of the
hypothesis mentioned above, and both are weaker statements than Theorem 6.13.

LEMMA 6.12. Suppose Condition () holds (see 5),/t is nonatomic and a-finite,
and for x X, (2 v Z(x) Z(x), Z(x) is upper closed, {(z x, Zk) :Z Z0(X)}
is bounded, and m(x) sup {zk+l :z Z(x)}. Suppose A f2 f-) {(x, y):(c(x, y),
e(x, y))e Z(x)} is a Borel set. Then there exists g(x)e Z(x) for x X such that
g is a measurable function and [gk + m or x gk + dl ].

Proof. To see that m is a measurable function, note that for a e d,
X f] {x:m(x) > a} n(A f’] {(x,y):e(x,y)> a}),

which is a continuous image of a Borel set and thus measurable ( 2.2.10 of [11]).
Let P {x :re(x) oe }. Then P is measurable. Since # is a-finite and Borel

regular, by Remark 4.2 we may assume m is a Borel function and P is a Borel set.
Since # is also nonatomic, we may choose disjoint Borel sets P, P2, such that
P J n=lPn and such that if #(P)> 0, then 0 < #(P,)< oe for n e co. Let
Po= X-P,

2’, A {(x, y):x Pn and e(x, y)#(P,) >__ n} for n o9,

e/o A ((x, y):x Po and e(x, y) re(x)}.
Then, for n 0, 1, ..., ’, is a Borel set, (/,) P,, and we may apply Theorem
4.1 and Remark 4.2 to obtain a Borel function p, on (almost all of) P, such that
(x, p,(x)) s/n for x Pn" Let g(x) (c(x, pn(x)), e(x, pn(x))) for x P, and n 0, 1,.
Then g has the desired properties, which completes the proof.

THEOREM 6.13. Suppose Condition () holds, # is a-finite, rng C is bounded,
and for x X, Z(x) is upper closed. Let F fin rng I fin rng (C, E)). Then

(i) if # is nonatomic and rng E is bounded above, then ext upbdy F F;
(ii) if rng E is bounded above, then F is upper closed;
(iii) if N g is closed and convex, N fl rng C (g, and either i is nonatomic

or rng E is bounded above, then there exists p*6 such that C(p*) N
and E(p*) max E(p) C(p) N}.
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Proqf. Since rng C is bounded, using 4 and Lemma 6.2 one argues as in
proving Lemma 6.12 to show, if 4: , {(Zl, "", zk)’z Z(x)} is bounded for
xX.

To prove (i), we choose b ext upbdy F. Noting Lemma 6.8 (i) and Remark 4.2,
we obtain Borel functions f 1, f2, o and f as given by Lemma 6.5.

For x X, define Z(x)= Z(x)ffl {z’z f/(x) for i= 1,-.., k), whence
Z(x) is upper closed and since f(x) el Z(x), sup {zk + 1" z Z(x)} >__ Jk + l(x). By
Lemma 6.12, there exists g(x) Z(x) for x X such that fx gk+ d/2 _> xf+ d#

bk+l. Since gi f for i= 1,..., k, g and Ii(g)= b for i= 1,..., k.
Also, Ik+ l(g) < , for rng E is bounded above. Since b upbdy F,
i.e., b F, proving (i).

We prove (ii) by applying Theorems 3.1 and 6.3 (ii) and Lemma 6.8, as in the
proof of Theorem 6.9, but using (i) instead of Theorem 6.6 (i).

If rng E is bounded above, then (iii) follows from (ii) and Lemma 6.1. To
complete the proof, it suffices to show the following"

If It is nonatomic, rng E is not bounded above, N k is closed and convex,

(6.1) and N rng C 4: , then there exists p* such that

C(p*) N and E(p*) max E(p)’C(p) N}.
We define F rng C f’l {w’v(w) > -). By Theorem 3.1 and Remark 3.5,

F is convex. Hence, N f3 F is convex. If N F , (6.1) is trivial, so we assume

(6.2) N ffl int F or - N f-)F c bdy F.

Since N ffl F is convex, if N ffl F c bdy F, then N f3 F is contained in a supporting
hyperplane of F. Thus, we may choose v N ffl F and r/ gk such that

(6.3) /=0 and vNfintF, ifN

(6.4) r/. v __< r/. w for w s F with equality when w N f3 F"

(6.5) r/k - 0 if N (3 F = bdy F (reordering coordinates, if necessary).

Fix Pos such that C(po)= v, E(po)> -, and c(.,po(.)) is a Borel
function (see Remark 4.2). If E(po)

We claim that

(6.6) rl. c(x, po(x)) <= rl. c(x, y) for y 6 Y(x), x s X.

If q 0k, then (6.6) holds trivially. If
CO (C1,.", Ck_I,E), and E -Ck. By (6.4),

E(po)- 2iC(po) >= E(s) 2C(s) whenever C(s)s F.

By Theorem 2.2 ((iii) implies (i)), we find that the preceding inequality holds for all
s . Theorem 5.1 yields that for x X, po(X) maximizes ck(x, = 2c(x,.
over T(x), whence (6.6) follows. We argue similarly if qk < 0.

For x X, let Z’(x) Z(x) f’l {z’q. (zl, zk) ft. c(x, po(x))) then Z’(x)
is upper closed and (c(x, po(x)), e(x, po(x))) Z’(x). With m and g given by Lemma
6.12, we take E such that g (c(., c(. )), e(., (. ))). If gk+ m, then e(., (-))
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>= e(., Po(" )); in any event, e(., (. )) is integrable. Since rng C is bounded, by
Lemma 6.2, c(., (. )) is integrable, i.e., . We have

(6.7)
C(0)F, r/.c(.,0(.))=q.c(.,po(.)),

[E(O) or e(., (.)) >__ e(., q(.))

and

whenever q with r/. c(., q(. )) r/. c(., Po(’))l.

If N f’)intF : , then r/= (Y’ by (6.3), so E()>= E(q) for q. Since
rngE is not bounded above by hypothesis of (6.1), E() . By Theorem 6.10
(ii), there exists p such that C(p) v and E(p) ; such p serves as p*.

Hence by (6.2), we assume 4: N VI F c bdy F. We prove (6.1) by induction
on k, the number of one-dimensional constraints.

If k 1, r/= (r/1) 4: (0) and N VI F is a singleton. Since r/. C(O)=r/. v,
C(O)=v. Suppose q, E(q)> -, and C(q) N. Then C(q)Nf’IF, so
C(q) v. By (6.6) and (6.7), r/. c(., (. )) =< r/. c(., q(. )), so since r/. C(O) r/. C(q),
equality holds in this inequality. Hence, E(c)) >= E(q) by (6.7) and serves as p*.
Thus, (6.1) holds if k 1.

Suppose k > and (6.1) holds when there are k- one-dimensional con-
straints. Let

f’ f VI {(x, y):r/, c(x, y) rl. c(x, p0(x))},

* VI [q’r/. c(., q(.)) r/. c(.,po(.))},
c’= CIO’, e’= elf", C’= CI’, E’=EI’, and N’=N {w:r/.w= r/.Vo}.
The hypotheses of (6.1) are satisfied by the primed replacements (were E’ bounded
above, (ii) would yield p*), and C’(q) N’ is expressible as k one-dimensional
constraints. By the induction hypothesis, there exists p* ’ such that

C’(p*) e N’ and E’(p*) max {E’(q) q e dp’ and C’(q) e N’}.
Suppose q e , E(q) > , and C(q) e N then C(q) e N i"1 F, so by (6.4),

rl. C(q) r/. v; thus, by (6.6), r/. c(., q(. )) r/. c(., Po(" )). Hence q e ’. Thus,
E(p*) max {E(q)’C(q)e N}, proving (6.1)and hence the theorem.

Remark 6.14. We show by two examples, with a variation on each, that
Theorem 6.13 and other results of this section cannot be extended in certain ways.

First, let X [0, oe), # be Lebesgue measure, k 1, and for x e X, Y(x)
{0, }, e(x, O) c(x, O) O, e(x, 1) 1, and c(x, 1) e -x. Then rng C [0, 1],

v(O) O, v(v) oe for 0 < ’v =< 1, and for 0 =< v =< 1, there exists q e such that
C(q) v and E(q) v(v). Hence in Theorem 6.10 (iii) we cannot change v e int rng C
to v e rng C, since the conclusion fails with v 0. Also, if rng E is not bounded
above, then v need not be u.s.c., even if optimal functions exist for all costs, rng C
is compact, and fin rng (C, E) is convex.

If we redefine e(x,O)= -1 for xe X, we have v(0)= -oe and v(v)- oe
for0<v< 1.

For the second example, letk 1, X co, and Y(x) {0, 1,2} and#({x})
for x e X. Define c by c(x, O)= O, c(x, 1)= 3.4 -x, and c(x, 2)= 41-x for x e X.
For neco U {}, define q, ecI) by, for x eX, q,(x)= if x < n, q,,(x)= 2 if
x n, and q,,(x) 0 if x > n. Since x<_a C(X, 1)d#x c(a + 1, 2) for a e co,
one may show that for q , C(q) iff q q, for some n e co U oc }.
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Define e(x, 0)= 0, e(x, 1)= -1, and e(x, 2)= x 2 for x X. Then for
n o, E(q,) 1 2-" and E(qoo) -. Thus, v(1) 1, but E(q) < whenever
C(q) 1.

If we alternatively define e(x, 2) 2x for x e X, then E(q,) n + for n o
and again E(q) -, whence v(1) , but E(q) < whenever C(q) 1.

Now consider the existence corollaries to Theorems 6.3(ii), 6.9, and 6.13 (ii)
formed from Lemma 6.1 with N {v}. The example and its alternative show (with
v 1) that we cannot substitute either the hypothesis "v(v) < " or the hypothesis
"v(v) c" for the hypothesis "rng E is bounded above" in any ofthese corollaries,
nor may we substitute either for the hypothesis "# is nonatomic or rng E is bounded
above" appearing in Theorem 6.13 (iii).

The alternative definition of e(., 2) above also shows that we may not delete
the assumption that # is nonatomic in Theorem 6.10. One can, however, easily
show the following" if # is purely atomic and a-finite, E(r) for some r e ,
and rng C is bounded, then {C(p)’E(p) } is dense in rng C.

Acknowledgments. We wish to acknowledge some conversations with
Professors Hubert Halkin and L. W. Neustadt and a referee’s comments, which
were extremely helpful in acquainting us with prior literature. As noted in 4,
the new proof of von Neumann’s selection theorem given here is due to Professor
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Oxtoby, both communicated privately.

Added in proof An extension of Theorem 6.13 (ii) above and Theorem 7 of
[31]is announced in [44].
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OPTIMIZATION OF ALLOCATIONS UNDER
A COVERABILITY CONDITION*

DANIEL H. WAGNER AND LAWRENCE D. STONE’["

Abstract. Consider maximization of a real functional E given by E(q) fx e(x, q(x)) dlx, subject
to equality or inequality constraint on j’x q d#. It is proved that such extrema exist and necessitate
satisfaction ofa pointwise multiplier rule without assuming a topology on X, but assuming a condition
called coverability of e, pertaining to the concave envelope of e(x, ), x 6 X. Examples show that key
hypotheses may not be omitted.

This paper relates to the results in [6] on the necessity of a pointwise multi-
plier rule for constrained maximization of a separable functional and on existence
of such extrema. A simple constraint functional is used, but the objective functional
is subjected to a "coverability" condition defined below in terms of concave
envelopes. No Borel assumptions are made, in contrast to Corollary 5.2 and
Theorem 6.13 of [6] in further contrast to the latter, our assumption below differs
from Z(x) being upper closed. Necessity results are given as Theorem 5 and Corol-
lary 6, and existence is given in Theorem 8. Remarks 7 and 9 show by examples that
the results cannot be strengthened in various ways.

The usages below are consistent with [6], and are in some ways simpler. We fix
an arbitrary nonvacuous set X (on which no topology is assumed). For x X,
let Y(x) :/: be a real interval (not necessarily bounded or closed). For x X,
define T(x)= inf Y(x,) and U(x)= sup Y(x). Assume T and U are measurable
(extended real-valued)functions. Letf {(x, y)’x X andy e Y(x)}. Fix ameasure
# over X, to which measurability and integrability refer unless stated otherwise.
We ignore subsets of X having # measure 0, e.g., "for x e X" means "for # a.e.
x s X." Denoting one-dimensional Lebesgue measure by Ae, we use the product
measure # x on f.

Let 09 be the positive integers and gl be the reals. Fixing e "f gl, define

E {q" q(x) Y(x) for x e X and e(., q(. )) and q are measurable},
E f) {q’e(., q(. )) and q are integrable},

E(q) fx e(x, q(x)) d#x and C(q) fx q d# forq

We say q* is optimal (strongly optimal) if

E(q*) max {E(q):C(q) C(q*)} (E(q*) max {E(q):C(q) <= C(q*)}).
Let 2 . Define l(x, y) e(x, y) 2y for (x, y) f. For q , if 2 0

and C(q)= ___, define L(q)= E(q); otherwise, define L(q)= E(q)- 2C(q)
if this exists. For q* , we say (q*, 2) satisfies the functional multiplier rule if

* Received by the editors February 15, 1972, and in revised form April 24, 1973. This work was
supported in part by the Naval Analysis Programs, Office of Naval Research, under Contract
N00014-69-C-0435.

t Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301.
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L(q*) >= Lx(q) whenever L(q) exists; (q*, 2) satisfies the pointwise multiplier rule if
l(x, q*(x)) >__ l(x, y) for y Y(x), x X. If either rule is satisfied and 2 __> 0, we say
it is strongly satisfied.

Differentiation is always with respect to the last component of the argument
and is always one-sided. A superscript + or on a function denotes right or left
derivative respectively, e.g., e + (x, y) lim 0[e(x, y + 6) e(x, y)]/6.

Suppose F is a real interval, f:F- 1, and for t, u F and 0-< -< 1,
f(t + (1 )u) __> f(t) + (1 )f(u). We then say f is concave. On interior F, f
is continuous, f + and f- both exist, and except on a countable set f + f- at
endpoints of F, if any, f might be discontinuous. We say y F is an extremizing
point of f if there are no z, w F and 0 </3 < 1 such that z < w and (y, f(y))

fl(z, f(z)) + (1 fl)(w, f(w)).
If h and g are real-valued functions on F, we say thatg is the concave envelope of

h if (a) g is concave and continuous, (b) g(y) >=h(y) for y e F, and (c) whenever , is a
continuous concave function onF such that ,(y) >= h(y) fory F, wehaveg(y) __< ,(y)
for y F.

Assumption 1. Throughout we assume that e is covered by m, i.e., e is covetable,
meaning that the following conditions are satisfied"

(i) f is/ x measurable and m "f gl is a/ x &o measurable function
(ii) for x X, m(x,. is the concave envelope of e(x,. );
(iii) for x X, re(x, y) e(x, y) whenever y is an extremizing point of m(x,

(equivalently, e(x,. is upper semicontinuous at each such y);
(iv) for x X and y Y(x), there exist extremizing points w and z of re(x,.

such that w <= y <= z.
For (x, y) f, we define

(x, y) inf {z’z >= y and z is an extremizing point of m(x,. )}.
The following lemma, stated without proof, gives equivalent conditions

on a point b, extendable to a function q on X by regarding b q(x) for a
particular x X. As such, they provide alternative formulations of the point-
wise multiplier rule; (iii) corresponds to a functional Neyman-Pearson condition
as in 7].

LEMMA 2. Let F be a real interval, h" F --. , g be the concave envelope of h,
b F, and 2 1. Then the following six conditions are equivalent"

(i) h(b)- 2b max {h(y)- 2y’y F};
(ii) h(b) g(b)and g(b) 2b max {g(y) 2y’y V);

(iii) h(b) g(b), g + (y) >__ 2 for b > y F, and g-(y) <= 2 for b < y F;
(iv) h(b) g(b), g + (b) =< 2 if b < sup F, and 2 =< g- (b)/f b > infF
(v) h(b)= g(b)and not [g+ (b) > 2 or g-(b) < 2];
(vi) the graph of h lies on or below the line through (b, h(b)) with slope 2.
LEMMA 3. For (x, y) f, (i) k(x, y) Y(x) and (ii) k(x, y) is an extremizing point

of re(x,. ).
Proof. From (iv) in Assumption 1, we obtain (i). If O(x, y) were not an ex-

tremizing point of re(x, .), we could obtain z, w Y(x) with z < O(x, y) < w and
(O(x, y), re(x, O(x, y))) lying on the chord joining (z, re(x, z)) and (w, m(x, w)); but
the interior of this chord must contain extremizing points of re(x,. (by definition
of ), in contradiction. Hence (ii) holds.
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LEMMA 4. Suppose P X is measurable, p is a measurable function on P, and
p(x) Y(x) for x P. Then:

(i) if we define g(x,y)= p(x) for x e P and y e Y(x), then g is a # x q
measurable function;

(ii) if q :P - , A (P x ) V) {(x, y):y <- q(x)} is lz x c measurable, and
is a-finite on P, then q is a measurable function;

(iii) m + and m-are l x measurable functions;
(iv) if # is a-finite on P, then m(., p( )), m + (., p( )), m- (., p( )), and /( p( ))

are measurable functions.
Proof. To prove (i), note that for a e 1,

((x, y)’g(x, y) > a) fl [(x’p(x) > a} ],

which is # x &o measurable. To prove (iii), define go(x, y)= U(x), x e X. Then
m/ is defined on

f fl {(x, y)’y < U(x)} f -(X x g) fl {(x, y)’go(x, y) y 0}
which is # x a measurable by (i). Let e g, and for (x, y)e f, let r(x, y) (x,
y- ) and m(x, y- )= re(x, y). Then # x is invariant under and for
a e , {(x, y)’m(x, y) >_ a} r({(x, y)’m(x, y) >_ a}). Thus, m is # x meas-
urable, so is m /, being a limit of such, and similarly so is m-, proving (iii).

Proof of (ii) primarily follows [3, exercises (5e) and (5f), 34]. Suppose a
One may show that (under the measure foundations of [2] or [3]) since A is/ x
measurable, so is D,, {(x,y)’(x,a + y/n)eA} for nee). Let B P {x’q(x)
> a}. Then

B x (0,1]= U {(x,y)’xeP, a+y/n<=q(x),and0<y=< 1}
n=l

U [D (-I (P x (0, 1])].

Hence, B x (0, 1] is # x measurable. With # a-finite on P, Fubini’s theorem
applied to the indicator function of B x (0, 1 shows B is measurable, proving (ii).

To prove (iv), let b e, K {(x, y)’m(x, y) > b and x e P}, and

r(x) inf {y’(x, y) e K or m-(x, y) < 0},
s(x) sup {y "(x, y) e K or m +.(x, y) > 0}

Since re(x,. is concave and continuous for x e X,

for x e P.

(P x gl) f-I {(x, y)’y <= r(x)}
(P x gl) f’l {(x, y)" [m(x, y) <= b and re-(x, y) >= 0] or y <= T(x)},

hence by (i), (iii), and (ii), r is a measurable function, and similarly so is s. Also,
{x’m(x, p(x)) > b} {x’r(x) < p(x) < s(x)}, so m(., p(. ))is measurable.

For 6 __> 0, p + 6 is a measurable function and by what we have just proved,
so is m(., p(. + 6); hence, rn +(., p(. ))is measurable and similarly so is m- (., p(. )).
Also,

{(x, y)’p(x) <= y <= O(x, p(x))}

{(x, y)’[p(x) y and not re-(x, p(x)) m+(x, p(x))] or
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[p(x) _-< y e Y(x), re(x, y)= re(x, p(x)) + [y p(x)]m + (x, p(x)),

and m- (x, p(x)) m/ (x, p(x))] },

which is # x &a measurable by (i) and the proven part of (iv). Thus, (., p(. )) is
measurable by (i) of Lemma 3, (i), and (ii), which completes the proof.

THEOREM 5. Suppose q* e , 2 e #1, IE(q*)l < oe, IC(q*)l < m, and # has finite
substance (see [6, 2]). Then for (q*, 2) to satisfy (strongly satisfy) the .functional
multiplier rule, it is necessary and sufficient that (q*, 2) satisfy (strongly satisfy) the
pointwise multiplier rule.

Proof. Sufficiency follows from Theorem 2.1 of [6].
Suppose (q*, 2) satisfies the functional multiplier rule. Let

S {x’m/(x,q*(x)) > 2} and R {x’m-(x,q*(x))< 2}.

By Lemma 4 (iv), S and R are measurable. We shall show/(S) #(R) 0.
Supposing #(S) > 0, choose a measurable P S such that 0 < #(P) < oe

and suppose x P (whence q*(x) < U(x) since m / (x, q*(x)) exists). Let

p(x) inf {y’m /(x, y) < 2 or [U(x) oo and y d/(x, q*(x) + 1)]

or [U(x) < and y O(x, q*(x) + 1/2[U(x) q*(x)])]}.

By Lemma 3(i), q*(x) < p(x) Y(x). If p(x) inf {y’m/(x, y) < 2}, it is easily
shown that p(x) is an extremizing point of m(x, .), and otherwise this holds by
Lemma 3(ii). Thus, m(x, p(x)) e(x, p(x)) by Assumption l(iii). Also, m / (x, y) >= 2
for q*(x) <= y < p(x), and there exists z such that q*(x) < z < p(x) and m/ (x, y) > 2
for q*(x) <= y <= z.

By Lemma 4(i), (iii), and (iv), {(x, y)" q*(x) <= y <= p(x)} is # x q measurable.
Hence by Lemma 4(i), (ii), and (iv), p and m(., p(. )) are measurabl. Thus for
x e P, since m(x, is absolutely continuous on [q*(x), p(x)] by 6.3 of [4],

lz(x, p(x)) m(x, p(x)) 2p(x)

(1)
p(x)

[m+(x, y)- 2] dy + m(x, q*(x))- 2q*(x)
’ q*(x)

> m(x, q*(x))- 2q*(x) => l(x, q*(x)).

Define q(x) p(x) for x e P and q(x) q*(x) for x e X P. Then q e F, and by (1)
and Theorem 2.2((i) implies (ii)) of [6], (q*, 2) does not satisfy the functional multi-
plier rule, in contradiction. Thus #(S) 0. Similarly (symmetrizing the definition
of O and the statement of Lemmas 3 and 4), #(R) 0. Thus

(2) not [m +(x, q*(x)) > 2 or 2 > m-(x, q*(x))] for x e X.

Let Q {x’m(x,q*(x))> e(x,q*(x))}. Then Q is measurable. For x eQ,
q*(x) is not an extremizing point of re(x,. ), so by (2), m+(x, q*(x)) re-(x, q*(x))

2. Define qo(x)= O(x, q*(x)) for x e Q and qo(x) q*(x) for x e X Q. Then
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for x Q, qo(x) Y(x) and m(x, qo(x)) e(x, qo(x)) by Lemma 3, so

l(x, qo(x)) re(x, qo(x)) 2qo(x)

m(x, q*(x))+ [qo(x)- q*(x)]m+(x, q*(x))- 2qo(x

m(x, q*(x))- 2q*(x) > e(x, q*(x))- 2q*(x)= la(x, q*(x)).

Also, qo e E by Lemma4(iv).-Hence by Theorem 2.2((i) implies (ii)) of [6], #(Q) 0,
so m(., q*(. )) e(., q*(. )). From this, (2), and Lemma 2((v) implies (i)), we have
la(x, q*(x)) >= la(x, y) for y Y(x), x X, proving the theorem.

COROLLARY 6. If the hypothesis of Theorem 5 holds, # is nonatomic, and
C(T) < C(q*) < C(U), then for q* to be optimal (strongly optimal), it is necessary
and sufficient that for some 2 e gl, (q*, 2) satisfy (strongly satisfy) the pointwise
multiplier rule.

Proof. This follows from Corollary 3.3 of [6] and Theorem 5.
Remark 7. We show by examples that Theorem 5 and Corollary 6 cannot be

strengthened in certain ways. Referring to the example of Remark 5.5 of [6], let

m(x, y) 1 iflYl 1 and m(x, y) 2 lYl if I lYl 2 for (x, y) f;

then e(x,. has the concave envelope m(x,. (whose graph is an isoceles trapezoid)
for x X, andm is continuous. However, eisnotcoverable, sincem(x, 1) m(x 1)

1 : 0 e(x, 1) e(x, -1) for x X, so (iii) of Assumption fails. All other
hypotheses of Theorem 5 are satisfied, but as noted in [6], the necessity conclusions
fail. Therefore, in Theorem 5 one may not replace (iii) of Assumption 1 by the con-
dition that e is measurable.and m is continuous. By redefining e(x, 1) e(x, 1)
for x X, e becomes coveTable, and Theorem 5 applies. Incidentally, if r(x)= 1/2
for x X, then e(., r(. )) is not measurable, but m(., r(. )) and r are integrable.

To see that Theorem 5 fails if (iv) is omitted from Assumption 1, in Remark 5.5
of [6] redefine f to be [0, 1] x gl and s to be

{(x, y)’[x e D and lyl 2i] or Ix e X D and lY[ 2i + 1] for some e co}
x {0),

let e(x, 0) 1/2 for x e X, elsewhere on f let e be the indicator function of sO, and
proceed as before.

In Theorem 5 we assume # x 2’ measurability of m but not of e. To see that
the latter would not insure the former, redefine s D x {0} and let e be the
indicator function of

THEOREM 8. Suppose (i) Y(x) is compact for x e X, (ii) /z is nonatomic, (iii)
r e , U e , (iv) oe < C(T) __< C(U) < o, and (v) C(T) <_ v <= C(U). Then there
exist an optimal q*e such that C(q*)= v and p*e rb such that C(p*) <_ v and
E(p*) max{E(p)’C(p) <= v}.

Proof. For x e X and 2 e gl, define

(p,(x, 2) sup {y’y T(x) or m+(x, y) => 2},
qh(x, 2) inf {y’y U(x) or m+(x, y) <_ 2}.

Then by (i),

(3) oe < T(x) <= qh(x, 2) =< q)(x, 2) __< U(x) < oe for x
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Suppose 2 e 1. By (iv), g is a-finite over {x’U(x) > T(x)}. We have

{(x, y)’y <= q),(x, 2)} {(x, y)’y <= T(x) or m +(x, y) >__ 2},
which is/ x 2’ measurable by Lemma 4(iii) and (i), so by Lemma 4(ii), (p,(., 2) is
measurable and, by (iii), (iv), and (3), integrable similarly, so is (Pl(’, 2). Define

1,(2)= f o,(x, 2)d#x and I/(2)= f q)l(X, 2)d#x.
.x

For x e X, (491(X,") is right continuous and q)u(x," is left continuous. Thus, I
is right continuous and Iu is left continuous by the monotone convergence theorem.
By (3),

(4) C(T) <= Ii( <_ Iu(2) <_ C(U).

Since limz_, (pu(X, 2) T(x) for x e X, by the dominated convergence theorem and
(4) we have lim_,oo Iu(2) C(T), hence lim_. I(2) C(T). Similarly,
lim-oo I/(2) limx_.-oo lu(2) C(U).

Obviously, if v C(T) or v C(U), then T or U would respectively serve
for q*. Therefore, we assume that C(T) < v < C(U). There exists a 2o such that

Iu(2o) lim Iu(2) __> v >__ lim Iu(2).
2T),o ;t2o

By the right continuity of Ii, I/(2o)_-< v so for some 0 =< __< 1, v I,(2o)
+(1 z)II(2O).

By Theorem 3.1 and Remark 3.5 of [6], (iv), and (3), we obtain a measurable
P c X and an integrable q* such that q*(x) q),(x, 2o) for x P, q*(x) q)l(X, 2o)
for x X P, and

C(q*(x)) 0C((p,(., 20) + (1 oOC((Dl(. 0))"-- eI,(2o) + (1 00I/(2o)= v.

For x X, by the definitions of q)l and qgu, q*(x) is an extremizing point of
m(x, .); thus by Assumption (iii) and the same definitions,

(5) e(x, q*(x)) m(x, q*(x)) and not [m + (x, q*(x)) > 2o or m- (x, q*(x)) < 20].

By Lemma 4 (iv), m(., q*(. )), i.e., e(., q*(. )), is a measurable function. We
may assume there exists 0 e such that E(O) > oe. By virtue of (iv), lxo(., 0(" ))
is integrable and Lxo(O > oe. Thus, lxo(., q*(. )) is integrable since it dominates
lxo(", 0(" )). Hence by (iv), e(., q*(. )) is integrable, i.e., q* e q). Since -oe < Lxo(O
<= Lxo(q*), E(q*) > -oe. Hence by (5), Lemma (2) ((v) implies (i)), and Theorem
2.1 of [6], q* is optimal, as desired.

To obtain p* define s(x) inf {y’not [m-(x, y) < 0 or 0 < m+(x, y)]} for
x X. Then m(x, s(x)) >= re(x, y) for y e Y(x), x e X, and m(., s(. )) e(., s(. )).by
(iii) ofAssumption 1. It is easily shown by Lemma 4 (iii) and (ii) that s is measurable,
whence by Lemma 4 (iv), so is m(., s(. )). Since rn(., s(. )) __> e(., 0(" )) and E(O).
> oe, m(., s(. )) is integrable. Thus, E(s) x m(x, s(x)) d#x >= E(q) for q

Now let a sup {E(q)’C(q) <= v}, v(w)= sup {E(q)’C(q) w} for w e range
C, and F range C f] {w’v(w) > -oe}. By Theorem 3.1 and Remark 3.5 of [6],
F and g2 f’l range (C, E) are convex. We have shown that for w e F, w C(q) and
v(w) E(q) for some q. It follows from Theorem 6.10 of [6] that v is concave on
interior F or oe on this set.
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If v >= sup F, s serves as p* v =< inf F is trivial. We may assume v is in interior
F, on which v is concave. Choose p, q l, q2, e such that C(q) <= v for j e o9,

E(q) a and C(q) C(p) <= v. If C(p) > inf F, then v is continuous at C(p), so
a v(C(p)) and, as we have shown, there exists p* such that E(p*) v(C(p)) a
and C(p*) C(p). If C(p) inf F, since a >= v(v) and v is concave, we have v- (v) =< 0
whence C(s) <_ v. Again, s serves as p*, which completes the proof.

Remark 9. In [5], Stone provides an existence result, Theorem 3.3, under
conditions different from those ofTheorem 8 ;he replaces the condition C(U) < o
(thereby permitting U o) by the condition that E(T) and E(U) are finite and
e(x,. is nondecreasing for x e X. Example 3.4 of[5 shows that neither C(U) < o
nor C(T) > o may be omitted from Theorem 8.

The following example demonstrates that in Theorem 8, Assumption (iii)
may not be replaced, by the condition that e is a Borel function and e(x,. is non-
decreasing for x X. Let X [0, 1], and for x X, let T(x) 0 and U(x) 2.
For (x, y) f, let e(x, y) 0 for 0 __< y =< 1 ande(x,y)= for <y=<2. Note
that if C(q) 1, then E(q) < 1. However, sup {E(q)’C(q) 1} 1.

Defining concave envelopes without requiring continuity at endpoints would
invalidate Theorem 8. To see this, let f [0, 1] [0, 1], and for (x, y) f, let
e(x, y) y2 and m(x, y) y for y (0, 1] and e(x, O) re(x, 0) 1. Then m
would cover e since the only extremizing points of re(x,. are 0 and 1, for x e [0, 1].
However, there is no optimal q* such that C(q*) 1/2.

Remark 10. Our use of concave envelopes was originally motivated in part by
Arkin [1]. In [1], e(x,.) is assumed to be a probability distribution function.
However, we point out that the proof of necessity in [1] for the case where e(x,.
is not concave is incomplete in that it is shown merely that (our notation) if q* is
optimal with respect to E and C and (defining m(q) x m(x, q(x)) d#x when this
exists) if there exists a function r* which is optimal with respect to M and C with
C(r*) C(q*), then there is an r** such that C(r**)= C(r*)= C(q*) and
M(r*) M(r**) E(r**) E(q*), and hence that r** is optimal with respect to
E and C. It remains to show that such r* exists and that q*(x) maximizes a
Lagrangian for x X.
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SMALL NOISE OPEN LOOP CONTROL*

CHARLES J. HOLLAND’

Abstract. A truncated expansion of the optimal cost in powers of the noise coefficient is established
for a class of fixed stopping time small noise open loop control problems. These problems arise by
adding a white noise term with a small coefficient to the system equations in the deterministic control
problem of Pontryagin.

1. Introduction. In this paper we establish a truncated expansion (Theorem
4.3) of the optimal cost in powers ofthe noise coefficient for a class offixed stopping
time small noise open loop control problems. These problems arise by adding an
additive white noise term with a small noise coefficient to the system equations
in the deterministic control problem. The theorem shows that if the noise coeffi-
cient is small, then the optimal open loop deterministic control U is approximately
optimal in the stochastic problem. The theorem also gives an approximation to
both the optimal open loop stochastic cost and the cost ofusing U in the stochastic
problem. See the remarks following the proof of Theorem 4.3 for additional in-
terpretations. Fleming established the corresponding result for the completely
observable case in [2], and his work has influenced the approach taken here
although our methods of proof are quite different.

In [23 Fleming was able to establish an expansion for the optimal feedback
control. We were unable to establish an expansion for the open loop control for
the class of problems considered here. In [9], however, such an expansion was
established under different assumptions, among which is the one that each open
loop control generate a Gaussian process.

Other approaches to the open loop control problem include the_stochastic

programming work of Wets and Van Slyke [12] and the work of Mortensen [il].
2. The problem. Suppose that the state (t) evolves according to the stochastic

differential equations

(1) d f(t, (t), U(t)) dt + a(t) dw,

where w is an n-dimensional Brownian motion, and with initial condition
(s0) Xo, Xo a constant in R". In (1), U(t) is a control with values in the control
set K. We seek to minimize

(2) J(g) E g(t, (t), g(t)) dtl(So)= Xo

over the class of open loop controls ’. An open loop control U ll is a Borel
measurable function on [So, T] with values in K.

Let Q [So, T] x R". Throughout we assume the following:
(i) The initial point (So,Xo) is a fixed constant in R"+a, is known to the

controller, and is a regular point.
* Received by the editors January 25, 1973, and in revised form April 16, 1973.
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(ii) K is a compact, convex subset of Rk.
(iii) f(t, x, u) A(t, x) + B(t, x)u.
(iv) The functions f, L are C-functions on Q x K.

(3) (v) f, L and their first, second and third order partial derivatives are bounded
onQ x K.

(vi) There exists C0 > 0 such that v’L(s,x, u)v >_ C0v’v for all nonzero
v R and for all (s, x, u) Q x K.

(vii) a(t) (2e)/I, where I is the n x n identity matrix.

We call (So, Xo) a regular point if there exists a unique optimal open loop control
for the deterministic control problem (1), (2) with 0.

For each >= 0 in (1), let 2= infvJ(U). We shall show that = o
+ 7 + a() for some constant 7.

With any U // in (1) the Ito conditions are satisfied, and there exists a
solution (t) to (1) which is unique in the sense that any two solutions agree on
[So, T] with probability one. Let us use the expanded notation (t, U, , s, x) for
the solution to (1) to indicate the value of , the control U, and the initial condition
(s, x). For each >= 0 there exists an optimal control for the minimization problem
(1), (2) which will be denoted by U. The existence of U follows from Theorem 3
in [5]. Finally, let (t) (t, Us, e, s, x), /(t, U, s, x) (t, U, 0, s, x), rf(t) t/(t, U,
S X).

Kushner [10] developed a necessary condition for a control to be optimal
which will be useful later in establishing regularity properties of the optimal
control. Let p’ denote the transpose of p.

LEMMA 2.1. Let pC(t) satisfy

(4) dp(t) {-f’x(t, (t), U’(t))p(t) Lx(t (t), U(t))} dt

with p(T) 0 and O(t, u) E{L(t, (t), u) + p’(t)f(t, (t), u)}. Then O(t, u)
is minimum on K for u U(t) for almost all in [So, T].

This section is concluded with some standard estimates relating to the solu-
tion of stochastic differential equations. Let

Ilg(t)ll sup Ig(t)l, Ig(t)ll sup Ig(t)l,
s<_t<_T so <_s<_T

and M1, ME be upper bounds on Ifxl, Ifl respectively on Q x K. From the
generalized Gronwall’s inequality [7, p. 83], one obtains

(t, u, , s, x) (t, u*, s, x)ll
(5)

<-_ Me. IU(t)- U*(t)l dt / (2e)/ellw(t)- w(stll expM(r- So)

for all U, U* e ’, e >__ 0, so _<- s __< _< T. From [1, p. 392], we recall that

(6) Pr {11 w(t) w(s)ll >_- 2) _< C exp (- r22)
for So -< s, _< T and appropriate positive constants C, r. Finally, there exists a
positive constant C5 depending only on M1, T- So, eo, m, and the compact
control set K such that

(7) EIl(t, U s x)ll" < C for n 1 m,
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and

(8) El (t, U, , s, x) (t*, U, , s, x)l Cslt t*l 1/2

for 0 =< e <_ Co, So =< s =< t, t* =< T. See [6, pp. 392-400].

3. Uniform convergence of U to U. In this section uniform convergence of
U to U as e ---, 0 is established. It is first shown that U --, U in measure as
e 0 using the same technique as Fleming applied in the completely observable
case [2]. The first lemma, a modification of Lemma 3.1 in [2], is concerned with
deterministic control problems. The proof uses the special form of f and the
assumption that (So, Xo) is a regular point.

LEMMA 3.1. Given a > 0 there exists 6 > 0 with the property that if U ql and

then

L(t, q(t, U, So, Xo), U(t)) dt < 2 + 6,

I1/- 11 < a and IU(t)- U(t)l dt < a.

LEMMA 3.2. There exists C > 0 such that

Is 0[ < CF,1/2 for all >_ O.

Proof. U is at best optimal in the deterministic problem, hence

2 2 <= E L(t, ?s(t), U(t))- L(t, if(t), US(t))at

<= M3(T- so)gilt/- 11,

where M3 is a bound on ILxl on Q g. From equations (5) and (6) the inequality
20 2 =< Ce 1/2 follows. The opposite inequality is obtained similarly by using
U in the stochastic problem.

LEMMA 3.3.
(i) [U U[ 0 in measure on [So, T] as e O.

(ii) ff 11 0 as - 0 almost surely.
(iii) lip pll 0 as 0 almost surely.
Proof. (i) As shown in Lemma 3.2,

L(t, qs(t), US(t))= E L(t, rls(t), US(t))- L(t, if(t), US(t))dt + 2

C,1/2 _}_ le 2Ce,/2 +
For each a > 0 in Lemma 3.1, pick e* so that 2Ce, 1/2 < 6 for 0 =< e =< e*. Then
j’rolUS(t)- U(t)ldt < a and hence lUg(t)- U(t)l 0 in measure on [So, T]
as e- O.

(ii) Let {era) be any sequence with em - 0 as m - . It suffices to show for
every 7 > O,

t, O 0 <_ <= s,,,,
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See [8, p. 91]. Fix 7 > 0. Now I1 1 I1 zll + IIz o I. From Lemmas
3.1 and 3.2, pick el > 0 so that r/s 11 __< /2 if 0 < e < el. Therefore Pr {11
-11 > 7} _-< Pr {11- rtll > 7/2}. From (5)with U U* if s_ r/s] < 7/2,
then s flail < /2 for 0 =< e =< r. Therefore

(

0 lim Pr U I1- 11 > } s,.-*olim Pr {ils" 11 > 7/2}

=< lim Pr {(2)a/211w(t) w(s)ll exp M(T So) > 7/2} 0
Srn0

and (ii) is established.
(iii) Recall (4). Since Ifxl and ILxl are bounded on Q K, a simple Gronwall

estimate shows that IlpS(t)ll =< C for e >_ 0 for some constant C. Let v T and
use the generalized Gronwall’s inequality to obtain for 0 =< v =< T So,

[pS(v) p(v)l -< exp [A(u)l du {IA(s) AS(s)l [pS(s)[ 4- IhS(s) h(s)l} ds,
SO

where AS(t)=-f’(t, s(t), US(t)) and hS(t)=-Lx(t, s(t), US(t)). Almost surely
the integrand tends to zero in measure on [So, T]. Since P’[I, ASl[, [h’[I are uni-
formly bounded, then by the Lebesgue dominated convergence theorem, lip pll

0 almost surely.
To prove that U U uniformly on [So, T], some a priori estimates on the

smoothness ofthe optimal controls U are established using Lemma 2.1 and Lemma
3.4, which is a modification of Lemma 2.1 in [4].

LEMMA 3.4. Let O’[so, T] x K R be such that
(i) 0 is C2 in ufor each t;

(ii) 0u satisfies a uniform H6lder condition in s on so, T] with constants C*,
*, i.e., for all s, [So, T], u K,

IO,(s, u)- O(t, u)l _-< C’It- sl*;

(iii) v’O,,v >= 7*[v12 for all nonzero v R.
Let U*(s) be the unique u K such that O(s, U*(s)) min, O(s, u). Then U* is
uniformly H61der continuous on [So, T] and the H61der constants C, o depend only
on C*, o* and 7".

THEOREM 3.5. U u[[ 0 as e O.
Proof. Since U U in measure as e 0, it suffices to show that given

eo => 0, there exist constants C, a such that [US(t)- U(s)l =< fit- sl for all
0 =< e =< eo, So s, -< T. Let 0 be defined as in Lemma 2.1.0 is clearly C2 in u
for fixed in [So, T]; also v Ou,v > Colvl 2 for all nonzero v R:.’Thus (i) and (iii)
are satisfied. Now

O,(t, u) O,(s, u) E{L,(t, (t), u) L,(s, S(s), u)

+ p(t)[B(t, s(t)) B(s, S(s))]

+ S(s, S(s))[p(t) pS(s)]}.

Since ]dpS/dt] is uniformly bounded, say by M4, then
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Hence using the bounds on L,,, L,,, B,, B,, [[p[[, and equations (7) and (8), one
obtains the validity of (ii).

4. The expansion. In the previous section it was established that U ,
where denotes the class of H61der continuous functions on [So, T] with values
in K. For each U ,, e >__ 0, consider the partial differential equation

(9) eAxtP(t, x) + x(t, x)f(t,x, U(t)) + tPt(t x) + L(t,x, U(t)) 0

with boundary condition tP(T,x)= 0, where A denotes the Laplacian in the
variables x. Consider W also as a function of U and e. Then tP(s, x, U, e) is related
to the open loop control problem by

(10) tP(s, x, U, e) E L(t, (t, U, e, s, x), U(t)) dt.

Since U , for e _>_ 0 the solution to (9) is such that all partial derivatives
of with at most one t-differentiation are continuous. For e > 0 this follows
from differentiating (9) with respect to xi and the H61der continuity of the co-
efficients. For e 0 use the method of characteristics. Define Z(s, x, U, e) for
e >_ 0, s <= T, as the solution to the equation

eAz(s, x, U, ) + Zx(s, x, U, e)f(s, x, U(s)) + Z,(s, x, U, )
(11)

+ Axe(S, x, U, O) 0

with boundary condition x(T, x, U, e) 0. Recall (9). Then for e > 0, eZ(s, x, U, e)
tP(s, x, U, e) tP(s, x, U, 0). For the initial point (So, Xo),

2 (So, Xo, U, 0) _< 2 2
(12)

-< ti’(So, Xo, U, ) 2.
Hence in order to establish the expansion, it suffices to divide (12) by e and show
that all limits as e 0 are equal. It is convenient to break up the proof into two
lemmas.

LEMMA 4.1. tP(so, Xo, U, e) tP(so, Xo, U, 0) + eZ(So, Xo, U, 0) + o(e) uniform-
ly in U ,, where o(e)/e - 0 as e -, O.

Proof It must be shown for all U e that there exists g(e) such that ]X(so, Xo,
U, e) X(So, Xo, U, 0)] < g(e), where g(e) - 0 as e - 0. By Dynkin’s formula,

7.(so, xo, U, ) E A(t, (t, U, , so, xo), U, O) dr,
0

while the method of characteristics yields

Z(so, xo, U, O) A(t, rl(t, U, so, xo), U, O) dr.

From (5), (6) we have that Ilk(t, U, , So, Xo)- (t, U, So, Xo) l 0 almost surely
as e --, 0 uniformly in U e . Hence it is sufficient to establish a uniform bound
on the partial derivatives ,,, i, j positive integers with 1 _< i, j _< n, for all
(s, x) e Q x K and U e ..
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then

(13)

and

Denote b (t, U, s, x)and q (t, rl(b), U(t)). Since

T(s, x, U, O) L(q) dt,

fT &h(b)
kxi(S x, U, 0)

/=1
Lx,(q) c3xi dt,

Wx,,,(s, x, U, 0)
/=1 k=l

,c32r//(b))+ Lx,(q) cx dt

Wx.x.x(s, x, U, O) L,,xk (q)
&h(b) &lk(b) &l,(b)

=1 k- X Xi X
+ L,x(q)_xix

Lxx’tq) dt.

By assumption, the partials L,, L,, L,. are bounded on Q x K. Hence it
suffices to show that Oqa(b)/Ox, O2q(b)/Ox Ox, and O3q(b)/Ox Ox are uniformly
bounded for all b such that s T, (s, x) Q and U The vector Oq(b)/gx
satisfies

(14)

with initial condition d(b)/dx (0, ..., 0, 1, 0..., 0)’. Using the bound on f,
one obtains

8x(t, U, s, x) <= exp MI(T So) for 1, ..., n,

s, [So, T], x 6 R" and U 6 . Similarly, 632rlr(b)/63xi c3xj satisfies

r=i J,xttq)xiX /=1 k=i X

with initial condition (d:ff3x 3x)(s, U, s, x) 0.
From the above estimates, 3a(b)/3xi and 3l(b)/3x are uniformly bounded.

By assumption the matrices f,f are uniformly bounded; hence one obtains that

: (t, U, s, x) 5 C1 exp C(T So)
Ox Ox

forsuitablepositiveconstantsC,C:forallintegersi,j,r; 1 i,j,r n,s T,
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(s, x) e Q and U . One can show in a similar manner that the values of Ic33r/r(b)/
82xi 8xjl are uniformly bounded. Thus Lemma 4.1 is proved.

LEMMA 4.2. g(So, Xo, Us, 0) Z(So, Xo, U, 0) as e O.
Proof. It must be shown that

r/(t), Us, O) AW(t, O) as e(t), Uo dt 0 O.

Since U U in measure, then from (5), (6), I1 11 --, 0 as e 0. Let B be a
compact subset of R" which contains the points (t), r/(t) for So =< =< T, e >= 0.
Then it suffices to show that for each integer i, 1 _< =< n,

e,,(t, x, U, O) --, ,,(t, x, u, O)

uniformly on [So, T] x B as e 0. From (13) we have

tP..(s, x, Us, O) L,(q) (3l(b) 8ri*(b)
l= k= 8Xi 8Xi

(15)
+ L,(q) 32rh(b)Ox J dt,

where q= (t, rl(b), US(t)) and b= (t, US, s, x). Since each of the terms in the
integrand is uniformly bounded for all such that So -<_ =< T, it is only necessary

L oto show that each of the terms] ,,(q L,(q )1, IL,() L,(q)[,
Ol(b) 8rl(b) cq2r//(be) 632rh(b)
X X X

has limit 0 as e 0 uniformly in b and .
Consider the terms involving ILx,x,,() Lx,,.(q)l. First

IL,,(t, rl(t, U, s, x)U(t)) Z,,,(t, rl(t, U, s, x), U(t))l

(16) =< n sup [L,,.(t, x, u)l In(t, U, s, x) r/(t, U, s, x)l
OxK,r=l,...,n

+ n sup IZ,,,(t, x, u)l lUg(t) U(t)l.
QxK,r=l,...,n

By Theorem 3.5, U U 0 uniformly on [So, T] as e 0, and from (5),

(17) [r/(t, Us, s, x) r/(t, U, s, x) ls 0 as e 0

uniformly for (s, x) [So, T] x B. Hence the uniformity for Lx,,. is established.
The verification for terms L, is similar. Note that (17) is equivalent to 1 q 0
as 0 uniformly in s, t, x, (s, x) [So, T] x B, s =< =< T.

Let

8rh(b) Oh(b)
v(t)

8x
From (14) we have that

T t,TIv(t)l <= j If(q)l Iv(t)l dt + If()- f(q)l
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for s =< <= T. Since [Orh(b)/Oxi[ is uniformly bounded, and Iq- q 0 uni-
formly as e--, 0, using the generalized Gronwall inequality one obtains that
v(t) Is 0 as e 0 uniformly with respect to (s, x) so, T] x B, s =< =< T. The

verification for the remaining term follows in a similar but more tedious manner.
Thus Lemma 4.2 is established.

THEOREM 4.3.2 20 + eg + O(e), where

T

) ,(so xo U, 0)= AxW(t (t), U, 0)dt.

Proof. Using Lemma 4.1 in (12), one obtains

Z(So, Xo, U, 0) + o() __< (So, Xo) q’(So, Xo)

=< X(So, Xo, U, 0) + o(,).

The result follows by dividing by e > 0 and using Lemmas 4.1 and 4.2.
Recall that W(So, So, U, e) is the cost of using U in the e-problem. We have

shown that

(So, Xo) 2 + Z(So, Xo, U, 0) + o()

and W(So, Xo, U, e) 2 + eZ(So, Xo, U, 0) + o(e). Thus to first order in e the
costs of using U and U in the open loop stochastic control problem are the same.
Thus U is approximately optimal in the stochastic control problem for small e
and the approximate cost can be found by dropping the o(e) term in the previous
equation.

Let us consider the open loop stochastic linear regulator problem. Let
f(t,x,u)=A(t)x+B(t)u and L(t,x,u)=x’Mx+u’Nu with N>0, M>_0.

As is well known, since each open loop control generates a Gaussian process, the
stochastic control problem can be converted to a deterministic control problem
with the same equations as the original deterministic control problem and modified
cost functional

(18) L(t,x, u) x’Mx + u’Nu + trace MQ(t) dr.

Q(t), the covariance matrix of the uncontrolled stochastic process, satisfies the
equation

(19)
dQ
dt

A(t)Q + QA’(t) + (2e)I, Q(so) O.

Therefore U U and

q(So, Xo) 2 + trace M(t)Q(t) dt

in case either K Rk or K is compact and convex. Defining S(t) as the solution to
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(19) with e 1/2, one can write

(so, xo) 2 + 2e trace M(t)S(t) dt

which is in the form in Theorem 4.3 with o(e) 0.
Consider again the general class of problems covered by the assumptions (3),

and let &(so, xo) be the optimal cost of the corresponding completely observable
stochastic control problem. Then Fleming [2] showed that

oPt(So, Xo)= o + O(so, Xo) + o()

for some constant 0(So, Xo). Let (So, Xo) be the cost of using the optimal deter-
ministic feedback control in the e-completely observable problem. Then he
obtained

(So, Xo)= 2 + eO(so, Xo) + o().

Thus the costs (So, Xo) and b(So, Xo) are the same to first order in e. Finally,
as shown in [2, p. 502],

O(so, Xo) <= ):(So, Xo).
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CONTROLLABILITY FOR PARTIAL DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE*

YOSHIYUKI SAKAWA"

Abstract. The purpose of this paper is to study questions regarding controllability for the dis-
tributed-parameter systems described by partial differential equations of parabolic type. Fattorini
[2]-[4] studied controllability by finitely many functions of time. We also consider this type of controll-
ability for the distributed-parameter systems with control functions appearing in the differential
equations as well as in the boundary conditions. Necessary and sufficient conditions for controllability
are presented. We give some useful results for designing controllers which make systems controllable.
Several examples are worked out.

1. Introduction. We consider in this paper control systems described by the
linear partial differential equations of parabolic type. Two cases are treated where
the control inputs appear in the partial differential equations as distributed inputs
and/or they appear in the boundary conditions as boundary inputs. The latter
form of control is easier to realize physically. We seek controllability conditions
which ensure that the system can be steered from the zero initial state to an
arbitrary small vicinity of a final state.

Fattorini [2]-[4] studied controllability by finitely many functions of time;
this notion is technically significant from the view point of realization of controls.
He obtained his main results by applying the concept of ordered representation of
a Hilbert space with respect to a self-adjoint operator. In this paper we make use
of the results of Ito [9], by which the solutions of the parabolic equations with
boundary conditions of general type can be expressed in terms of the fundamental
solutions, and the fundamental solutions can be further expressed in terms of the
eigenvalues and eigenfunctions of the corresponding elliptic equations. Using these
results we shall obtain the finite controllability conditions of Fattorini. The results
here also show us how to construct the controllers which make systems controllable.
The results are then applied to several boundary control problems.

2. Preliminary results. Let D be a bounded domain of an r-dimensional
Euclidean space, and let S, the boundary of D, consist of a finite number of (r 1)-
dimensional hypersurfaces of class C3.1 The spatial coordinate vector will be
denoted by x (xl, x2, "", xr) e D. Consider alinear parabolic partial differential
equation

(1) cOu(t, x)/c3t Au(t, x) q(x)u(t, x) + gi(x)fi(t),
i=1

where is the time and A denotes the Laplacian given by

A ---2/(X1)2 "+" "’"-[-" 62/(Xr)2.

* Received by the editors November 3, 1972, and in revised form April 10, 1973.

" Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
In general, C" denotes the set of all functions having n continuous derivatives.
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It is assumed that q(x) and gi(x) are H61der continuous on the compact domain
D(D D S, the upper bar denotes the closure), and that f(t) are H61der con-
tinuous on [0, T], where T is an arbitrary time.

The boundary condition is given by

(2) a()u(t, ) / (1 ())Ou(t, )/On O,

where e S, n is the exterior normal to the surface S at a point e S, and a() is a
function of class C2 on S satisfying

0 __< () __< .
The initial condition is given by

(3) lim u(t, x) Uo(X) in L:(D),
t0

where Uo(X) Lz(D), and Lz(D denotes the Hilbert space of all square integrable
real-valued functions u(x) with the norm

ull u(x)2 dx

Equations (1) and (2) can be written together as a differential equation in
L:(D)

(4) du(t)/dt Au + gift(t),
i=1

where gi are the elements of L2(D corresponding to the gi(x) mentioned above, the
domain D(A) of the operator A is given by

D(A) {u’Au Lz(D), a()u() + (1 a())8u()/8n O, S},
and

Au Au q(x)u ifueD(A).

Clearly the operator A is self-adjoint. Applying Green’s formula, we obtain

(Au, u) (Au, u) (qu, u)

f(5) dS --, (qu, u)
j=

-< -[min q(x)] (u, u),

where (.,.) denotes the inner product of Lz(D), and dS is the surface element of
S at S. Therefore, the operator A is semibounded from above.

It is shown by Ito [9] that there exists a function U(t, x, y) (0 < t;x, y D)
which is of class C in t, of class C2 in x and y in , and satisfies the following
conditions (6)-(9)"

(6) cOU(t, x, y)/c3t AxU(t x, y) q(x)U(t, x, y),

(7) ()U(t, , y) + (1 ())t?U(t, , y)/t?n O, S,
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(8) lim | U(t, x, y)uo(y) dy Uo(X in L2(D),
t-0

(9) U(t, x, y) U(t, y, x),

where (6) and (7) hold for all y e D and (8) holds for all Uo(X L2(D). This function
U(t, x, y) (0 < x,y D) is called a fundamental solution of the system described by
(1) and (2).

Ito [9] obtained the following theorems.
THEOREM 1. (Ito) There exists a unique solution to the initial-boundary value

problem described by (1), (2), and (3), and the solution is given by

u(t, x) I_ U(t, x, y)uo(y) dy

(o)

+ dz U(t z, x, y) gi(y)f(z) dy,
i’-’l

where O < < , x e D.
THEOREM 2. (Ito) There exists a sequence {2i, dPij;J 1, ..., mi, 1,2, ...}

of eigenvalues and eigenfunctions satisfying the following conditions"

(11)

(12)

(13)

(i) Where C min q(x),
xD

C <_21 <22 < <2i< "--, lim2i= .
(ii) {cDij(x);j 1,..., mi, i= 1,2, .-.} is a complete orthonormal system in

L2(D), where the positive integers mi are finite for any < .
(iii) Each dpo(x satisfies the following equations

fo u(t, dy e- Zitdpij(x),Y)dPij(Y)X,

Adpo(x q(x)dpij(x

and the boundary condition (2).
(iv) The fundamental solution is expressed as

(14)

(15)

mi

U(t,x,y) e-X" dp(x)c(y),
i=1 j=l

where the sequence in the right side converges uniformly on [, o] x D
D for arbitrary 6 > O.

(v) For arbitrary h L2(D given by

mi

i=lj=l

we have
mi

(U,h)(x) ., e-Z" hifl)i(x),
i=1 j=l
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where

(16) (Uth)(x) fo U(t, x, y)h(y) dy,

and the sequence converges uniformly on [6, oe) x for arbitrary 6 > O.
Now, since the function (Uth)(x) is continuous on , the operator Ut, called the

semigroup associated with (1), maps Lz(D into itself. Using this operator, we can
rewrite the solution (10) as

(17) u(t) .U,uo + Ut_gifi(z dz.
i=1

The positive integers m are called the multiplicity of the eigenvalues 2i. If sup {mi}
m < oe, we shall say that A has multiplicity m; if sup {mi} oe, A is said to have

infinite multiplicity. In the following, controllability of the system described by (1)
and (2) will be considered for the case where A has finite multiplicity.

3. Controllability by distributed inputs. In the partial differential equation (1),
the inputs or controls f/(t), i= 1,..., n, are taken in the class, denoted F, of
functions H61der continuous on [0, T], T being an arbitrary time. Following
Fattorini [4], we shall say that the distributed parameter system is completely
controllable if, for any Uo e L2(D), v L2(D), and > 0, there exists a set of controls
f (fl ,f2, fn), f/ F, 1, "", n, such that the solution of (1)-(3) satisfies

u(t)- vii

for some depending in general on Uo, v and e. If can be chosen independently
of Uo, v, and e, then we shall say that the system is completely controllable in time 1.

If the initial state Uo is taken to be the null element of Lz(D), then we shall say
that the system is null controllable (null controllable in time 1). Let us define the
attainable set K(t) in Lz(D by

(18) K(t) u= U,_gifi(z) dz fi F, 1, n
i=1

Then it is clear that K(t) is a linear manifold and that the system is null controllable
if and only if K" Lz(D), where K > oK(t) and K" denotes the closure of K.
It is null controllable in time tl if and only if K’(tl) L2(D). Fattorini [4] proved
that if the system described by (1) and (2) (or (4)) is null controllable in time l,

then it is completely controllable in time l.

Now, if u* K+/-, then it follows that

(19) (Ut-gk, u*)fk(Z) dz 0
k=l

for all fk F, k l, n, and for all > 0, where (.,.) denotes the inner product
in L2(D). From (19) we see that u* KZ(u* K(tl)+/-) if and only if

(20) (U,gk,u*) O, k 1,..., n,
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for all > 0(0 < =< tl). On the other hand, the necessary and sufficient condition
for the system to be null controllable (in time tl) is that u* K+/- (u*e K(tl)+/-)
implies u* 0. Therefore, the system is null controllable (in time l) if and only if
equality (20) holding for all > 0 (0 < =< 1) implies u* 0.

From Theorem 2, we see that

(21) (U,gk, u*) e -ka gijuij,k
i=1 j=l

where

(22) gi (gk, ij), Uij (U*, ,j).

Since the function given by (21) is analytic in (0, ), (21) can vanish for 0 <
<- (tl > 0) only if it vanishes for all > 0. Consequently the system (4) is null
controllable if and only if it is null controllable in any time > 0.

The following result is partly included in that of Fattorini 3], who proved
the theorem using the ordered representation of a Hilbert space with respect to a
self-adjoint operator. Here, however, the proof will be made by an elementary
calculus. The result here is an extension of a result of Tsujioka [10].

THEOREM 3. Suppose that A has .finite multiplicity m. Let us define n m
matrices Gi by

(23)

gl g2 gilm,
g2il g2 2

gimi

gl g2 gi,J
kwhere gij (J 1,..., mi, k 1,..., n) are defined by (22). The control system

described by (1) and (2) is null controllable in any finite time if and only if n >= m
max {m,} and

(24) rankGi=mi for all 1,2,....

Proof Let u* K+/-; then (20) holds for all > 0. For any complex number 2
with Re 2 < 21 we see from (11) and (21) that

(25)

0 i=l
mi

gijuij
j=l

giuij,
i=

dt

k= 1,..., n.

By analytic continuation, we see that (25) holds for all 2 such that 2 2i, 1,
2, .... Let C be a circle in the complex plane of radius ei with 2i as center, where ei
is such that

0 < gi < min (2i- 2i-1,/i+
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Then we have

(26) gijblij
ij=l i=l

mi

Z giuij d2 O,

k= 1,...,n, i= 1,2,...

If n >_ m and rank Gi mi, 1, 2, ..., then (26) implies uil Uim O,
1, 2, Thus we have Ks {0} which implies that the system is null con-

trollable.
Conversely, suppose that rank Gi < mi for some i. Then there exists a nonzero

m/-vector b/i (U/l, blimi) satisfying (26). This means that K =/= LE(D and the
system is not null controllable, and the theorem is complete.

Now, the following corollary is technically important when we construct a
controller.

COROLLARY 3.1. ,Suppose that ,4 hasfinite multiplicity m. Let a sequence {a} of
numbers be such that

a2i < , ai4=O, i= 1,2,....
i=1

If n >__ m and the functions gk(x), k 1, n, are such that

(27) gk(x) aickik(x), k 1,..., n,
i=1

then the control system described by (1) and (2) is null controllable, where ik(X) 0

if k > mi.
Proof. From the orthogonality of the eigenfunctions, we see that

gi (gk, dPO) aiajk,

where (jk is the Dirac 3-function. Therefore it follows that

Or,,_ mi) m

which implies that rank G m, 1, 2, ..., thus completing the corollary.
Remark 1. If A has infinite multiplicity, then it is clear that the system (4) is not

controllable by finitely many functions of time.

4. Controllability by boundary inputs. In this section, we consider the same
system as (1) and (2), except that the control inputs are given through the boundary
condition; that is, we consider the following system"

(28) Ou(t, x)/& Au(t, x) q(x)u(t, x),

with the boundary condition

(29) ()u(t, ) + (1 ())(cu(t, )/cn)) hi()fi(t),
i=1
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where e S, hi( are of class C2 on S, and f(t), the boundary control inputs, are
such that df(t)/dt are H61der continuous on [0, T], T being an arbitrary time. Since
null controllability is considered, the initial condition is assumed to be zero.

In [9], S. Ito proved that the unique solution of (28) and (29) with zero initial
condition exists and it is given by

(30) u(t, x) dz U( z, x, hi()fi(z)
i=1

In analogy with the preceding section, if u*(x) K-, then it follows that

(31)

If we put

(32)

feu*(x)dXfs{U(t,x,)- c3U(t, x, )}- hi( dS O,

i= 1,...

;S f) tciJ()hk()dS’hij ij()
3

uij fo cij(x)u*(x) dx,

,n; t>0.

then from Theorem 2 and (31), we obtain

mi

(33) Z e a E hijuij O, k 1,...
i=1 j=l

In the same way as before, we see that

mi

(34) hiuij=O, k= 1,...,n’, i= 1,2,..-.
j=l

Thus we obtain the following theorem.
THEOREM 4. Suppose that A has finite multiplicity m. Let us define n x mi

matrices H by

(35)

h/x, hz h.

h/ h/22 h2imi

h’] hi"2 hi",,

The boundary control system described by (28) and (29) is null controllable in any

finite time if and only/fn >__ m max {mi} and

rank H mi, 1,2,

It seems difficult to obtain a result analogous to Corollary 3.1. However, we
obtain the following corollary which can be directly derived from Theorem 4.
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COROLLARY 4.1. If the multiplicity of A is one, that is, if m m2 1,
then the boundary control system described by (28) and (29) is null controllable if and
only if
(36) h- (h, h, ..., h’) q: 0

for all 1,2,..., where

(37) h’k"

Now, let us consider several examples of boundary control systems.
Example 1. We consider the following boundary control system"

(38) Ou/Ot Oau/Ox2 q(x)u, a < x < a2,

u(t, a) (1 )[u(t, a)/x] f(t),
(39)

2u(t, a2) + (1 2)[gu(t, a2)/x] O,

where 0 , 2 1, q(x) is H61der continuous on [a, a2] and f(t), the control
input, is such that df(t)/dt is H61der continuous on [0, ).

Since the eigenfunctions associated with the eigenvalue 2i must satisfy the
second order ordinary differential equation

(40) ag/ax -(q(x) ,) o,

the eigenfunctions can be expressed as a linear combination of two independent
solutions of (40), the coefficients of which should be determined from the boundary
conditions at x a and x a2 Therefore we see that the multiplicity in this case
is one.

Since h(a) 1, h(a2) 0, we see from (37) that

(a) + 9(a)/x.

On the other hand, the eigenfunction Sg(x) satisfies the boundary condition

(a) (1 )[(a)/x] O,

where 0 1. From this it is easily seen that h # 0, except the case where
$(a) O$i(a)/Ox 0. But this special case implies that $(x) 0, a contradic-
tion. Hence h # 0, 1, 2, ..., and from Corollary 4.1, the null controllability
of (38) and (39) can be concluded.

Example 2. We next consider the heat equation on a rectangle domain
0 < x < /a,O < x2 < n/a2"

(41) u/t 2u/x + 2u/gx,

with the boundary condition

(42) u(t, ) h()f(t), S.

This example was treated by Fattorini [4]. However, we apply our result to this
problem.
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22 22It is easily seen that the eigenvalues are given by 2nln2 (nlal / n2a2),
nl, n2 1, 2, ..., and the corresponding eigenfunctions are [1]

bnl2(x) .sin nlalxl sin n2a2x2, nl n2 1, 2, ....
Assume a, a are linearly independent over the integers; then the multiplicity in
this case is one. Since the eigenfunctions satisfy the boundary condition ()

0, it follows from Corollary 4.1 that the control system described by (41) and (42)
is null controllable if and only if

h.,, fs 3""()3n h() dS O,

for nl, n2 1, 2, or

/a

n2a2 h(x , O) sin,nalx dx
0

(-1)na h x, sin nax dx
0

(43)

+ na h(0, x2) sin 82a2x2 dx2
0

/a2

+ (- 1)"na h , x2 sin 2a2x2 dx2 0,
0

,2 1,2,"..
For example, the function h() given by

h(x O) b, sin nax
n=l

h(x, /a) h(0, x2) h(/a, x2) 0,

where bn 0, for all n 1, 2, ..., satisfies (43) and makes the systemcontrollable.
If a, a are not linearly independent over the integers, i.e., if there exist some

integers and m such that a (l/m)a, then A can have infinite multiplicity.
If m, then A does have infinite multiplicity. In this case, the system (41) is not
controllable by finitely many functions of time.

Example 3. We examine the heat equation in the polar coordinate form defined
on a unit circle"

u 82u 1 8u 1
(44) r + -r /--r2 802 0 < r < 1 0 < 0 < 2,

with the boundary condition

(45) Ulr:, h,(O)f,(t) + h(O)A(t).
It is easily calculated [1] that the eigenvalues of (44) with the homogeneous

boundary condition u[= 0 are given by

(46) A,=fl,, n=0,1,..., m= 1,2,...,
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where ft,,, are the nonzero real roots of the Bessel functions J,,(. of nth order, i.e.,

J,(fl,,,,)-- O, n= 0,1,..., m- 1,2,...,

and that the corresponding eigenfunctions are given by

(47) dPom(r, O) So(flomr), m 1,2,...,

.ml(r, 0) J,(fl,mr)cos nO,
(48)

,,,2(r, 0) J.(fl,,,r) sin nO, n, rn 1,2, ....
It is well known that each of the Bessel functions J,(x) has infinitely many real
zeros and they are all different except x 0. Clearly the multiplicities of the eigen-
values 2o,. are one, but the multiplicities of 2,,,(n >__ 1) are two. For that reason,
we assumed two dimensional control functions in (45).

We apply Theorem 4 to this case. From Theorem 4, the control system
described by (44) and (45) is null controllable if and only if

hnm2(49) [Hnm 76 0
hnm2

for all n 1,2,..., and rn 1,2,..., and

(50) Ihl /lhg.I # 0

for all rn 1, 2, ..., where

f[’ c3b,,i(1,0)dOh... Or hj(O)
()

O4oA1)f]ho -- h(O) dO, i, , ..
It is easily seen that

[H,m[ flnmJ’n(flnm) hi(O) cos nO dO h2(0 sin nO dO

hi(O) sin nO dO h2(O) cos nO dO

[h,,I / Ihgl 3olJg(3o,,)[ hi(0 dO + h2(O dO

Since the functions hj(O), j 1, 2, are periodic, they can be expressed in the
form of Fourier series:

(52) h(O) -}ao + (ai, cos nO + bs, sin nO).
n=l

Because all the values J’,(fl,,,) do not vanish, a necessary and sufficient condition for
the null controllability is given by

anb2n b lna2n :/: O, n 1,2,...,
(53)

lalo[ + la2ol :/: 0.
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For example, the following pair of functions

(54)
hi(0 1/2alo q- alncOS n0,

n=l

h2(0) Z b2n sin nO,
n=l

where alo 4: 0, al, 4: 0, b2n 0, n 1, 2,..., satisfies the null controllability
condition (53).

Remark 2. It is easily seen that the Laplacian in an n-dimensional sphere has
infinite multiplicity if n >__ 3. Therefore, it is important to note that the heat equa-
tion on the n-dimensional sphere (n >__ 3) is not controllable by finitely many func-
tions of time.

Remark 3. We have so far treated the heat equations as typical parabolic
equations for avoiding complexity. However, since it is shown by Ito [8] that
Theorems 1 and 2 still hold even in the case where, instead of the Laplacian, the
elliptic differential operator A is self-adjoint and is given by

where the matrix (aij(x)) of the coefficient functions is strictly positive definite
for all x D, we can obtain the same results concerning controllability for self-
adjoint parabolic equations of the general type.

Remark 4. Recently, Fattorini and Russell [5]-[7] considered controllability
conditions which ensure that the system can be steered from the zero initial state
to an arbitrary final state exactly. They gave a precise description of the attainable
set. Of course, the exact controllability conditions in this mean are much more
restrictive than those given here.

Acknowledgment. The author wishes to thank the referees for their helpful
comments on an earlier manuscript.
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AN EXAMPLE OF OPTIMAL STOCHASTIC CONTROL
WITH CONSTRAINTS*

JEAN-MICHEL BISMUTh"

Abstract. The purpose of this paper is to apply a very simple form of the Hahn-Banach theorem to
a problem of stochastic optimization with a supply constraint. The Lagrange multiplier associated with
the constraint defines a stochastic process, the properties of which are extensively studied.

The purpose of this paper is to solve an apparently very simple problem of
optimal stochastic control. More specifically, we wish to find an explicit solution
for a problem of minimization of a linear functional with a quadratic supply
constraint on the control.

To solve the problem, a stochastic Lagrange multiplier is introduced, in the
space of additive measures. It is then proved that this multiplier defines a local
martingale which appears in the Ito-Watanabe-Meyer multiplicative decom-
position of the right-continuous supermartingale defined by the dynamic pro-
gramming process (see [9]). The solution of the problem is then expressed very
simply by means of this local martingale.

The procedure is presented in a more general duality framework for optimal
stochastic control in [3]. In particular, by transforming very easily the problem
which we solve into a very simple problem of optimal stochastic control, we show
in [3] that a certain type of state constraint changes the Lagrange multiplier
associated with some problems of optimal stochastic control, which is in many
cases a semimartingale, into a local semimartingale. This can be compared with
the results of deterministic control given in [11], where the Lagrange multiplier,
which is generally an absolutely continuous function, is changed into a right-
continuous bounded variation function, when state constraints are introduced.

To avoid excessive notational difficulties, we give none ofthese generalizations,
and we refer to [3] for a more general treatment of this type of constraint. This
will also enable us to concentrate on the probabilistic difficulties of the problem
which are far more serious here.

All the basic results in probability theory which we will use can be found in
[5], [6], [7] and [8].

1. The problem. Let V be a finite-dimensional space, let (f2, , P) be a
complete probability space, and let {}tR+ be an increasing right-continuous
sequence of complete sub-a-fields of - [5, Chap. IV, p. 30].

Let - be the a-field in f x [0, + ofthe well-measurable sets [5, Chap. VIII,
D14] and -* the completion of - for the measure dP (R) dt. For our purpose,

* Received by the editors September 29, 1972, and in final revised form May 4, 1973.

" Department of Mathematics, Facult6 des Sciences de Paris, Paris, France. This paper is based on
the 7th chapter of a thesis to be submitted in Pure Mathematics at the Facult6 des Sciences of Paris.
It has been supported in part by I.R.IA. (Institut de Recherches en Informatique et Automatique
Domaine de Voluceau, 78 Rocquencourt, France).
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and using the modification theorems of Meyer, we could have used for - the
a-field ofmeasurable adapted sets [5, Chap. IV, D45], progressive sets [5, Chap. IV,
D45], or predictable sets [7, no. 203], which have the same completion for dP (R) dt
by [7, nos. 210-212-214 and 215].

Let X be a -*-measurable process with values in V, such that

(1.1) E ]Xt] 2 dt < + v.

DEFINITION 1.1. L22 is the space ofdP (R) dt classes of-*-measurable functions
u with values in V, such that

+
E lu, 2dr< +.

A norm is definedin L22 by

(1.2) ul122 E lu, 2 dt

DEFINITION 1.2. H is the space of dP (R) dt classes of -*-measurable functions,
with values in V, such that

[u,[ 2 dt is in Lo.
0

DEFINITION 1.3. K is the subset of the elements u of H such that

(1.3) lut[ 2 dt =< 1 a.s.
0

(1.4)

H and K are obviously subsets of L22.
Let I be the linear functional defined on L22 by

u - E (X,, u,)dt.

DEFINITION 1.4. The problem of control which we want to solve is the mini-
mization of I on K.

This problem is trivial in the deterministic case. The problem comes entirely
from the stochastic nature of the problem, and more particularly from the
information constraint.

2. Existencemlntroduction of a Lagrange multiplier. The problem of existence
is easy to solve.

PROPOSITION 2.1. I has a minimum on K.
Proof. L22 is a Hilbert space. K is nonempty (0 is in K), convex, bounded and

closed in L22. K is necessarily weakly compact. Since I is weakly continuous it
has a minimum on K.

L is the space of real random variables, which are essentially bounded.
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THEOREM 2.1. The problem of the minimization of I on K is equivalent to the
search for a saddle point onE H (Lo)*+ of the functional"

(2.1) (u, p) + I(u) + lu,[ 2 dt

Proof. Let B be the mapping defined on H, with values in L, by

(2.2) u lull 2 dt 1.
o

If we give to L its natural order, B is convex, in the sense that for in [0, 1] and
(u, u2) in H, then

(2.3) n(tu + (1 t)u) tn(u) + (1 t)n(u).

Moreover, K is the set of elements u in H such that

(2.4) n(u) 0.

Besides, we have

(2.5) (0) < 0

because 1 is the interior of the cone of negative elements of L.
We apply then the result given in [1]: since the generalized Slater hypothesis

is verified, the initial problem is equivalent to the search for a saddle point of
on n x ().
COROLLARY. (U, ) is a saddle point of on H x (L) if and only if

(i) u is in K
(ii)

(2.6) , lull 2 dt 1 0; //
(iii) for any u in H, one has

(2.7) I(u) I(u) + lull at

Proof. This is obvious from the definition of a saddle point.
Remark. If u is also an optimum of I on K, one has I(u) I(ul). Inequality

(2.7) proves then that:

(2.8) I:1 0.

(u , p) is then also a saddle point of ft. This proves that the set of saddle points of
fl may be written as K’ x M’, K’ being the set of minimums of I on K, and M’
being the corresponding set of Lagrange multipliers.

(L)*+ is the set ofpositive elements of the strong dual ofL, which is the set ofthe finitely additive
measures on (f, P).
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3. Local martingale associated with a Lagrange multiplier. Let (u,/z) be a
saddle point of o. r, is the continuous process defined by

(3.1) tr lul 2 ds,

Let SO be the real-valued function defined on f by

(3.2) SO inf{t’tr 1}.
PROPOSITION 3.1. SO is a predictable stopping time [7, p. 145, no. 105].
Proof. SO is a stopping time by [5, Chap. IV, p. 53] Let o{S, },s be the sequence

of stopping times defined by

(3.3) S, inf {t’a >= 1/n}.
Since a is continuous, one has

(3.4) P(lim S, S) 1;

and moreover on (So < + oo) for any n, S, < S;S is then predictable.
We keep the definition of the family {S,},N given in the proof of Proposition

3.1.
THEOREM 3.1. For any stopping time S, the restriction of3

(1 Ors)#
to is defined by an element ofLS.4

Proof. Let A be an -measurable set of f. Let uA be defined by

u=u, 0__<s< S,
(3.5) o, S < s < +,lcAU
where lCA takes value 1 on CA and 0 on A. Then uA is necessarily 3-*-measurable.

Moreover, the following relation holds"

o(3.6) lu,al = dt 1AO’Os + 1CAO"

UA is then in H. By using inequality (2.7) in the corollary of Theorem 2.1, we have

I(u) <= I(ttA) + (J.t, 1aa + 1CArOoo 1).(3.7)

But we know that

(3.8) o <1 a.s.

Since/ is a positive additive measure, we have

(3.9) I(u) <= I(uA) + (#, 1A(rOs + lCA 1>,

This represents the linear functional defined on L by

x (,(1
4 If-’ is a sub-sigma-algebra of, L’ is the set of the integrable ’-measurable random variables.
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or equivalently,

(3.10) I(u) <= I(uA) + #, 1A(Cr] 1)).

Inequality (3.10) may be written

((1 as)#, 1A) I(UA) I(uo).(3.11)

But then

(3.12)

Moreover,

I(uA) I(u) -ElA (Xs, us) ds.

+
o(Xs, us)ds

is an integrable random variable.
Inequality (3.11) proves then that (1- as)/ is countably additive and

absolutely continuous with respect to P when restricted to os. Moreover,

(3.13) ((1 )#, 1) __< (#, 1) < +.

By the Radon-Nikodym theorem, the theorem follows.
Let f be the Radon-Nikodym density of the restriction of (1 a^ s,o)# to

o ^ s.o. We have necessarily:

(3.14)

Let us then define g’ by
crt^so" >= 1In.

g’/ fT/(1 at^ so,).
By (3.14), g’ is the restriction of# tot ^ so., and is necessarily positive and integrable.
In the same way, we define fn, the restriction of (1 a,)# to so., and n by

n fn/( 1 ).
Remark. It is essential to note that generally has no density relative to P,

but is only an additive measure on However, we have proved that its restriction
to a hmily of sub-sigma-algebras of has a density relative to P. We will use this
hct to do calculations which would be trivial if the density of existed on This is
the main justification for introducing {S}nX and (n}nx.

PROPOSITION 3.2. For any n in N, g is a positive uniformly integrable martingale,
stopped at S.

Proo We ned only to prov that for any in [0, + ),
(3.15) g Ean.
Let A be -measurable. Then,

(3.16) E(1An) (, h)

and

(3.17) (#,IA) E(1Ag).
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Since g’ is ^ -measurable, (3.16) and (3.17) prove that (3.15) is true.
g’ is then a positive uniformly integrable martingale. This completes the proof.

We consider only the right-continuous version of the martingales which we
study, which exist by [5, Chap. VI, T4].

THEOREM 3.2. One can find one and only one local martingale gt stopped at S,
and continuous at SO such that"

(3.18) g, ^ s,o g’.

Proof Let us prove first the following relation"

(3.19) ;t^s.o g.

To prove (3.19), we need only to prove the following"

(3.20) g E

Let A be an -measurable set of . Then,

(3.21 (, 1 a) E(1 ,n+ E(1ag)AS 1

Thus (3.20) is proved.
We now define g, on [0, S[ by

(3.22)

Equation (3.19) proves that this definition is consistent on < S, because S
increases to S as n

g is then right-continuous on [0, S[. Let us prove that g has a limit when
increases to S.

Let h7 be defined by

(3.23) h7 1

We have by definition

(3.24) h7 1,
Since g7 is right-continuous, h7 is right-continuous. Moreover, h7 is a super-
martingale, because g7 is a martingale and 1<s is a decreasing process.

Then, for t’ t,

(3.2) E h, h.
Since S increases to S, h7 converges a.s. to lt <sog, and by applying Fatou’s

lemma to the increasing sequence hT, we deduce from (3.25)"

(3.26)

Inequality (3.26) proves that 1 <sog is a positive supermartingale. Moreover it is
right-continuous. By applying T3 of [5, Chap. VII, its trajectories have a.s. no
oscillatory discontinuities, g has then a.s. a left-hand limit when increases to S.
We call gso this limit, and for S we define g by

(3.27) g gso.
Since g s is amartingale for any n, one has for t"

(3.28) E’g’ gr sa.
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But we know that by definition,

(3.29) gt lim gt ^ s,o.
q-

Then by applying Fatou’s lemma to (3.28), one gets

(3.30) Etgt’ <- gt.

Inequality (3.30) proves that g is a supermartingale, which is right-continuous.
By the Meyer-Ito-Watanabe decomposition of right-continuous super-

martingales ([5, Chap. VIII and [4]), one can find an increasing natural process A
and a local martingale M such that

(3.31)

But

(3.32) g, g, ^ so.

Then,

(3.33) gt Mr^so- At^so.
Since M ^ so is a local martingale, and since A ^ so is an increasing natural process,
the uniqueness of the decomposition (3.31) proves that M and A are stopped at S.
But gt^ so is a martingale. Then Aso is necessarily equal to 0. Since A is stopped at
S, A can only consist of a jump at S. But Aso is measurable with respect to the
a-algebra ’ defined by

(3.34)

(see [5, Chap. VII, T49]). g being left-continuous at S is -measurable. Mso is then
necessarily -measurable. Thenthe proof can be deduced from the method
used in the proof of T47 in [5, Chap. VII]M is left-continuous at S. A is then
left-continuous at S. Then necessarily:

(3.35) Aso 0.

Since A is stopped at S, A is the null process. Then

(3.36) g M

and g is a local martingale.
Remark. The end of the proof is inspired by the proof given by Meyer in [9],

for the multiplicative decomposition of right-continuous positive supermartin-
gales, although the origin of the problem is completely different. The relationship
with this decomposition will be proved in the sequel.

Let us notice also that, even if is not directly related to a particular u, S
depending on u, g depends, at least at first sight, on u (see Corollary 1 ofTheorem
4.3).

PROPOSITION 3.3. For any n and for any u in H, one has

(3.37) I(u) I(lt,<sU + E g,lutl 2 dt E(go).
o
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Proof. Let us apply (2.7) to l tt <so.U:

(3.38) I(u) <= E (Xt, u,) dt + [u[ 2 dt-

But the restriction of .u to s,o is gso, by Theorem 3.1 and Proposition 3.2. Then,

(3.39) (hi, f? ,u,[Zdt 1--E(g( f? ,u,[2dt 1)).
By using T16 of [5, Chap. VIII, one has, because of the uniform integrability of
the martingale g ^,
(3.40) E g [u,[ 2 dt 1 E g,lu, 2 dt E(go).

0

Relation (3.37) follows from (3.38), (3.39) and (3.40).
THEOREM 3.3. For u in L22, the following relation holds:

E(go).(3.41) I(u) <= I(lt,<soU + E g,[ut[ 2 dt

Moreover,

(3.42) E g,lul 2 at E(go).

Proof. Let R. be the sequence of stopping times defined by

(3.43) R inf t" lull dt

Then l<u is in H. We apply then (3.37) to l<u.

(3.44) I(u) I(lt, <g, saU) + E g,lu,I 2 dt E(go).

When n increases to infinity, by taking the limit in (3.44), one gets

E(go).(3.45) I(u) I(lt,<u) + E g,lu,[ 2 dt

Moreover, since g s is a uniformly integrable martingale,

(3.46)
(#, try) E g lul dt

f? 1:2E gtlut dt.

But by definition, the following relation holds:

(3.47) laso crl <= 1In aoSo



OPTIMAL STOCHASTIC CONTROL 409

a]o, converges to ao in Lo. We can then take the limit in (3.46), and get

f dt.(3.48) (It, aso) E g,lu, 2

But we have also"

(3.49) (It, ao) (It, 1) E(go).

Then since u is null for _>_ S,
(3.50) E gtlutl 2 dt E(go).

4. Expression of an optimal control.
PROPOSITION 4.1.

(4.1)
X+2&ut=0 fort < SO

ut =0 for >= SO

Proof. (3.41) says that the functional defined on

fo(4.2) u E (Xt, ut) dt + E gtlut[ 2 dt,

has a minimum at u.
By using the result given in [10] on the subdifferential of convex integrands

one gets immediately

(4.3) l{,<so}(X, + 2g,ut) 0.

For >= S, u is necessarily null. This completes the proof.
We now have two difficulties. First we do not know if in (4.1), ut can be

written as -XJ(2g,), because we have still no idea of the times when gt is null.
Second, even if It does not depend on a particular optimal u, g, depends on u
through So If we want to find unambiguously all the optimal controls, we must
improve our results on g,, and we have to study carefully its zeros. To do this, we
introduce new processes associated with the optimization problem.

Let Zt be the process defined by

1 "+
o(4.4) Zt -E j, <X,,u,>ds.

By writing

(4.5) Zt <X,, u, > ds + - <X,, u> ds,

and by noticing that by (4.1),
o(4.6) (X, us > <= O,

Zt is then a right-continuous supermartingale.

The argument on the limit of the left-hand member of (3.46) is crucial. The proof can however use
relations (3.11) and (3.12).
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PROPOSITION 4.2. For any n, we can identify6 the processes Zt^ so. and

(1 o .),^

Proof Proposition 4.1 proves that

(4.7) (X, u> + 2glul 2 0.

From (4.7), we deduce

(4.8) E’^’ (Xs, us ) ds + 2E’^s" gslusl z ds O.
^ S. ^ SO"

By using (4.5) and [5, Chap. VI, T13 and R14a], we see that

(4.9) Z?^ so, -E’^,, (X u ) ds.
^ so"

Then (4.8) and (4.9) prove that

(4.10) Z^ so" E’A’" gslUl 2 ds.

Let A be s-measurable. Using (2.6), we have

(4.11) 0 =< (, 1A(1 ff)) (, ]o) 0.

The following relation holds"

(4.12) E(1Ag,^(1 a^ ))= (#, la(1 a^so")).
By using (4.11), we have

(4.13) E(1Ag,^(1

By definition, we know that

(4.14) la a] 1/m.

We deduce then, because of the continuity of the linear functional determined by
with respect to the L-topology,

(4.15) (, 1A(a a)) lim (, la(a a s)).
mn

But by Theorem 3.1, for m n,

(4.16) (, 1A(a as)) E(lags(a as)).
Proposition 3.2 and [5, Chap. VII, T16] prove that

1 ds(4.7) e(ga(a )) e glu.

We identify two processes when they have a.s. the same trajectories.



OPTIMAL STOCHASTIC CONTROL 411

Moreover, by Fatou’s lemma, one has

f,
so

(4.18) E 1A gslul 2 ds
^ s. Ilim E la gslul 2 ds

m +oo A Sn>=n

By comparing (4.13), (4.15), (4.17) and (4.18), we see that

(4.19) e(1Ag, ^ s.o(1 a^ )) E 1a g,lul z ds

Equation (4.19) proves then that

(4.20)
S

g, ^ so,q(1 a^ ) E’^’ glul2 ds.
^ s

Since u is null for => S, and comparing (4.10) and (4.20), we have

(4.21) Z^ s.o g, ^ s,o(1 a^ s,o).

The result follows from the right-continuity of the two processes.
THEOREM 4.1. We can identify the processes Z and (1 a)gt.
Proof For any n, we know that, by Proposition 4.2,

(4.22) Zso. (1 a]o.)gso,.

On (SO < + oc), we have necessarily

(4.23) (1 a,) O.

Since g has a left-hand limit at S, one deduces, for (SO < + ),
(4.24) Zo- O.

By [5, Chap. VII, T15], Z is necessarily stopped at S. The theorem is proved.
The relation given in Theorem 4.1 is not completely satisfactory, because Z

depends, at least apparently on a particular optimal solution u. But the following
result can be proved.

LEMMA 4.1. Z does not depend on a particular optimal solution.

Proof. The proof is elementary, and is left to the reader.
ut is now defined in the following way:

u’ minimizes

(4.25) u E (Xs, us) ds

on the set of elements u of L22 such that:

+
(4.26) lusl 2 ds <= 1

We define Z similarly by

aoSo

1Et ft
+

us )ds.(4.27) zl= 2
(Xs, o
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Zt2 and Zt3 are then defined by

IXl 2 ds(4.28) Z2

(4.29) Zat -E e-lXl ds.

PROPOSITION 4.3. ZXt Z2t and Zat are right-continuous positive supermartingales,
converging to 0 when --. + o. Moreover,

(4.30) Zt3
_

Zt =< Zt2,
Proof We prove here only that Zt is a right-continuous supermartingale.

If we define ut’ on it, t’I by giving to it the value 0 on this interval, we have neces-
sarily

(4.31) a,s,

Then we will have

E(4.32)

or equivalently,

+
lut’12 ds

+
(X,, o, Ea, o,’us ) ds < (X,us ) ds,

(4.36) I" 0,,2 ds < 1us

Then,

(4.37)
+ tOr’E (Xs us )ds < E (Xs, o,u )ds.

By using (4.35) and (4.37), we get

(4.38) E(Z) <= E(Ztl) /

By comparing (4.34) and (4.38), E(Zt) is right-continuous. Moreover,

(4.39) Z] < E’ Oil2Iu ds Ixl 2 ds

But necessarily,

(4.33) Z
_
E’Z.

By [5, Chap. VI, T4], we have to prove that - E(Z)) is right-continuous.,We
have necessarily

(4.34) E(Z) >= E(Z)+.
Moreover, by the Lebesgue theorem, we know that

(4.35) E (X, ot otu ) ds lim E (X, u ) ds.
t’>t
t’t
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and then necessarily,

(4.40)

Moreover, let 5 be defined by

(4.41)

Then t is in L22, and moreover,

z; _< z?.

-(sgn X) e-.

necessarily,
+oo

(4.46) I’lZds<=l a.s.;

then

(4.45)

If ’ is defined by

(4.44) j lUsOI 2 ds <__ 1

(4.43) Z3 __< Z
Remark. The main reason why we introduce the process Z is because it does

not depend explicitly on any particular choice of an optimal control. Moreover,
if X is a Markov process, Z is the natural dynamic programming function.

We are going to see how gt and Z are associated. Since Z does not depend
on a given optimal control, we will be able to show that gt is a process which does
not depend on u.

PROPOSITION 4.4. We can identify the processes Z and (1 ot)l/2Zt1.
Proof Necessarily,

~, { uO(1 ato)-1/2
Us

0

ont<s<S

ons> SO

(4.47) E’ (X,, o, E,u, ) ds <__ (X,, ’) ds

and (4.47) may be written, because Z, is null when (1 a,) is null,

(4.48) Z _< (1 6)1/2Z.
Let us suppose that (4.49) holds with strict inequality on a nonnegligible

-measurable set A. Let u be defined by
o for0<s<t

(4.49) u (1 a)/2, otu onA, ts< +,
ou on CA.

We see then immediately that

(4.42) ItTl 2 ds -< 1 a.s.
0
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Then,

(4.50) j lusXl 2 ds <= 1
0

Moreover, by (4.48) and (4.49), we have

(4.51)

aoSo

E (X, u) cls F (X, u) cls,

0E (X,,us) ds < E (Xs, us) ds.

(4.58) Z N,- A,,

Then one would have

(4.52) /(U 1) < I(u).
This is a contradiction. The result follows by the right-continuity of the processes
which we have considered.

THEOREM 4.2. We can identify the processes Zt and (1 ot)/Zgt.

Proof By Theorem 4.1 and Proposition 4.4, one has

(4.53)
Z^ (1 O’t0^)gt^s.o,
z,^ .o (1 ,o^ .)/z,x^ so.

Since 1 o^ s.o is larger than l/n, one then has

(4.54) zl^so. (1 ao^ ,/20so,q ,t.

The proof is completed as the proof of Theorem 4.1.
Now let T be the stopping time defined by

(4.55) T inf {t’Zt 0.
PROPOSITION 4.5. l{t> r}Xt 0 dP (R) dt a.s.

Proof. Inequality (4.30) proves that Z3r 0. But

1E sIXsl ds(4.56) Z e-

The result follows.
Remark. Conversely, (4.30) proves that T is the first time at which one is sure

that the function l t>_ TX is null: this follows from

(4.57) Z =< Z2

The result of Ito-Watanabe-Meyer given in [9] says then that the right-
continuous positive supermartingale Z can be decomposed in a unique way into
the product of M and B, M and B being such that:

* M is a local martingale stopped at T, such that if the additive decomposition
of Z is written
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N being a local martingale and At an increasing natural process, then if we define7

v inf{t’Z_ 0},
(4.59) vl inf {t’Z]_ AAt 0, AAt > 0},

VP= c / 1,

M is continuous at v’.
B is a decreasing natural right-continuous positive process such that Bo 1,

stopped at T, continuous at vc.
Moreover, if M’tB’ is any other decomposition of Z into the product of a

local martingale M’ and a decreasing right-continuous natural process B’ such
thatBo= 1, ont< Bt=Bt, M= Mr.

But Theorem 4.2 gives precisely such a decomposition.
We then have the following theorem.
THEOREM 4.3. For u to minimize I on K, it is necessary and sufficient that u

satisfy the following properties"
(a) on 0 < Z u X,/(2M,)
(b) on Z u can take any family of values compatible with the constraint

lull 2 Ms 1.
o

Moreover, 1z}X 0 dP @ dt a.s.
In particular, it is possible to choose u such that if Zr- # O,

o
lull 2 dt 1.

Proof. Theorem 4.2 implies that T S. Moreover, the previous result states
that g M on < Z By Proposition 4.1, for < Z we have

(4.60) X, + 2M,u O.

Moreover, M is nonnull for < Z and we can write

(4.61)

Besides, by Proposition 4.5, 1{ r}X 0. For Z we can then choose any
u compatible with the constraints, without changing the value of the criteria.
In particular, we can take u null for Z For such a choice of u, if Zr- 0,
necessarily

(4.62) lull
o

Coo 1. g M.
Pro@ g is stopped at To prove this, we know that T N S. If T S, g

being stopped at S is also stopped at If T < S, (1 g)/a > 0. Theorem 4.2
proves then that gr 0. Sine g is a right-continuous positive supermartingale, by
[5, Chap. VII, T15], g is stopped at

AA is equal to A At_.
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Using the formula for the change of variables given in [8], since B’t (1
a) 1/2 is a continuous decreasing process, one has

(4.63) Z Z + B; dg + gs dB;.

But this is precisely the additive decomposition of Z1, with

(4.64) At gsdB;.

A is then continuous, and v + oe. To prove that g is continuous at v’, we will
prove only that it is continuous at Vc.

If T S, Vc S, and by construction, g is continuous at S.
If T < S, let us suppose that Zr- 0. Then, because ar > 0, gr- is

necessarily null.
Moreover, by writing

(4.65) B’ B’t^ T,

we have, since g is stopped at T,

(4.66) Z g,B,.

g and B" have all the properties of M and B. By the uniqueness result, they
are equal respectively to M and B.

Remark. B" is precisely associated with the particular u defined in the proof
of Theorem 4.3. Moreover, this corollary gives the import.ant result that g, which
could have depended on the particular u, was actually a fixed process. Finally,
let us note that in general T and So are not equal: in particular, if T is totally
inaccessible [5, Chap. VII, D42], T < So a.s.

COROLLARY 2. An expression for M is

Z]exp ds for O <= < T,

(4.67) Mt Mr fort>= TifZ_ =0,

0 fort>= TifZ,],- 0.

Proof This result can be deduced from [9]. Let us prove directly. For < T,
we have

lfl Xs(4.68) a ds.

But we know that

(4.69) (Z,)2 M2(1 a).
Then, on s < Z the following relation holds"

(4.70) ]X 2 Xs2
Z
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By using (4.70) in (4.68), we see that

& Xt z
(4.71)

a Z---
From (4.71), one gets for < T:

(4.72) at exp ds.

Then, for < T, from Theorem 4.2 and Corollary 1 of Theorem 4.3, we obtain
(4.67). If Zr- 0, M is continuous at T. If Zr_ > 0, 1 tr > 0 and Mr O.

Remark. Formula (4.72) allows us to give an intuitive explanation of some of
the results.

IfZr_ > 0, it is easily proved that each trajectory has a strictly positive lower
bound, and

-o’ >0.

But even if Zr- 0, it may happen that trg > 0, in particular in the case
where X is a.e. equal to zero on a left-hand neighborhood of T.

This corresponds to the case where, although the predictions were "optimistic"
(Z > 0 for s < T), X has in fact taken null values before T.

There is intuitively (and mathematically) a basic difference between these two
cases" in the first case, the "bad luck" was unpredictable or was just instantaneous
betting. In the second case, the. facts have contradicted optimistic predictions.
In the two cases, there are idle resources left, or useless resources.

Conclusion. We notice that the first three sections are almost completely
independent of the linear nature of the criteria, and of the quadratic nature of the
constraint.

In 4, on the contrary, these properties are constantly used. One of the most
striking features of the problem is its close relationship with the multiplicative
decomposition of positive right-continuous supermartingales, the properties of
which are very much used.

We refer for applications to [3].

Acknowledgment. The author is indebted to a referee for very helpful com-
ments and suggestions.
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N-PERSON LINEAR-QUADRATIC DIFFERENTIAL
GAMES WITH CONSTRAINTS*

RICHARD C. SCALZO?

Abstract. Since 1970, it has been known that open loop Nash equilibrium points exist for N-
person differential games when there are integral bounds on the control functions. These results were
obtained using various fixed-point theorems, and required that the duration of the game be "small".

In this paper it is assumed that the controls are constrained to take values in compact, convex
subsets of Rq’. A fixed-point theorem due to Tychonov is used, and as a result there are no restrictions
on the duration of the game.

1. Introduction. The approach to differential games used in this paper is
that of A. Friedman, and the notation is taken from [1].

In this paper it is shown that open loop Nash equilibrium points exist for
N-person linear-quadratic differential games with the controls constrained to take
values in compact, convex subsets of Rq’. The duration of the game considered is
arbitrary.

In the case of integral bounds on the controls, open loop Nash equilibrium
points are already known to exist; see [5], [6]. In all these papers the duration of the
game is "small".

2. Statement of the main result. Consider the N-person differential game with
dynamics

dx n

(2.1)
at

A(t)x + ’, B,(t)u, + f(t), [0, T], X . Rm,
i=1

(2.2) x(0) Xo,

where A(t) is a continuous m x m matrix, the B(t) are continuous m q matrices,
and f(t) is a given continuous function. The control functions u(t) are measurable
functions satisfying

(2.3) u(t) Ui, a.e. for t [0, T], 1,2,..., N,

where U Rq’ are compact and convex. The cost functionals are given by

Ji(bll, biN) (x(T) i, W/Ix(T) i])

(2.4) + (z(t) C(t)x(t), Qi(t)[zi(t) C(t)x(t)]) dt

+ u(t), R(t)u(t)) dr, 1,2,..., N,

where e R are fixed points, z(t) are given continuous functions, C(t) are con-
tinuous matrices, Q(t), R(t) are continuous and positive semidefinite, and W are
positive semidefinite.

* Received by the editors March 1, 1973.
Department of Industrial Engineering and Management Science, Northwestern University,

Evanston, Illinois 60201.
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Denote by Xr the space of trajectories x(t) satisfying (2.1), (2.2) when ui(t),
1,2, ..., N, vary over all control functions. This is a compact convex subset of

cm[0, T] X’--1C[0, T] (cf. [1, Thm. 2.4.1, p. 43]).
Clearly the controls ui(t) belong to LP’q’(0, T) for any 1 =< p _< or. For each i,

denote by U the set of all controls u(t) for the ith player. Unless otherwise stated,
Ui will be considered as a subset of L2’qi(0, T) with the weak topology. It follows
from (2.3) that U is weakly closed and convex (see [1, Lemma 2.4.1, p. 43]). Since
L2’qi(0, T), with the norm topology, is a Hilbert space and since Ui is bounded in
L2’q(0, T) with the norm topology, it follows that U is weakly sequentially com-
pact. Denote by U the set U1 Us with the product of weak topologies, and
by l]i the set U1 x x U_I x U+I x x U with the product of weak
topologies. It is clear that U and I] are also convex and weakly sequentially com-
pact.

We now state the main result of the paper.
THEOREM 2.1. The N-person differential game associated with (2.1)-(2.4) has an

open loop Nash equilibrium point.

3. Auxiliary lemmas. We shall need the following lemmas.
LEMMA 3.1. Let f’ (u’l, u’i_ 1, u’i+ 1, u’s) be a fixed element of i.

Then the functional
(3.1) Ji(ui, ffi) J(U’l, ui- , ui, ui+ , u’)
is convex and lower-semicontinuousfor u Ui.

Proof. The convexity follows easily from (2.1)-(2.4). To prove the lower-
semicontinuity, note that the first two terms of (2.4) are continuous in ui. Thus it
remains to show that the last term in (2.4) is lower-semicontinuous in ui.

For each real number r, consider the set

Ui(r) u e U" u(t), Ri(t)u(t)) dt

Since R(t) is positive semidefinite, U(r) is convex. It is easily seen that V(r) is
strongly closed. But as is well known, a strongly closed, convex subset of a Hilbert
space is weakly closed. Hence U(r) is weakly closed for any real number r. But
this is equivalent to the property of lower-semicontinuity in u; see [2, p. 89].
L 3.2. Consider the family of functionals J(u, ) on , where u is the

parameter of the family and ranges over U. This family is equicontinuous on .
g’q(O, T) with the product of weak topologies, is a locallyNote thate

convex linear topological space. Hence its topology is completely determined by a
base of neighborhoods of the origin. The equicontinuity of Lemma 3.2 means that
for every e > 0 there is a neighborhood of the origin, , such that if ’ e and if
i e ( + ti) i, then

(3.2) IJ(u, fie) J(u, fi’)l e for all u U.
Proof of Lemma 3.2. Let e > 0 be given, and let ui U be given. Let fi’i

(u’, u’i- , u’i+ , u) be any element of i, and choose as follows"

i e L2’q(O, T); - l(t)B(t)u(t) dt

(3.3)
6(e)

3m(N- 1)]’
j i, 0 to < tl < <tm T,
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where O(t) is a fundamental solution of (2.1), and IIll maxo_<,_<T I(t)l, where
t+ t T/m, and m is chosen so that if It t’l _-< T/m, then for any x(t),
Ix(t) x(t’)l _-< 6(e)/3. That this can be done follows from a standard theorem on the
equicontinuity of the set of solutions of (2.1), (2.2). Finally, 6(e) is chosen so that if
maxo_<,_< T Ix(t) (t)l _-< 6(e), then

(3.4)

and

I(x(T)- i, W[x(T)- i]) (:(T) i, W[:(T)- i])l -< e/2

(3.5)
max I(zi(t)- Ci(t)x(t), Qi(t)[zi(t)- Ci(t)x(t)])
O<t<T

(z,(t)- C,(t)(t), Q,(t)[z,(t)- C(t)2(t)])l <= e/(2T),

where x(t) is the trajectory corresponding to (u, ,) with , e/ and (t) is the tra-
jectory corresponding to (ui, ).

Now note that if ’i e l]i, and if i e (/ + ’i) f’l I]i, then

(3.6) Ix(t)- x’(t)l Ix(t)-’ x(t,)l + Ix(t,)- x’(t,)l + Ix’(t,)- x’(t)l,

where x(t) is the trajectory corresponding to (ui, fi), x’(t) is the trajectory corre-
sponding to (ui, ffi) and k is the largest index such that tk < t. Thus

(3.7) Ix(t)- x(t,)l 5 5(e)/3, Ix’(t,)- x’(t)l =<
since It tl < T/m. But we also have

Ix(t,) x’(t,)l IO(t,)l ji O- l(t)Bj(t)uy(t)dt

(3.8)

t’

dtO-l(t)B(t)ui(t)

5(e)-< o11, k. (N 1)
3m(N 1)1111

Next note that

(3.9)

ai e/-< di(e)/3, since H U

IJi(ui; fti) Ji(ui,

_-< I(x(T) , W[x(T) i]) (x’(T) i, W/[x’(T)

+ (zi(t) Ci(t)x(t), Qi(t)[zi(t) ci(t)x(t)] ) dt

<zi(t) Ci(t)x’(t), Qi(t)[zi(t) C,(t)x’(t)]> dt
0

The result follows from (3.3)-(3.9).
LEMMA 3.3. For each fi (Ji there is a fii Ui such that (i)

(3.10) Ji(fii, fi,) inf Ji(ui, fti),
ui
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and (ii)

(3.11) inf d(u,
ui

is continuous on Oi.

Proof. (i) follows by noting that for fixed fii, J(u, ) is weakly lower-semi-
continuous on U and that U is weakly sequentially compact.

To prove (ii), let e > 0 be given. Choose/ as in Lemma 3.2. Then for each
fi Il and fi (/ + ’) I,

Ji(ui, fii) _-< Ji(ui, ’i) + e for all ui Ui
and

Ji(ui, fi’i) =< Ji(ui, fii) + e for all ui e Ui.
Taking the infinum of both sides of each of the above inequalities yields the result.

We shall require the following well-known result on partitions of unity; see
[3, p. 171].

LEMMA 3.4. Let X be a normal topological space and let (9 be a locally finite
open covering of X. Then there exists a family of continuous real-valued functionsf,
G e (9, such that f 0 on X G, 0 <__ f <= 1 elsewhere, and

f(x)- 1 for allxX.

Since Il is a compact subset ofX L2’q(0, T) with the product of weak
topologies, and since Il. is clearly Hausdorff, Il is a normal topological space.
Furthermore, every open covering ofl has a finite subcovering (hence is locally
finite). Thus by Lemma 3.4 there is a partition of unity for any open covering of
Ui.

For each fi e Il and each e > 0, consider the sets

(3.12) Ui(li,

LEMMA 3.5. For each e > 0 there is a continuous function p "i U with the
property that (Pi(Ui)e

_
Ui(.li, e) for each fii i.

Proof. Let e > 0 be given. By Lemma 3.2 for each fi’ there is a neighborhood,
H(fi’i), of u such that

(3.13) IJ(u, fi)- J(u, fi’)l _-< e/4,

for all u and for all fii H(fi’i). Then

is an open covering of Il. By the paragraph following Lemma 3.4 there is a finite
subcovering

For each j, choose a fixed ui Ui(fii,, e/2). Set

(3.14) /(fii) ui, for all file Ii.
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We next wish to show that if/i6H(fii,r), then @r(fii)--ui,r6 U(fi, e). This
means that ifi 6 (i,r), then

(3.15) J(u,r, ft) < inf J(ui, f) + e.

But since 6,H(fi,r), we have by applying (3.13) with/’ fi,r, and with ui u,r,
that

(3.16) Ji(tli,j,li) Ji(bli,j,-li,j) + e/4.

Next, since ui,r Ui(li,j, e/2),

(3.17) Ji(u,.i, fi,) =< inf J(u, fg,) + el2.

From (3.13) with fi’ fi,r, we get

(3.18) inf Ji(ui, fi,r) <= inf Ji(ui, fti) + el4.
ui ui

Combining (3.16)-(3.18) yields (3.15).
The maps @r:l]i U are constant, and hence continuous. Let {0r}_. be a

partition of unity subordinate to the covering {H(fii,r)}= 1, and set

(3.19) qg. 0r@r.
j=l

Clearly o. :Ili--, gE’q’(O, T) is continuous, and since U is convex, q:Ii--. U.
It remains only to show that o() e U(i, e) for each . But

j,(,p(a,), a,) J, Oj(li)’j(i),li)
j=l

(3.20)
Oj(ai)" Ji(@r(ii), li)

<- Or(fti). [inf Ji(ui, li) -I" ,]
j= ui

inf Ji(ui, ii) d- g
ui

the first inequality follows by the convexity of Ji(ui, fti) in ui, the second inequality
by definition of fir and 0r, and the last by a property of the 0r.

Thus (fi) U(, e) for each , and this completes the proof of Lemma 3.5.
Finally, we require a fixed-point theorem of Tychonov; see [4, p. 456].
LEMMA 3.6. Let A be a compact, convex subset of a locally convex lihear topo-

logical space. Then every continuous map from A into itself has a fixed point.
Since U is a compact, convex subset of Xrl L2’qJ(0, T), we can apply the

Tychonov theorem with A U.

4. Proof of Theorem 2.1. Note first that each of the continuous maps
q "l]i Ui may be considered as a continuous map O’U Ui by setting (o(ui, fg)

(49i(tli)
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For each e > 0, let b’U U be given by

(4.1) ’(u) ((u),-..,

where u (u l, "", u).
Since q3 is continuous, the Tychonov theorem applies. We conclude that

q3 has a fixed point, u (Ul, ..., uv). By definition of the maps 3 we have

(4.2)
Ji(u) <= inf Ji(ui, ft) + e

ui

= Ji(ui, ei) -I- e, for all ui Ui, i= 1,2,...,N.

For n 1, 2, ..., set e 1/n and consider the sequence {u TM} {(u[/",
u]")}. Since U is weakly sequentially compact, {u TM} has a convergent subse-
quence, which we again denote by {ul/n}. Let (1, "’", N) be the weak limit
of {ul/n}. As in the proof of Lemma 3.1, it can be seen that Ji(u) is lower-semi-
continuous on U. Hence by (4.2), we have

Ji() __< lim Ji(u 1/n)

(4.3)

__< lim [Ji(u, fil/) + 1/n]

lim Ji(ui, l/n)

Ji(ui l i)

for all lgiUi, 1,2, ..., N, where (1, "’’, li-l,ffli+l, "’’, N) and where
the last step follows by Lemma 3.2.

But (4.3) is just the inequality required to show that is an open loop Nash
equilibrium point, and the proof is complete.

5. Remarks. For differential games associated with (2.1)-(2.3) and costs for
which Lemmas 3.1-3.3 remain valid, Theorem 2.1 remains valid. One such example
is a class of games considered by Varaiya [6], where the costs have the form

Ji(u 1,"’, UN) gi(x(To)) + hi(t x(t)) dt

(5.1)

+ f(t, u,(t))dt, 1,2,..., N.

We must, of course, replace his assumptions on gi, hi, f by the following"

(a) gi(x)is convex in x,

(b) hi(t, x) is continuous in (t, x) and convex in x,

(c) f/(t, u)is continuous in and the Hessian (c32/u)
is continuous and positive semidefinite.

Also, it should be noted that the above methods apply equally well to the
games with integral bounds on the controls.



N-PERSON DIFFERENTIAL GAMES 425

REFERENCES

[1] A. FRIEDMAN, Differential Games, Wiley-Interscience, New York, 1971.
[2] E. HEWlTT AND K. STROMBERG, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
[3] J. L. KELLEY, General Topology, Van Nostrand, New York, 1955.
[4] N. DUNFORD AND J. SCHWARTZ, Linear Operators, vol. I, Wiley-Interscience, New York, 1958.
[5] D. L. LUKES AND O. L. RUSSELL, A global theory for linear quadratic differential games, J. Math.

Anal. Appl., 33 (1971), pp. 96-123.
[6] P. VARAIYA, N-person nonzero sum differential games with linear dynamics, this Journal, 8 (1970),

pp. 441-449.



SIAM J. CONTROL
Vol. 12, No. 3, August 1974

DIFFERENTIAL GAMES
WITH RESTRICTED PHASE COORDINATES*

RICHARD C. SCALZO"

Abstract. In 1970, Avner Friedman proved the existence of value and saddle points for games with

restricted phase coordinates. He assumed that x int X, where X is the phase set and x is the initial

condition of the game. He also assumed, in case there is a penalty boundary for each player, that the

duration of the game is so small that no trajectories can intersect both penalty boundaries.
The purpose ofthis paper is to remove the above restrictions under some suitably mild assumptions.

In the first section, existence of value is proved in case x e 0X. The second section is devoted to showing
that the value is continuous for x e X and that the duration of the game need not be restricted so as not

to allow intersection of trajectories with both penalty boundaries.

1. Introduction. The approach to differential game theory used in this paper
is that of A. Friedman, and the notation is taken from [1.

Friedman has given conditions under which a differential game with restricted
phase coordinates has value if Xo int X and if TO to =< T(g); see [1, pp. 207-2303.
The purpose of this paper is to remove, under some mild additional assumptions,
the restriction on the duration of such games. To do this we give, in 2, conditions
which extend the existence of value to the case where Xo dX. In this section we
use the restriction To to <- T(g). Section 3 is devoted to showing that under the
conditions used in 2 a game has value when the duration, To to, is arbitrary.

2. Existence ofvalue when xo s 3X. Consider a differential game, G, associated
with a system of rn differential equations

(2.1)
dx
dt

f(t’x’Y’Z)’ to <=t <__ TO

(2.2) X(to) Xo

(with controls y(t), z(t)), where y(t), z(t) are measurable functions with values in
Y, Z respectively, a.e. [to, To], and Y R, Z R are compact sets.

Let

X {xeRlxm_ >- O,X 0},
c3Xy {x Rmlxm >/t, X 0},

(2.3)
c3X {x e R"lXm > #, X 0},
OX0 {X Rmlxm O, 0 <- Xm_ } U {x t Rmlxm_X O,

O<=Xm_ <=/},

* Received by the editors December 22, 1972.
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where # > 0 is constant and cXo is such that no solution of (2.1), (2.2) with Xo e X
can leave X by crossing c3Xo. Let

(2.4) P(y, z)

where

g(x(To) + f,ro h(t, x(t), y(t), z(t)) dt

ifx(t)X, to <-t <- To
-M if x(t) leaves X for the first time

by crossing c3Xy,

+M if x(t) leaves X for the first time
by crossing OX,.,

M>Mo= sup sup
y(t) z(t)

T
g(x(To) + h(t, x(t), y(t), z(t)) dt

and the suprema range over all controls y(t), z(t).
We shall need the following assumptions"
(Aa) f(t, x, y, z) is continuous on [to, To] x R" x Y x Z.
(A2) There is a nonnegative function k(t) on [to, To] with ftTo k(t)dt < oe,

such that

If(t, x, y, z)[ _<_ k(t)(1 +

on [to, To] x R x Y x Z.
(A3) For each R > 0 there is a nonnegtive function kR(t), such that

f,ro kR(t)dt < oe, with

If(t, x, y, z) f(t, if, y, z)l kR(t)lx if[

for all 6 [to, To], y e Y, z e Z, ]x] _< R, ][ _< R.
Note. (A1)-(A3) guarantee the existence and uniqueness of solutions x(t)

to (2.1), (2.2) for every pair of controls y(t), z(t), and further that [x(t)l -< C, where
C is a constant depending only on the system (2.1), (2.2), consequently Mo < .

(A4) f(t, x, y, z) fa(t, x, y) + f2(t, x, z) on [to, To] x R" x Y x Z.
(Bx) h(t, x, y, z) is continuous on [to, To] x R x Y x Z.
(B) g(x) is continuous on R".
(B3) h(t, x, y, z) ha(t, x, y) + hZ(t, x, z) on [to, To] x R" x Y x Z.
(P)(a) Y Y1 X Y2, Y1 RP’, Y2 - RP2, Pa + P2 P;

Z= Z x Z2,Z c_ Rql, z2 c_ Rq2, qa + q2 q,
where some of the sets Ya, Y2, Za, Z2 may be empty.

(b) Write y (y’, y"), z (z’, z"), where y Y, .y’ Ya, Y" 6 Y2, z 6 Z, z’ Z a,

z"Z2. Also write x’= (xa,’", x,,-2). Then for any t [to, To], x’ Rm-2,
y"e Y2,z"eZ2,

(2.5) max min fro(t, x’, x,_ a, O, y’, y", z) > 0 if x [1,
Y’Yt zZ

Ztt)(2.6) maxminfm a(t, x O, xm, Y, Z >0 if Xm > #
z’Z yY
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(c) For any e > 0, let

There is an e*> 0 such that the following relations hold for all e [to, To],
(y’, y") e Y, (z’, z") e Z, ;’ e e Z

(2.7) f(t, x, y’, y", z) f(t, x., y’, y", z) for all x

’z") z")(2.8) f/(t, x, y, z, fi(t, x, y, z, for all x

i= 1,2,.-.,m- 1,

i= 1,2,...,m- 3,m2, m.

(d) There is an g* > 0 such that the following relations hold for all e [to, To],
(y’, y") e Y, (z’, z") e Z"

(2.9) max f,,(t, x, y’, y", z) max fro(t, , y’, y", z)
Y’Yt y’Y

if x tX*, X*, where the maximum in (2.9) is attained independently of x, y"

(2.10) maxf_ (t, x, y, z’, z") max fdt,
z’Z z’Z

if x t?X*, t?Xz*, where the maximum in (2.10) is attained independently of x,

Remark 1. (Pz)(d) is the only additional assumption. See [1, Thin. 6.3.2,
p. 226].

Remark 2. It follows easily from (2.9), (A4) that if Xo t?Xy and [to, l] is
sufficiently small, then there is a control y’.(t) on [to, l] such that if y(t) (y’(t),
y"(t)) is any control for y and z(t) is any control for z, then

(2.11) x*(t) >-- Xm(t), o <-- <-- t,
where x*.,(t) is the trajectory corresponding to ((y’.(t), y"(t)), z(t)) and x(t) is the tra-
jectory corresponding to (y(t), z(t)).

(Q2)(a) There is an eo > 0 such that (Ofi/c3xj)(t, x, y, z) exists and is continuous
forl <i,j< rn if either x,, > 0, 0 < x,, =<eoorxm_ >0,0<x,,<eo

(b) For any control functions y(t), z(t) for which the corresponding trajectory
x(t) satisfies 0 =< Xm(t) <= 0, Xm-(t) >-- # or 0 -< Xm-(t) <--_ Co, Xm(t) >- # in some
subinterval (, ) of (to, To), set

(2.12)

Ofi (t x’(t) Xm_X(t) 0 y(t) z(t))bdt)

)ij(t) Xj
tfi (t, x’(t), O, Xm(t), y(t), z(t)),

for 1 __< i, j =< m, =< _< , where x(t) (x’(t), X l(t), Xm(t)).
Consider the linear differential systems

(2.13) dZ= Z bij(t)lj, d2i= E ij(t)2J
dt j= dt j=
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for 1 =< _< m, =< =< , with initial conditions

(2.14) Z,,() 1, Zi() 0, i= 1,2,..., rn- 1,

(2.15) ,,-x() 1, 2i() 0, 1,2,..., rn 3,m 2, m.

Then there is 0o > 0, independent of y(t), z(t), , such that

(2.16) Z,,(t) >= 0o,

_
(t) >= Oo for _< _<_ i.

(T) Let g be any positive number. Denote by T(g) a number such that no
trajectory x(t) of (2.1) (2.2) can enter into both OXy and OXz Then To to =< T(0.

For each Fa (Fo’I, , F’") write Fa’g llll"6’J, 121-’t’J], where Fa’(zx, y],
Yl ’’, zj) (y), y;), F’(Zl Yl, Yl ,’’’, Zj) ’’J

’’, Zj)", Yj, 1"2 (Zl, Yl, Yl, Yj"
Treat A similarly.

THEOREM 2.1. Consider a game, G, associated with (2.1)-(2.4). Assume that
(A,)--(A,) (B1),(B)(B3) -’(P2), (U2) and (T) hold. If Xo X, then G has value.

Proof. Ifxo int X, then Theorem 2.1 follows from Theorem 6.3.2 [1, p. 226].
Thus it suffices to assume that Xo t3Xy. The proof is attained by a modification of
the proof of Theorem 6.3.2.

From (P) it follows that

(2.17) M < V _< V < M if 6 =< is sufficiently small.

For any 7 > 0 there is an upper f-strategy for y such that

(2.18) V <= P(O(z), z) + for all controls z.

LEMMA 2.1. There exist e > O, rio > O, and 6o(rl, e) > 0 sufficiently small such
that for every 0 < 1 <= rio, 6 <= 6o there is an upper f-strategy for y such that

(2.19) V <= P(O(z), z) + + (rl) for all controls z,

where (q) 0 if q O,

(2.20) ’J(Zl, y’, y’;, z)(t) y,,(t),
1 <- j <= tro, tro [qe/6], where y,o(t) is the restriction to 1 of a fixed control
y,(t) chosen as in Remark 2.

Proof Let e < Co/2, where eo is as in (Q2). Denote by 2(0 the trajectory cor-
responding to (O(z), z) and by 2(0 the trajectory corresponding to ((z), z),
where z z(t) is any control for z.

Let z(t) be any control for z. For 1 __< j _< tro, set

(2.21) o’(za, ,..., zj)(t) j(t) (y’,,(t), y’](t)),

where y’,,j(t) is the restriction to I of a fixed control chosen so that Remark 2
holds on I and y(t) coincides with the control function obtained from 2, z, y.
Thus (2.20) holds. It remains to prove that (2.19) holds.

By (P), there is a ’o > 0 such that

(2.22) 0 < Yo -< max f=(t, (t), y’, y"(t), z(t)) =_ 2(0, o =< =< To,
Y’Y1

for all controls z(t). There are two cases to conside,.
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Case 1. ,(to + ro6) ,(to + tro6) >_- -Vor/e. In this case, set

6’J(z1, 1’ Zj)(t) j(t)
(2.23)

(t)= F,(z, y,..., z)(t)
for j > ro, until there is a j =< n such that ,.(t) > 13 for some e Ij.

If there is no j < n such that ,,(t) > 13 for some Ij, we may apply (Q2)
in a manner similar to the proof of Theorem 6.2.1 [1, p. 217]. We get

(2.24) m(t) _--> r/ on [to + tro6, To],

where is a constant depending only on the system (2.1). Since jT(t) y(t) except on a
set of measure at most r/13, we see as in Theorem 6.2.1 [1, p. 220], that (2.19) holds.

If there is a j < n such that for some Ij, m(t) > 13, then we may proceed
exactly as in the proof of Theorem 6.2.1 [1, pp. 214-220]. We get

(2.25) ,n(t) > c’r/ on [to + ao6, To].

Since 7(t) y(t), except on a set of measure at most Kr/, where K is a constant
depending only on the system (2.1), we again have as in Theorem 6.2.1 [1, p. 220],
that (2.19) holds.

Case 2. 0 =< m(to + trof)- ,,(to + tro6) < or/e. Set s to + trof, and
define s’2, Ik,, Ik2, in a manner similar to the proof of Theorem 6.2.1 [1, p. 213],
and proceed to modify F into as there. There are two cases to consider, accord-
ing as g s, or g < s. (Here g is the right-hand endpoint of the last interval of
modification and sz corresponds to case (b), p. 215 < sz corresponds to case
(a), p. 215.) In either case, it is easily seen that ,.(t) > 0 on [s’, 3] if q13 is small
enough.

If
Kr113, since 97 Y except on a set of measure at most 2q13. By definition of s2,

if 6(13) is small enough, then m(S’2) >= 1/413, hence m(S’2) >- 13[-34 K’q] > 1/213 if qo is
sufficiently small. We may now finish the construction ofP from F as in the proof
of Theorem 6.2.1 [1 ], with 13 replaced by 13/2.

In case < s, it must be shown that

(2.26)

But since ,,(s]) >__ ,.(s]) and ,,(t) > 0 on [s’, ], (2.26) follows using exactly the
same arguments used in the proof of (6.2.32), p. 217. Since (2.26) holds, we may now
finish the construction of from F as in Case I. This completes the proof of the
lemma.

We now have the following situation.
There is a f-strategy for y, such that the ’J are constant maps, for 1 =< j

__< ro and such that if z(t) is any control for z, y(t) any control for y, 7(t) 6(z(t)),
then

(2.27) ,,(t) >= x,,(t), to <= <= to + ro&,
(2.28) m(tO + tTO0 >-- 1/2])or113 13’

and (2.19) holds.
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We can now construct from 6, a 6-strategy if6 exactly as in the proof of
Theorem 6.2.1 1, with e, r/, to replaced by e’, r/’, to + ao6 for any r/’ sufficiently small.
We get

(2.29)

(2.30)

,,(t) > c’r/’ > 0 on [to + aob, To],

V P(O(z), z)+ + a(rl)+ fl(rl’),-where fl(r/’)=- 0 if r/ 0, so that (2.20) holds.
Since F’J, <- j -< ao, are constant maps, such that if (t) is the trajectory

corresponding to ((z), z), where z is any control for player z, Cm(t 1/2Yo(t to)
for to <= <= o + ao6, we may complete the proof in the following manner.

Let be any b-strategy for z such that

(2.31) V _>_ P[6, F63 7 for all F.
Set Yl =(y;,,(t), y(t)), where {y,,,(t)} range " and y(t)is an arbitrary

control for y with values in Y2" Set z 7&1(yl). For 1 =< j, k _< ao, set {y,,(t)}
=range ,iandy(t)=y(t+)ini_l. Wetakefortei,l =<j=<o,

(2.32)

yj(t) y,3(t),

y(t) 3-1(z,,(y’,,1,y*), ..., (y,,j_2,y;),zj_a)(t

zj(t) 7kO3(y,,zl ,..., zj_ 1, yj)(t).

For k > ao, set Yk (t) yk(t + 6) in Ik_ 1, and for j > ao, Ij, we take

y(t) 3-1(zl,(y,,1,y2 ), ..., zj_2,(yj_2,Yj_2),Zj_l)(t 6),

(2.33) yy(t) - ’(z,, (y,,,, y), , zj_ 2, (Y)- 2, zj_ 2), z_ ,)(t ),

zj(t) 3(z,, Yl ,’", zj-1, y)(t).

Using a slight modification of Lemma 2.3.1 [1, p. 40], with 2 b, and

(2.34) yb(t) 6(t) (}’6(t), (t)),

’6(t), o <- to + aob,

t--b),’’ <__To,(2.35) p6(t) y6( to + 6 <

[)7(t- ), to +(a0 + 1)6_<t <_ To,
the result follows as in Theorem 6.2.1 [1, p. 221].

Remark 3. It follows upon consideration of the above proof that Theorem 2.1
remains valid whenever (P)(d) is replaced by any condition guaranteeing the
existence of a control y’,(t) in Y such that for any controls y"(t) Y2, z(t),

(2.36) fro(t, x*(t), y’,(t), y"(t), z(t)) > Co

for all [to, o + ao6 if x*(t) X*, where co > 0 is a constant depending on
the system (2.1), but independent of y"(t), z(t), rl, , .

Remark 4. It is clear that the construction of as in Lemma 2.1 and the
construction of as in Theorem 2.1 can be carried out whenever xo int X and

o < o, where o is sufficiently small. Hence, Lemma 2.1 and Theorem 2.1O<Xm--
o < go, where o is sufficiently small.are valid whenever Xo X and 0 =< Xm
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3. Elimination of the condition (T). Denote by V(z, ) the value of a game
associated with (2.1),

(3.1) x(z)

(2.3), (2.4) and the payoff

(3.2) P.(y, z) g(x(To)) + h(t, x(t), y(t), z(t)) dt

with penalties _+ M.
LNNA 3.1. Let G be a game associated with (2.1), (2.3), (2.4), (3.1), (3.2)

satisfying the conditions of Theorem 2.1. Then V(, ) is continuous on [to, To) x X.
Proof. For e int X, Theorem 3.1 follows from Theorem 6.6.1 [1, p. 236].

Assume, therefore, that e 0X. We begin by choosing P as in Lemma 2.1.
The proof proceeds as in Theorem 6.6.1 except that now we must also show that
(0)(t) > 0 for + ao. But this follows easily from the continuity of
f(t, x, y, z)in t. We now have that

v(, ) v(, )+ o(1 l + I 1),
where o(S) 0 as s 0.

Upon considering Remark 4 of ff 2 and the proof of the above inequality,
it is clear that we may reverse the roles of(r, ) and (, ) to get the reverse inequality.

Let

(3.3) W(r, ) V(r, ), W,(r, ) (, ), (To to)/n.

LEMMA 3.2. Let G be a ga as in Lemma 3.1. Then

(3.4) lim W’(,, ) V(,, ), lim W(r,

uniformly on compact subsets of [to, To) x X.
Proof. The proof is the same as that of Theorem 6.6.3 [1, p. 238].
Note. The value of a game also depends on To, and so we may write V(r, , To)

instead of V(r, ). Also, it is clear that under the assumptions of Lemma 3.1,
V(,, , To)is continuous To.

LMMA 3.3. Let {G,} be a sequence of games associated with (2.1), (2.3), (2.4),
(3.1) and

(3.5) P’(y, z) g(x(To) + h(t,.x(t), y(t), z(t)) dt

with common penalties M. Then if
(i) g(x) g(x), h(t, x, y, z) h(t, x, y, z) uniformly on compact subsets of

X, [to, To] x X x Y x Z, respectively
(ii) the game G associated with (2.1), (2.3), (2.4), (3.1) and

(3.6) P,(y, z) g(x(To)) + h(t, x(t), y(t), z(t)) dt

with penalties M has value V(, ), and
(iii) if (, ) denotes the value of
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then

(3.7) V,(r, ) V(r, )

uniformly on compact subsets of [to, To] X.
Proof. It is clear that IU,’(y, z) P,,(y, z)l is small, uniformly in y, z when

there are no penalties associated with the controls y, z. If there is a penalty + M,
then the payoffs are the same.

We are now in a position to eliminate condition (T).
THEOREM 3.1. Let G be a game associated with (2.1}-(2.4). Assume (A1)-(A4),

(B1), (B), (B3) (P) and (U2) hold. Then ifxo X, G has value.
Proof. Assume first that TO o < 2T(0.
Let II denote the partition of [to, To] given by {to + jil6--(To- to)/n,

j 0,1,-.., n}. Set

HX.’to < t < < ttn/21 ,
1I,2" < ttn/21+ < < tn To.

Next, consider the following sequence of games, each with the dynamics of
the game G, and with payoffs"

j P(y, z) h(t, x(t), y(t), z(t)) dt

with penalties M;

with penalties +__ M;

P2(Y, z) g(x(To) + h(t, x(t), y(t), z(t)) dt

Pn(Y, z) Vz( x) + h(t, x(t), y(t), z(t)) dt

with penalties M, where x(t) is the trajectory corresponding to y, z, x x(tl)
and V62(, x) is the upper f-value of G2 for 6 (To to)In.

Denote by V6n(to, Xo, ) the upper h-value of Gn for the partitions FI,.
Ga Pa(y, z) V2(:, xl) + h(t, x(t), y(t), z(t)) dt

with penalties _+ M, where V2( ,x) is the value of
Denote the value of Ga by V3(to, xo, f); the upper -value by V(to, xo, ).

Note that depends on n; (TO + to)/2 if n o. Also note that the
penalties _+ M may be chosen to be the same and that there is a number no such
that for n >= no, G1, G2, G, G all have value. Denote by V’n(to,xo) the upper
-value of G for (To to)/n.

Finally, denote by V(to, xo) the value of the game G. We shall show that
V(to, xo) exists and

(3.8) V(to, Xo) V3(to, Xo, (To + to)/2)’
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Clearly it suffices to show that

(3.9) lim V6(to, Xo) V3(to, Xo, (To + to)/2),
6-0

(3.10) lim V(to,Xo)= V3(to,Xo, (To + to)/2).
6--*0

We prove only (3.9), the proof of (3.10) being similar. Write

Aa (A,,I,..., A6,[n/2], A6,[n/21+1,... A6,n)-- (A], A02),
where A] (Aa,1, ..., A,t,/2), A (A,t,/21, "’",

Define F (F, F)similarly.
For n 2m, we have

(3.11) v’Zm(t0, X0) inf sup [PI[A], F] + V2(1, Xl)] Vzm(to, Xo),

where (TO to)/2m. Also

(3.12) V3(to,Xo,[) infsup PIIA,, FI] + V2(/1, x1)].
r

Note that in (3.11), (3.12), [ (TO + to)/2.
By Lemma 3.3,

(3.13) Vm(to, Xo, (To + to)/2) V3(to, Xo, (To + to)/2)

as m - thus by (3.11),

(3.14) Va’2m(to XO)

It follows from the continuity of V3(to, Xo, ) in and from Lemma 3.2 that

(3 15) IV6’2m+ l(to,Xo) V3’Zm(to, Xo)[

This gives (3.9) and completes the proof in case TO to < 2T(). We now
proceed step by step to the case TO to < kT(); this then yields the result for
[to, To] of arbitrary length whenever (A1)-(A), (B), (B), (B3), (P), (Qa) hold
on [to, To].

Remark 5. It is easily seen that all of the results on continuity of V(to, Xo) now
hold without the assumption (T).

Remark 6. The results of this paper clearly extend to more general domains X
(see [1, Chap. 6]) if suitable modifications of assumptions (R)-(R8) are made.

Remark 7. The following well-known games satisfy the conditions ofTheorem

(a) war of attrition and attack;
(b) modified war of attrition and attack;
(c) Battle of Bunker Hill.

See [1, pp. 231-234].

Acknowledgment. I wish to thank Avner Friedman for his helpful suggestions
in making the proofs more lucid and also for first suggesting the argument
presented in Theorem 3.1.
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SYMMETRIES OF AUTONOMOUS
LINEAR CONTROL SYSTEMS*

ETHELBERT NWAKUCHE CHUKWU

Abstract. This paper is concerned with symmetry and identification problems for time-optimal
linear autonomous control systems in Euclidean space. A symmetry is a nonsingular linear transforma-
tion which reproduces each of the reachable sets. Under rather general conditions all the symmetries
ofa control system are described constructively (Theorem 4). In an analogous situation, it is determined
when two control systems have the same reachable sets: the identification problem (Theorem 6). Both
of these are special cases ofa wider result (Theorem 3) which may well be amenable to further generaliza-
tion.

1. Introduction. The main object of this work is to study the symmetries and
the identification problems of autonomous linear control systems described by the
equations

(S) g(t) Ax(t)- pg(t), i= 1,2,

where Ai is a real constant n n matrix and p:[0, t] - Pg is summable. It is
assumed as basic that P is a fixed compact and convex subset of R’ containing 0;
we do not require that P be a parallelepiped, or even that it be symmetric.

In this section the basic definitions of symmetries of control systems (S)
and of their reachable sets are stated. The general framework of our study is then
formulated. Our main result is proved in 2. This specializes in 3 to a constructive
description of all symmetries of a control system. The effectiveness of the method is
tested on a special class of systems. Section 4 studies the relation between systems
having the same performance, i.e., having coinciding reachable sets. it is shown that,
in a sense, systems with the same performance are almost identical. The last section
indicates a number of intriguing unresolved questions connected with our re-
search.

The basic definitions and properties of linear time-optimal control systems
may be found in Hermes and LaSalle [8 and in Lee and Markus [10]. General
references for the properties of convex sets are Eggleston [1] and Stoer and
Witzgall [121. The terminology and notations of [81 will be maintained.

Consider the control system

(S) :(t) Ax(t) p(t);

here x is an n-vector and p:[0, t] P is summable with values constrained to lie
in a fixed compact and convex set P, and the matrix A is of type n, i.e., A is an
n n constant matrix.

Remarks. Let r" be the space of compact subsets of R" with the Hausdorff
metric topology. The fixed compact set P can be considered as the constant set-
valued map P:[0, t] r", which is convex.

* Received by the editors February 22, 1973.- Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115.
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We use -p(t) instead of p(t) in order to obtain a nice representation for the
reachable set of (S) when the set-valued map P’[0, t] -} r" is not symmetric.

DEFINITION 1. The reachable set (t) of (S) is

N(t) e- p(s) ds p [O t] P summabl

The following properties of the reachable set are well known" For each _> 0,
(t) is compact and convex whenever the constraint set P is such. Also, (t) is
symmetric whenever P is symmetric [8, p. 46].

DEFINITION 2. A nonsingular n-square matrix M is called a symmetry of the
reachable sets of (S) if m(t) (t) for each >__ 0.

Also, M is called a transformation of the reachable sets of ($1) and ($2) if

(1) M(t) 2(t)

for each _>_ 0, and if it is a monomorphism (that is, MX 0 if and only if X 0).
DEFINITION 3. A nonsingular n-square matrix M is a symmetry of the control

system (S) if

(2) AM MA,

(3) MP P.

Also, M is called a transformation between the systems (S) and (S2) if it is a mono-
morphism, and

(4) MAx A2M,

(5) MPa P2.
The motivation for Definition 3 is that a nonsingular linear transformation
y Mx takes the system (S) into the system

(t) MAM-y- Mp(t).

A complete description of the symmetries of the reachable sets (t) of (S) is
the symmetry problem. Intimately related to this is the identification problem.
When two different systems in n-space have the same performance [4, p. 349] or
coinciding reachable sets, then a transformation of the reachable sets is M I,
where I is the identity matrix. It is then natural to ask what other properties the
two systems must have. A complete answer to this problem is treated in 4.

PROPOSITION 1 (Addition formula for reachable sets). If in (S), 0 P and (
is the reachable set, then for each >= O, s >- O,

(6) (t) + e-ate(S)= (t + S).

Both inclusions needed here are immediate. One of these is a remark in [3, p.
348].

LEMMA 1. Let r" be the space of compact subsets of a ball B, of radius k in R",
endowed with the Hausdorffmetric topology. Let P:[0, T] r" be continuous. Then

lim [-t+h
h - 3t

P(z) dz co P(t) for all [0, T].
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Proof. The proof of this lemma is almost word for word the proof given by
Hermes [7, Lemma 1.3] for a similar result when P is Borel measurable. Indeed,

lim
1 (t +- 3,

P(z) dz co P(t)

(where co P is the set-valued function with values the convex hull of P(t)) for
all points of approximate continuity of P, which are almost every [0, T].
Because P is continuous, every point [0, T] is a point ofapproximate continuity.
The result is now immediate.

LEMMA 2. Let Pi:[0, T] - r" be continuous. Let

Then

if and only if

i(t) Pi(z) dr, 1,2.

’(t) sC’2(t for all [0, T]

co P(t) co P2(t) for all [0, T],

where co Pi is the set-valued function with values the convex hull of Pi(t).
Proof. Let l(t) 2(t) for all e [0, T]. Because Pi is (at least) Borel measur-

able, it follows from Hermes [7, Thm. 1.1] that there exists a dense subset D of
[0, T] : I with the following property: The Lebesque measure of the complement
of D :in I is zero and

co PI(O) co P2(0) for all 0e D.

For any arbitrary e I, there exists a sequence {0,} of points of D such that
as n , and

CO P1 (0n) CO P2(0,).

Because Pi is continuous so is co Pi. Indeed, if {Pu} is a sequence of set-valued maps
such that

then
PuP as u- ,

co lim P,
_

lim co P, co lim P,,

where lim P, lim inf Pu, lim P, lim sup P,. Consequently,

co Pi(O,) co Pi(t) as n ,
whenever 0, - t. Because r" is Hausdorff it follows from the uniqueness of limits
that

co P,(t) co P2(t).

This completes the proof since is arbitrary; and the converse is trivial.
The reachable set (t) of (S) can be considered as a set-valued mapping

’[0, ) r", where r" is the set of compact subsets of B, R", with the metric
topology.
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THEOREM 1 (Htjek). In (S) let P be a compact set in R" such that 0 P. Then

(t)
lim co P,
tO+

where the limit is taken in rn.
Proof A direct proof is contained in [5]. It also follows immediately from

Lemma 1.
Because P is fixed and e-A continuous., the function

is continuous. Therefore,

e-a(’)P:[O,) r"

(7) imo- e-aP da co P,

where we have used Lemma 1.
DEFINITION 4. The controllability space cg(t) of (S), for each > 0, is the least

linear space containing (t).
It is a consequence of Theorem 2 that cg(t) is independent of (and will,

therefore, be denoted by cg).
DEFINITION 5. The system (S) in n-space is controllable if and only if the

controllability space is R".
The next result is well known. Its present formulation is contained in [5],

where a detailed proof is given.
THEOREM 2. The following are equivalent descriptions of

(8)

(9)

(lO)

(11)

linear span of (t);
linear span of P, AP, ..., A"- 1p

least linear space containing P and invariant under all e
seR.
least linear space containing P invariant under A.

-As

COROLLARY 1. If (S) is controllable, then R coincides with the linear span of P,
AP, ..., A"-XP.

By the linear span of P, AP, ..., Aa- P, we mean the span of the union of
these sets.

If the convexity assumption for P is removed, it can be verified that
n-1

Cg=span U AicoP.
i=0

Thus is the least linear space containing co P invariant under A.
In what follows we shall abbreviate linear span to span.
The next proposition is probably well known, but its statement as well as its

proof is difficult to locate in the literature. It is formulated in its present form by
Hijek. For some other important properties of convex sets the general references
are [1] and [12].
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PROPOSITION 2. Suppose A, B, C are subsets of R such that

A+C_B+C.

Suppose B is closed and convex, C nonempty, compact and convex. Then

(12) A
_

B.

Proof. Obviously we may assume B #- . Suppose A g; B, and aim at a
contradiction. Then there exists some ao A\B. Since B is nonvoid, closed and
convex, there exists a point bo B closest to a0; furthermore, d -= ao bo : 0,
and d is an exterior normal to B at bo, that is,

(13) (d, b bo) =< 0

for all b B [8, p. 33 ff.].
Because C is a nonempty, compact and convex set, there exists a point

Co C at which d is an exterior normal to C"

(14) (d, c do) _-< 0 for all c C.

Inequalities (13) and (14) yield

(d,b+c-(bo+co))-<0

for all b B, c C. It follows that d is an exterior normal to B + C at bo + Co.
Now consider the point ao + Co A + C. Clearly ao + Co B + C. But then

0 >= (d, ao + Co (bo + Co)) (d, ao bo) (d, d) Ildll 2.

This implies that d 0, a contradiction.
Remark. The compactness assumption of C cannot be omitted. Consider, for

example, C=R,B= {0},A= {2}. ThenA+ CB+ C, butAB.
COROLLARY 2. Suppose A, B, C are nonvoid, compact and convex subsets of R

such that

A+B=A+C.

Then

BC.

2. Main theorem. Consider two autonomous linear control systems

(S) (t) Ax(t) P, PI(" ) P - R,
(S2) 22(t) A2x2(t)- P2, P2(" ) P2 - R’-,

where Ai is a real Hi-square matrix and P :[0, t] - P is summable for 1, 2. It is
assumed that P is a compact subset of R"’.

THEOREM 3. For 1, 2 assume that 0 P, and that the set Qi of extreme points

of co Pg is countable. Let M be amatrix monomorphism R1 - R2. Then

(15) Ml(t) t2(t)



for each >__ O, if and only if
(16)

(17)

SYMMETRIES 441

M co P1 co P2,

MA1 A2M in Cg

(in the sense that MAix A2Mx for all x e c the controllability space of (Sl)).
Proof Assume (15); that is,

(18) M e a,p1 ds e- A:sP2 ds.

Then from Lemma 2 it is necessary and sufficient that

(19) M e-als co P1 e-a" co P2
for all S. In (19) if s 0, then

(20) M co P1 co P2,

condition (16). The set-valued functions in (19) are defined on (0, t) and both
M e-a’ and e-a2 do not change sign in (0, t). Then using the ideas of Banks and
Jacobs [13, p. 250], we can n-differentiate the set functions with respect to s; and
on setting s 0 in the derivative, one deduces that

(21) MAk co P1 Ak2Mco P1, k 0, 1,2,....

Using the remarks following Corollary 1 and the uniqueness of solutions of
differential equations, one obtains the desired result’

(22) MA

This approach seems to lead, however, to some obscurities in the crucial role of
the assumption of countability of extreme points of co P. Therefore a more direct
proof involving differentiation of point-valued functions will be given.

In (19), since M e-A -Axs1, e define monic linear mappings, the sets Qi of
extreme points satisfy

(23) M e-AsQl= e- a2sQ2.

Denote by Q {qik; k 1, 2, ...} for 1, 2 the countable set of extreme points
of co P. Pick any extreme point q Qi. Then for each s __> 0, there is an index
j j(s) such that

(24) M e-Atsq e-A2s2j(s).

For each n 1,2, ..-, consider the set An {s:j(s)= n}. Evidently [0,
1,3 n__ An. Since the right-hand side is a countable union of sets, and the left an

uncountable set, there is an index n and an uncountable set of real numbers s such
that j(s) n. Thus

(25) M e-Atsq e-A2sq2n

for an uncountable set of real numbers s e [0, oe). Since both sides of (25) define
analytic functions of s, (25) actually holds for all s >= 0.
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On differentiating at s 0 we obtain

(26) MAkq Ak2q2,

for all k. In particular (k 0), Mq q2,, and so

(27) MAkq Ak2Mq (all k, all q Q 1).

Since i is the linear span of

co Pi, Aic Pi, A7’-c Pi
(Theorem 2), and hence also of Q!, AiQi,’", A’’-1Qi every point x c can be
expressed as a linear combination

k

Then

by (26); and also

Thus indeed

MAix Z akMA lql,’, E ,A? ’q2r,

A2Mx A2 aMAr]’ql, A2 Z OkA? + lq2rk

MAlx A2Mx for all x e (1"

It follows from the uniqueness of solutions of differential equations that MA1
A2M if and only if

(28) M e-as e-a2SM

for all s _> 0. Hence in the controllability space of ($1) conditions (17) and (16) are
necessary and sufficient for (19) and hence for (18). This completes the proof.

Remark. If P is assumed compact and convex in R", then P is the convex hull
of its extreme points. The following result now follows.

PROPOSITION 3. For 1, 2, assume that 0 Pi, and that the set Q of extreme
points of P is countable. Let M be a matrix monomorphism

Then,

for each >= 0 if and only if

Rnl ._ Rn2.

Ml(t 2(t)

MP1 P2,

MA1 A2M in Cg

(in the sense that MAlx A2Mx for all xCgl).
When n n2 in Proposition 3, then M is an invertible n-square matrix.

Conditions

MA1 A2M or MA1M-a =A2 and MP1 P2
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imply that the systems ($1) and ($2) corresponding respectively to A 1, P1 and A2, P2
are algebraically equivalent in the sense of Kalman [9]. This equivalence means
that ($1) and ($2) are the same linear system only written relative to different bases
for R".

Thus whenever nl n2, Proposition 3 states that

M(t) 2(t), >= 0,

if and only if the systems ($1) and (Sz) are merely different realizations of the same
linear system, i.e., describe the same linear system relative to different bases for R".

3. Symmetries of control systems. The following is the special case (S1) ($2)
of Theorem 3.

THEOREM 4. Suppose that the constraint set P of (S) is compact, convex, contains
O, and that its set of extreme points is countable. Let M define a nonsingular linear
mapping of the state space into itself. Then

(29) M(t) (t)

for each > 0 if and only if
(30) MP P,

(31) MA =AM in C,

in the sense that MAx AMx for all x
In other terms, the symmetries of system (S) are precisely the symmetries of

the reachable sets of (S) (in the sense of Definitions 2 and 3). It is clear from this
that the symmetry problem for (S) is the same as that of (t). It is solved when the
elements M are explicitly determined. This determination is sometimes facilitated
by the following theorem.

THEOREM 5. Let Q be the set of extreme points of P in the system (S). Then

(32) MQ Q and MA AM

whenever M is a symmetry of (S).
Proof Let M be a symmetry of (S). Then from (2), AM MA and MP P.

Because M is linear and P compact, every extreme point of MP is the image
of an extreme point of P’Q

_
MQ. Because M is nonsingular, Mq is an extreme

point if q Q’MQ
_

Q. Hence MQ Q. The proof is complete.
Examples.

(33)

Here

21 --2X nt- u + u2,

92 x2 + Ul -- 2u2.

A B= P B//,
0 -1
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The necessary conditions of Theorem 5,

AM MA and B-1MBQ Q

yield that the set of symmetries of (33) consists of I, I only.

9 x2 q- Ul,
(34)

22 --X -+- U2.

Here

(35)

A B P B,
-1 0

Theorem 5 yields

as the set of symmetries of (34).
The first result helps to remove a little obscurity in [8, p. 83 ff.] on the number

and shape ofthe switching curves of the system (33). Indeed, the motivation for this
paper comes from the attempt to gain some insight into the difficult problem of
constructing the switching locus and the optimal feedback control for multi-
dimensional control systems (S). The second is consistent with the investigation
of Pontryagin [11, p. 42ff.], where the synthesis problem of the time-optimal
control system (33) is studied. It would be very interesting to prove Theorem 3
without the hypothesis of "a countable number of extreme points," but there does
not seem to be an easy proof.

4. Identification of control systems. The problem studied here is how two
systems with the same performance are related. It will be shown that under
reasonable conditions such systems have coinciding constraint sets, solutions and
optimal solutions.

THEOREM 6. Given two systems (S 1) and (S2) in n-space, suppose that the constraint
set Pi of (Si) is compact, convex, contains O, and that its set of extreme points is
countable. Then

(36) l(t) 2(t)

for each >= 0 if and only if Cgl 2, and

(37) P1 P2,

(38) A x A2x for all x qYl (2.

Proof This is immediate from Proposition 3 on noting that here M I, the
identity matrix.
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There is an important special case of Theorem 6 dealing with the equation

(Li) 1 Aixi + niui, 1,2,

where ui" [0, t] q/i is summable, with values in a fixed unit cube
a constant ni x mi matrix. Here

ll {u Rmi lull-< 1,j 1,2, ...,
has a finite set Qi ofextreme points, namely, the points all of whose coordinates are
+1.

COROLLARY 3. Given systems (L1), (L2) in n-space, where Bi is an n x
matrix such that rank B mi <= n; then

l(t)

for each >= 0 if and only/f 1 2, m m2,

(39) B B2 T

where T is a permutation of the set of extreme points (in the sense that Bxq
B2T(q)for each q Q), and

(40) AIX A2x for allx c2.

Proof First observe that (Li) is the special case of (Si), where Pi BiUi;and Pi
is compact, convex and symmetric. It also has a finite set of extreme points. Indeed,
every extreme point of Pi is the image of an extreme point of q/i, and the set of
extreme points of q/i is finite. Theorem 6 applies"

l(t) 2(t)

for each => 0 if and only if

(dl (692 B1 @’! B2@’2
and

Ax=A2x for allx

Consider the condition BI@’ B2@’2. Since @’i has a nonvoid interior (in Rm’)
and B has rank m, the linear span of B@’ has dimension m. It now follows that
mx= m2, SO that Q1 Q2. Also BQ B2Q2 since rank Bi mi-< n. Hence
for each ql Q1 there is some q2 Q2 Q such that Bq B2q2. Furthermore
(again from the rank condition), q2 is determined uniquely, and the q2’s obtained in

’s exhaust Q2 Thus there exists a one-to-one ontothis fashion on varying the q
map T:Qa Q2 such that Blq B2T(q) for each q eQ1, and since Q1 Q2,
T is a permutation of the extreme points.

We observe that if (La) has one-dimensional controls such that lul _-< 1, if
u @’, then Q has two elements 1. Thus T is either the identity map I, or -I.
Hence B1 B2.

Remarks. Corollary 3 contains the special result of Hfijek [4, Thm. 11 for the
one-dimensional control system

2(0 Ax + bu, lul =< 1.
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However, his method differs from that of this investigation. He studies the par-
ticular shapes of the reachable sets by using the boundary points of these sets, a
study that rests on the construction of terminal manifolds. Such a construction
for the multidimensional system studied here is not only very difficult, but also, to
the author’s knowledge, an open problem.

Corollary 3 is also analogous to the result of Hautus and Olsder for the
system

(L) 2 Ax(t)+ Bu(t),

where u(t) is constrained to lie in a set fp defined as the set of all measurable vector
functions v(t) with Ilvllp =< 1, 1 __< p __< , and p -: 2, where [[. lip denotes the
/p-norm.

5. Further developments. The study of symmetries and identification of linear
control systems whose foundation is the basis of this paper and the basis of [4]
and [6] is important in its own right. Also it promises some insight into the problem
of constructing the switching locus and optimal feedback control for multi-
dimensional control systems. In this section some brief comments are made on
several unresolved problems connected with our research.

I. In our investigation, symmetries are defined by nonsingular matrices. Also,
the proof of the main theorem depends heavily on the monomorphism of M. For
example, the equation

(23) M e-a"Q1 e-a2’Q2

required this strong condition on M. Can this be relaxed? Of course (23) no longer
holds when M is not monic. What does hold is the relation

M e-a"Q, c e-a2’Q2"

Thus when M is arbitrary, subsequent arguments in this paper no longer hold.
Though it is plausible that the theorem is valid, there is no obvious proof.

II. Suppose M is rectangular. If xl R"’, x2 R" and x2 Mx, then M
defines a linear subspace

L {(xl,xz)’X2 Mxl}

of the product space R"’ x R"2.
Now let L be a linear subspace of the product space R"’ x R"2. Let M (Z R,,,

M2

_
Rn2 and L

_
R"’ x R"2.

DWrNITION 6. M, M2 are said to be in relation L ifand only iffor each.x M

there exists x2 e M2 such that s L, and for each x2 e M2 there exists some
X2

x e M such that e L.

In the usual notation of relations the conditions on M, M2 are that M1
c_ L[M2], M2 c_ L-[M]. If L is a linear subspace, there must exist matrices
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such that e L if and only if
X2

UIXx U2X2
(and conversely, given U1 and U2 this condition defines L). The problem of
interest here is as follows. Suppose N l(t), 2(t) are in relation L for each >= 0.
What is the appropriate conclusion? This should specialize to Theorem 3 in case
U2 I and U defines a nonsingular linear map xl --+ x2. The symmetry problem
will then extend to a "generalized" symmetry problem where the generalized
symmetry is defined by the linear subspace L.

Our investigation would yield appropriate conclusions whenever there are
arbitrary matrices U1, U2 such that

Ull(t U22(t

for each _>_ 0. The special case U2 0 of this situation is obviously connected
with some extensions of the problem of controllability and observability of the
system (S).

III. An obvious extension of the above research would be to find immediate
parallels of our string of results in the case of nonautonomous control systems

(N) ci(t Ai(t)x, Qi(t),

where Qi:[0, t] --+ f"’ is a measurable set-valued function with values in f"’, the
space of compact subsets of R"’ with the Hausdorff topology, and Ai has square
summable components.

Active research is being conducted in all these three areas of investigation.
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GEOMETRICALLY CONSTRAINED OBSERVABILITY*

ROBERT F. BRAMMERf

Abstract. This paperdeals with observed processes in situations in which observations are available
only when the state vector lies in certain regions. For linear autonomous observed processes, necessary
and sufficient conditions are obtained for half-space observation regions. These results are shown to
contain a theorem dual to a controllability result proved by the author for a linear autonomous control
system whose control restraint set does not contain the origin as an interior point. Observability results
relating to continuous observation systems and sampled data systems are presented, and an example of
observing the state of an electrical network is given.

Recently, the problem of controllability in linear autonomous systems has
been considered without the assumption that the origin is interior to the range of
the set of admissible controllers. In [1] the following theorem is proved.

THEOREM A. Consider the control system in R":

(L) & Ax + Bu, u c Rm,
which has the properties:

(a) The set f contains a vector in the kernel of B (i.e., there exists u f satisfying
Bu 0).

(b) The convex hull of f, CH(f), has nonernpty interior in Rm.
The following conditions are necessary and sufficient for the null controllability

of(L):
(c) The controllability matrix C[A, B] has rank n. (The matrix CA, B] is

defined by the columns of (B, AB, A"-IB).)
(d) There is no eigenvector, v, of AT satisfying (v, Bu) <= 0 for all u D.
It is the purpose of this paper to obtain observability results dual to the above

controllability theorem. This leads to the notion of geometrically constrained
observations..An observation process is geometrically constrained if the observa-
tions of the state are available only when the state vector lies in certain regions.
This situation will be shown to be dual to that of a control system whose control
restraint set does not contain the origin as an interior point.

The process

(1) 2 f(x, u), y h(x),

where f" R" x Rm--- Rn, u’R+ -- Rm, and h"R" Rp is called an observed
process in R". We assume that the state dynamics are described by the control
system 2 f(x, u), that the control function u(. is known, but that the only
information available concerning the state vector is the observation vector,
y h(x). We shall restrict our consideration to functions f and h that are con-
tinuously differentiable and to measurable control functions u(.), and we shall
assume that solutions to (1), x(., x0, u(. )), exist and are unique for all Xo, u(. ),

* Received by the editors May 11, 1972, and in revised form January 31, 1973.- Goddard Space Flight Center, Greenbelt, Maryland 20771. This research was supported in part
by the National Science Foundation under Grant GP-31386X.
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and __> 0. We shall assume 0 f and that f(0, 0) 0 and h(0) 0. Thus, each
initial condition, Xo, and controller, u(. ), leads to a unique solution, x(., x0, u(. )),
and, consequently, an observation history, y(., xo, u(. ))= h(x(., Xo, u(. ))). The
process (1) is observable if there exists a finite interval [0, T] such that for any x
and x2 if y(t, Xl, y(. )) y(t, x2, u(. )) for some controller u(. and for all [0, T],
then Xl x2. Thus, if a process is observable, the initial condition, and hence the
entire solution is uniquely defined by the observations over some finite interval.
The process (1) is also applicable to situations in which there is no control. In such
a case, let f {0} R", and define f(x, O) f(x).

For linear systems we have the following well-known theorem [4, p. 111].
THEOREM 1. The autonomous linear observed process

(2) 2 Ax + Bu, y Hx, u c Rm,
is observable if and only if the dual control system

(3) 2 ATx + HTu
is null-controllable.

Remark 2. The proof of this theorem assumes that the origin is interior to
and that the observations are available for all values of the state vector.

In many physical systems observations are available only when the state
vector is in certain regions of the state space. For example, a radar can measure
the position of a space vehicle only when the vehicle is above the local horizon
at the radar. A simple example involving an autonomous linear process is given
by the electrical circuit in Fig. 1. The state of the system is defined by the current,

FIG.

x, in the loop, and the voltage, x2, across the capacitor. The measurement
available concerning the state is the voltage, y, across the output terminal. Due
to the presence of the diode, D, the output will be zero if x2 is negative and will be

x2 if x2 is positive. Thus, we have the following system:

2 Ax + Bu, y= Hx whenDx>O, ue[-1,1],

where

R/L 1/L
A

/C 0
B= (10), H=D=(0,1).

Assume that the matrix A is oscillatory (i.e., R < 2w/L/C). There are two important
features to be noted in this example. First, for certain initial conditions and con-
trollers observations will never be available. Let Xl(0)= 0, Ix2(0)+
Choose u(. -e. It is easy to see that the capacitor will charge and Xz(t will
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oscillate about the value -e with amplitude less than e/2 and, consequently,
never become positive. Thus, this process is not observable. Second, there is a
control, the zero control, for which the voltage, x2, becomes positive over some
subinterval of [0, T], where

R2

T 2/
LC 4L2

for any initial condition (xl(0), x2(0)). Furthermore, at least one such subinterval
has length greater than or equal to T/4.

Using this example as a guide, we define an observed process with constrained
observations by adding to (1) a constraint function d: R" -, R so that the observation
vector y h(x) is available if and only if at least one component of the/-vector
d(x) is positive. The function d is continuously differentiable and d(0) 0. Let L
denote the positive unit/-cube in R (i.e., L 1-Ill [0, 1]). At least one component
of the vector d(x) is positive if and only if there exists some w L satisfying
(w, d(x)) > 0. Thus, we have the process

(4) Y f(x, u), y h(x) with constraint function d.

The observed process with constrained observations is observable if the following
conditions are satisfied:

(5) There exists a controller, u0(" ), and positive numbers, 7 and T, such that
for all Xo R" the observations y(., Xo, Uo(" )) are available on some open sub-
interval of [0, T] having length greater than or equal to 7.

(6) If y(t, xl,u(.))= y(t, x2,u(.)) for all t [0, T] and for any admissible
u(. ), and if observations are available for an interval of length ,, then x x2

The process is observable if there is some controller for which the availability
of observations is assured, and if the observations of a solution, when available,
are sufficient to distinguish solutions of (4).

For the autonomous linear problem we have the process

(7) Y Ax + Bu, y Hx with constraint matrix D.

In this process A, B, H, and D are real constant n x n, n x m, p x n, and x n
matrices respectively. Let d, ..., d be the row n-vectors of the matrix D. The
condition on the availability of the observations is that at least one of the scalar
products (dl, x),..., (dl, x) is positive. Geometrically this means that the state
vector is in at least one of the half-spaces for which some d is an inward normal
at the origin. This process (7) includes the electrical example considered earlier.
Before proving an observability result which will demonstrate that the electrical
circuit example defines an observable process, we require two preliminary lemmas.

LEMMA 3. Let A and H be as in (7), and assume that

(8) C(Ar, Hr) has rank n.

Let 6 > O, e [0, T], and define the matrix function M6(t) as follows:
+ 6

M6(t) eATsHrH eAs ds.

Then there exists (6) > 0 satisfying (x, Ma(t)x) >= e(6)(x, x).
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Proof. It is easy to see that if C(AT, HT) has rank n, then M(t) is a positive
definite symmetric matrix [2, p. 29]. Hence, the scalar product (x, M(t)x) has a
positive lower bound, a(6, t), as x varies over the unit sphere, S"-1. Thus,

(x, Ma(t)x) >_ (b, t)(x, x)

for all x e R". Since M6(t) is continuous in and the scalar product is continuous
in x and t, a(6, t) is continuous in t. Thus, for [0, T], a(6, t) __> a(6) > 0, where
a(6) infttO,Tj (, t).

LEMMA 4. Let S- L 0 St- 1, and let A and D be as in (7). Define the function
fl( T, x, w) R1 S S- R to be the following"

fl(T, x, w) sup (w, D ea’x).
te[0,T]

Let a(T) be the infimum of (T, x, w), where the infimum is taken over all x and w
in the domain of . Then there exists T > 0 satisfying a(T) > 0 if and only if the
following two conditions are satisfied:

(9) C(Ar, Dr) has rank n.
(10) There is no eigenvector, v, of A satisfying (v, Drw) <= 0 for all w L.
Proof. Since (w, Deatx)--(x, eAT’DTw), it follows from the analysis of

Lemma 2.4 and Theorem 1.4 of [1] that (9) and (10) are necessary and sufficient
for the scalar product (x, eATtDTw) to attain a positive value at some time t(x, w) > 0
for each fixed x and w in the domain of the function ft. From the compactness of
the domains of x and w it follows that there exists a finite number, T, for which
fl(T, x, w) > 0. By the continuity of fl(T,., and the compactness of the domains,
it also follows that a(T) > 0.

Remark 5. Furthermore, if 0 < 2 < 1, for each x and w there is an open sub-
interval of [0, T] during which (w, D ea’x) > 2a(T). Let (t(x, w), tz(X, w)) denote
an interval of maximal length during which this inequality is satisfied. Again,
by the compactness of the domains of x and w, there is a positive lower bound,
,(2), to the length of these maximal intervals.

Using these lemmas, we can establish the following observability result
which establishes necessary and sufficient conditions for the observability of the
process (7). This theorem will prove that the electrical example is observable,
and the theorem will be specialized to a dual theorem to Theorem A in the same
sense that Theorem 1 is dual to Theorem 1.1 of [1].

THEOREM 6. Conditions (8), (9) and (10) are necessary and sufficient for the
observability of the linear autonomous process (7).

Proof. Lemma 4 shows that (9) and (10) are necessary and sufficient to ensure
that observations of any solution of (7) with uo 0 will be available at least during
some subinterval of [0, T] having length V, where T and V are determined as in
Lemma 4. If (8) is not satisfied, there is a nonzero vector v satisfying H eAtv O.
Thus, the solution x(., v, 0) cannot be distinguished from x(., 0, 0) even though
observations are available. Consequently, the process is not observable. If (8) is
satisfied, then since y(t, Xo, u(. )) is given by the expression

y(t, xo, u( )) H eAtxo + H eA(t-S)Btt(s) ds,
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we have

y(t, x u( )) y(t, x2, u( )) H era(x1 x2).

Thus if y(t, xl, u(. )) y(t, X2, U(" )) over any open interval, (t, + 7), we have

t+’
0 ly(S, Xl, U(" )) y(S, X2, U(" ))[2 ds (x3, M(t)x3),

where x3 xl x2. By Lemma 3, x 3 0. Therefore, x x2 and the system is
observable. The following corollary is the observability dual to Theorem A.

COROLLARY 7. In the process (7), let p and D H. The process (7) is
observable if and only if the dual control process

(11) & ATx + HTu, u L c Rl,

is null-controllable.
Remark 8. Setting D H means that observations are available if and only if

one of the observation vector components is positive. This is dual to the control
situation in which all the control components are positive since u e L.

In the electrical example if R < 2,/-)--, it is easy to verify that the conditions
of Theorem 6 are satisfied. Consequently, the process is observable.

This analysis can be extended to produce a local observability result in the
neighborhood of the origin for the process (4). First, we define as in [4, p. 378]
local observability for the process (1). The process (1) is said to be locally observable
near the origin if there exists e > 0 such that for lu(t)l < e, Ix xl < , Ix2l < e, the
process is observable according to the definition for the process (1). The norm
symbol I. denotes the usual Euclidean norm in a finite-dimensional Euclidean
space and the norm Symbol denotes the L2-norm for functions. The following
result appears in [4, p. 378].

THEOREM 9. For the process (1), let A fx(O, O) and H hx(O). If C(AT, HT)
has rank n, then (1) is locally observable near the origin.

We define local observability for observed processes with constrained
observations as follows" the process (4) is locally observable near the origin if
there exists e > 0 such that (5) and (6) are satisfied for controllers on [0, T] satisfying
Ilu(" )11 < e and initial conditions Xo satisfying ]Xo] < e. The following theorem
gives a local observability result for process (4).

THEOREM 10. For the process (4), let A f(O, 0), H h(O), and D d(O).
The process (4) is locally observable near the origin if conditions (8), (9) and (10)
are satisfied.

Proof. To show that (5) is satisfied, we will produce T > 0 and e > 0 such
that if ]Xol < e then observations of any nonzero solution x(t, Xo, 0) are available
on some subinterval of [0, T]. To show that (6) is satisfied, we will produce 2 > 0
such that if Ix1[ < /32, [Xz[ < /32,[u(t)[ < /32 for t6[0, T], and if y(t, Xl,U(.))

y(t, x2, u(. )) over any open subinterval of [0, T], then X x2. Therefore, by
taking/3 min (/31,/32), we will prove the local observability near the origin of the
process (4) by showing that observations are both available and equal.

By hypothesis, f(x, u)= Ax + Bu + g l(X, u), d(x)= Dx + g2(X), h(x)= Hx
-t- g3(x) and for every/3 > 0 there exists 6(/3) > 0 such that Ixl < (e) and lu[ < 6(e)
implies Igl(x, u)l < (Ixl / lul), Ig2(x)l < lxl, Ig3(x)l < lxl. Since f is a C-function,
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the solution x(t, Xo, u(. )) is differentiable with respect to Xo, and since x(t, 0, 0) 0,
it is easy to see that on any finite interval, [0, T], there exist 6 I(T) > 0 and M(T) > 0
such thatiflxol + u(’)l < 61(T),then Ix(t, Xo,U(.))l < M(T)(lXol + u(.) ).

The solution x(t, xo, 0) has the form

x(t, xo, O) ea’xo + G(t, xo, 0),

where G(t, xo, u(. )) is given by

G(t, Xo, u( )) eA(’-S)g I(X(S, X0, b/(" ), L/(S))) dS.

Define N(T) suPt0,T1 lea’l. Let w e L, and we have

(w, d(x(t, Xo, 0))) (w, Dx(t, Xo, 0)) + (w, gz(x(t, Xo, 0)))

(w, O eA’Xo) + (W, OG(t, Xo, 0)) + (w, g2(x(t, Xo, 0))).

Apply Lemma 4 to A and D to get T > 0 satisfying a(T) > 0. Using this value for
T, we obtain 6(T) and M(T). Thus, choosing e > 0 to satisfy

((T) a(T)
< min

31DIN(T)M(T)T’ 3M(T)

we have, for Xo satisfying Ixol _-< min (61(T), 6(e)) 6,

I(w, DG(t, Xol _-< Iwl IDI le"-sl Ig(x(s, xo, 0), 0)1 ds

_-< Iwl IDIN(T)M(T)rlxol

and

o-(T)
I(w, gz(x(t, Xo, 0)))l < -Iwl Ixol.

Therefore, if (w, d(x(t, xo, 0))) __< 0 for all [0, T], then

0 >= (w, d(x(t, Xo))) >= (w, D eAtxo)- 2r(T------’lwllxol.
3

If Ixol Iwl 4: 0, it follows from Remark 5 with 2 2/3 that the above inequality
cannot be satisfied. Thus, if [Xo[ is sufficiently small, and if no observations are
available on [0, T], then Xo 0. Otherwise, observations must become available
on some subinterval of [0, T].

By the inequality

3

it follows from Lemma 4 and Remark 5 that observations of each nonzero solution
are available for an interval of length at least 7. Thus, we have satisfied (5).



GEOMETRICALLY CONSTRAINED OBSERVABILITY 455

The solution x(t, Xo, u(. )) has the form

x(t, xo, u( )) eA’Xo + eA(’-S)Bu(s) ds + G(t, xo, u( )).

Assume that y(t, x l,u(’)) y(t, x2,u(.)) over some subinterval of [0, T],
(tl, tl + ). Therefore,

t’

lY(t, X1, H( )) y(t, X2, U(" ))l--2 dt O.

The observations are given by

y(t, Xo, u( )) H eAtxo + H eA(t-S)Bu(s) d + HG(t, Xo, u( ))

+ g3(X(t, Xo, U(" ))).

and

Ig12(t, X1, X2, U(" ))l < eM(T)Ix3]
for IXll + Ilu(.)ll < () and Ix2l + Ilu(,)ll < (), Thus, we have the result that
the integral, I, satisfies the inequality

III < ee(T)lx312,
where P(T) is a positive number given by

P(T) [21HI2N2(T)M(T) / 21HIN(T)M(T)

/ 21HIN(T)M2(T)e / elHI2N2(T)M2(T)/ eM2(Z)].

Therefore,
+7

0 lY(t, X H(" )) y(t, X2, U(" ))12 dt

+7

IH eAt(x X2) -- H(G(t, x1, H(. )) G(t, x2, H(. )))

-F g3(X(t, X1, U(" ))) g3(x(t, x2, u(. )))12 dt.

Let x 3 Xl x2, and we have

+7
0 (x3, MT(tl)x3) + [2(HeAtx3,G12(t, xl,x2,u(.)))

+ 2(H eatx,g12(t, xl, x2, u(. )))

+ 2(G12(t, x, x2, u(. )), g12(t, xl, x2, u(. )))

/ IGaz(t,,xz,u(. ))[z / Igz(t,x,x2,u(. ))12] dr,

whereG12(t, xl,x,u(. )) H(G(t, xl,u(. )) G(t, x2,u(. ))),and g2(t, xl,x2, u(. ))
g3(x(t, x, u(. ))) g(x(t, x2, u(. ))). Denote the above integral by I. We have

IG12(t, x1,x2,u(" ))1 <= IHI[N(T)M(T)e(IxtI- Ix2l)]

_-< IHIN(T)M(T)elx



456 ROBERT F. BRAMMER

Therefore,

0 (x 3, M(t)x3) + I >= ((/) eP(T))lxal 2.

By choosing e sufficiently small, we conclude that x 0 or Xl x2. Thus we
have satisfied (6), and the process (4) is locally observable near the origin.

Remark 11. The techniques used to prove Theorem 6 and Theorem 10 will
suffice to prove Theorem 1 and Theorem 9 (situations without constrained observa-
tions). The proof of Theorem 10 given here differs from the proof of Theorem 9
given in [4, p. 378] by being a finite-dimensional proof and making no use of an
implicit function theorem in a Banach space.

The case of observations made at discrete times is considered in [4, p. 381].
Here we consider this problem for constrained observations and present a new
proof which includes the result in [4].

For the case of observations available only at discrete times (sampled data
systems), we require first the following lemma.

LEMMA 12. Let M(t) be a real analytic p x n matrix function defined on R.
Assume that for any a and b, fb MT(t)M(t) dt is nonsingular. Then, except for a
closed set of measure zero in R, the function

Proof. Let (a, b) be any open interval. Let S be the linear subspace generated
by vectors of M(t) for all e (a, b). If S R, then there exists x 0 e R satisfying
M(t)x 0 for all e (a, b). Therefore,

(M(t)x, M(t)x) dt 0 (x, Mr(t)M(t)x) dt x, Mr(t)M(t) dtx

which is impossible since J" Mr(t)M(t)dt is nonsingular. (For a matrix of this
form, nonsingular implies positive definite symmetric.) Thus, there exist l, "", t,
in (a, b) so that the matrix M(tl, ..., t,) defined by

M(t)

M(t t,)

mit,)
has rank n. Therefore, MT(tl, ..., t,)M(t, ..., t,) has rank n, and since

Mr(t l, G)M(t t,) Mr(ti)M(ti),

det (] Mr(ti)M(t,)) > 0. Thus, det (’ Mr(t,)M(t,)) is a real analytic entire
function which is not identically zero. The set on which a nonconstant real analytic
function vanishes is called an analytic variety and is a countable union of analytic
manifolds of dimension less than or equal to n 1, each of which has measure
zero in R". See, for example, [5, p. 361] and [3, p. 205].
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For the autonomous linear process (7) the observations have the form

y(t, xo, u( )) H exo + H e"-Bu(s) ds.

Assume that (7) satisfies conditions (8), (9) and (10). If u(. 0, then the analysis
of Theorem 6 shows that there is a positive number 7 and a finite interval [0, T]
such that for any xo e R there is an open subinterval, J(xo), of [0, T] of length
greater than or equal to during which the observations y(t, xo, 0) are available.
Assume that the sampling occurs with a rate of at least n + 1 samples per 7 time
units. Thus, in any open interval of length at least ), we have at least n samples,
and, consequently, we will have at least n measurements of each solution. Lemma 3
and Lemma 12 imply that for all but an exceptional set (an exceptional set is a
closed set of measure zero) of times the matrix ] eA’t’HrH eAt‘ is invertible.
We have

1 e’47"tiHry(ti’x’O) (1 eATt’HTH eati XO’

and therefore for all but an exceptional set of measurement sequences, the un-
controlled solution is observable. This satisfies condition (5). Similarly, if
y(ti,, xi u( )) y(ti, x2, u(. )) for n samples and ’ eA’t*HTH eAt‘ is invertible,
then x x2, thus satisfying condition (6). Furthermore, it is clear from the proof
of Theorem 6 that (8), (9), and (10) are necessary for observability. Thus, we have
proved the following theorem.

THEOREM 13. Conditions (8), (9) and (10) are sufficient to ensure that there
exists afinite interval [0, T] and a sampling rate, S, such that for all but an exceptional
set of measurement sequences of rate at least S the process (7) is observable. Further-
more, if (8), (9) and (1 O) are not all satisfied, then (7) is not observablefor any measure-
ment sequence.

The local linearization techniques of Theorem 10 can be adapted to the
problem of observability using discrete-time measurements in the following way.
Using the notation of Theorem 10 and assuming that conditions (8), (9) and (10)
are satisfied, we note that the existence of the positive number required by (5)
is guaranteed by the results of Theorem 10. Let {t, ..., t} be any measurement
sequence with rate at least (n + 1)/. For all but an exceptional set of measurement

+ eA*t’HTH eAt is nonsingular where 0 < j < q n.sequences, the matrix j+l
Thus, for any open subinterval of length y we have at least n measurements and

+n+l ea’t’HTH eAt‘ is nonsingular. Since we have

y(t, xo, u( )) H exo + H e"’-Bu(s) ds + HG(t, xo, u( ))

+ ga(x(ti, xo, u(. ))),

then, if the measurements are available at tj+ 1, tj+,,

X0 eATtiHTH eAti

eATt’HTy(ti, Xo, U(" )) + eA"’HTH eat’-S)Bu(s) ds + o(Ixol + Ilull)
j+ j+



458 ROBERT F. BRAMMER

It follows from the implicit function theorem that for Ixol + Ilu(-)ll sufficiently
small that Xo is uniquely determined from the observations. (Recall that the
vectors y(ti, Xo, u(.)) are known.) By taking the smallest radius for [Xo[ + [[u[[
from among the q n consecutive subsets of {t 1, "’", tq}, we obtain the following
theorem.

THEOREM 14. Conditions (8), (9) and (10) are sufficient to ensure that there
exist a finite interval and a sampling rate S such that for all but an exceptional set

ofmeasurement sequences of rate at least S, taken from this interval, the process (4)
is locally observable.

Finally, we wish to consider the possibility of decreasing the measurement
rate while retaining observability. It is clear that n measurements during any
subinterval may be more than necessary to determine the initial state vector.
For example, if H is the n x n identity matrix, then only one measurement is
needed. In the general case let M(t) H eat. From the proof of Lemma 12 and the
subsequent proofs of Theorems 13 and 14 it is easily seen that if there are k values
of satisfying rank [Mr(t 1), MT(tk)] r, then k eAt,HTH eat, is nonzero
almost everywhere and a rate of (k + 1)/ will suffice in the above theorems.
The following theorem identifies the smallest possible k.

THEOREM 15 Let k be the smallest integer such that rank [Hr, ArHr,
(Ar)k- 1Hr] n. "If (7) is observable, a measurement rate of (k + 1)/7 will be
sufficient for observability. Furthermore, no smaller value ofk is sufficient.

Proof. Let k be defined as above, and let el, "-’, k be small unequal positive
numbers. The matrix

Ipxp

[eAw*H, eAw*H] e’llp p

[HT, (AT)k- 1HT
,k1- + o(ek)Ip p(k 1)!

For the ej unequal, the Vandermonde determinant

I I

8lip p ’klpx p

Ipxp

eklp p- +
(k 1)’

Ip p denotes the p-dimensional)identity matrix

is nonzero, and thus for the ej small and unequal the matrix [eAT ’HT, ..., eaT ekHT]
is the product of a nonsingular matrix and a matrix of rank n, and, consequently,
must have rank n. Thus by Lemma 12, ] eATtiHTH eati is nonsingular almost
everywhere, and it follows that measurement rates of (k + 1)/7 will give observ-
ability whenever (n + 1)/7 does.
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For any integer r less than k, the matrix ] eATt’HTH eAt‘ is singular since
[eAT*IHT, eAT’HT] has rank less than n over an open subset (the ej’s can be
varied about a small open set), and thus the real analytic function det ea’tiHTH
eati vanishes on an open set and, hence, everywhere. Thus, for any solution for
which only r measurements are available, it is readily seen from the analysis of
Theorem 13 that we do not have observability.

Acknowledgment. The author would like to thank the referee for his careful
and constructive remarks.
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POINTS DE NASH DANS LE CAS DE FONCTIONNELLES
QUADRATIQUES ET JEUX DIFFERENTIEL S

LINEAIRES A N PERSONNES*

A . BENSOUSSANt

Abstract . In this article, we consider the problem of Nash points for quadratic functionals i n
Hilbert spaces . Necessary and sufficient conditions of optimality are given . We apply the results t o
N-person differential games. Open-loop and closed-loop solutions are considered . When there ar e
no constraints, two types of Riccati equations are obtained . We completely develop the paraboli c
case, generalizing results of A . Friedman [2] who considered finite-dimensional systems . The infinite -
dimensional systems that are modeled are the ones which represent distributed parameter systems a s
in Lions [4] .

Introduction. On étudie dans cet article le problème des points de Nash pou r
fonctionnelles quadratiques du type suivant :

n

	

n

Ji(vi, . . . , v n) = E ai j(v j , v j) + 2 E b ijk( vj, vk) - 2 E Lij(v j) .
j= 1

	

j>k

	

j = 1

On commence par énoncer des conditions nécessaires et suffisantes (o u
simplement suffisantes) afin qu'il existe un point u 1 , • • • , u n tel que :

Ji(u 1 , . . . , un) C Ji(u 1 , . . . , u i — 1 , v i , U N- 1 ,

	

. , un )

pour tout v i vérifiant les contraintes .
On étudie ensuite le problème des jeux différentiels à n personnes avec critère

quadratique . Par rapport au problème de contrôle optimal, intervient ici l a
situation particulière que les stratégies en boucle fermée ou en boucle . ouverte ne
sont pas équivalentes . L ' équation du système étant décrite par :

n

Ay = f + E B i v i
i= 1

on considérera les fonctionnelles :
n

	

n
((~~

J i( v l ,
. . .

, v n ) = E

	

Il MjyII 2 + E Nij(Njvj, vj) •
=

	

=

Les stratégies en boucle ouverte correspondent au problème suivant : Trouve r
un point de Nash pour les fonctionnelles J i . Les stratégies en boucle fermée sont
des applications £i(y) à valeurs dans les espaces de contrôle.

On considère alors les fonctionnelles :

i(-T1, '2, . . .

	

n) = Ji(Y1(y), -2(y), . . . , 2n(y) )

et on cherche un point de Nash 21 , • • • , ai% (voir aussi D. Lukes [7]) .
L'existence de points de Nash en boucle ouverte ou en boucle fermée es t

liée à l'étude de systèmes d'équations de Riccati.

* Received by the editors September 29, 1972 .
t I.R .I .A., Informatique Numérique (Batiment 12), Domaine de Voluceau, 78-Rocquencourt ,

France.
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Toutefois, en bouclè fermée, les équations de Riccati prennant une importanc e
trés grande, cas la résolution de ces équations est le seul moyen permettant d e
prouver l'existence de stratégies optimales, alors que dans le cas "boucle ouverte"
des méthodes directes sont possibles .

On fait alors une étude complète du cas évolutif et on montre l'existence d e
solutions pour un système d ' équations de Riccati, sur un intervalle de temps fin i
assez petit . Cela généralise un résultat de A . Friedman [2] où l'existence locale pou r
les équations différentielles en dimension finie est utilisée pour démontrer l'existence
de stratégies optimales .

Le modèle général étudié est en dimension infinie, ce qui permet de traiter le s
systèmes décrits par des équations différentielles aussi bien que les systémes décrit s
par des équations aux dérivées partielles .

Le plan est ci-après :
1. Conditions d'existence d'un point Nash pour fonctionnelles quadratique s

1 .1 . Données Notations
1 .2 . Conditions nécessaires et suffisantes d'existence d'un point de Nas h
1 .3 . Condition suffisante d'existence et d'unicit é

2. Jeux différentiels à N personnes en boucle ouvert e
2 .1 . Données	 Notations
2 .2 . Condition nécessaire et suffisante d ' existence d'un point de Nash en

boucle ouverte
2 .3 . Découplage

3. Jeux différentiels à N personnes en boucle fermé e
3 .1 . Le problème
3 .2. Point de Nash en boucle fermé e

4. Etude du cas parabolique
4.1 . Notations
4.2 . Point de Nash en boucle fermée
4.3 . Etude des équations de Riccat i

1 . Conditions d'existence d'un point de Nash pour fonctionnelles quadratiques .

1 .1 . Données Notations . Soient J 1 , • • • , ?Cn n espaces de Hilbert e t
wad, • . . , ql,;d n sous-ensembles convexes fermés de del , • • • , 014 respectivement . On
posera : v = (v i , • • • , v n) e 011, x • • • x q/n et on définit n fonctionnelles J 1 (v), • • • ,

Jn(v) par :
n

	

n

(1 .1)

	

J i (v) = E ai j (v j , vj) + 2 E bi jk (vj , v k) — 2 E Li j(v j) ,
j= 1

	

j >k

	

j =

où

a ij(vj , wi), i, j = 1, • • • , n, sont des fonctionnelles bilinéaires continue s
symétriques sur t

b i jk (v j , v k), i, j, k = 1, • • • , n, j > k, sont des fonctionnelles bilinéaire s
continues sur oltj x Wk
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(1 .4) Li;(vj), i, j = 1, • • • , n, sont des fonctionnelles linéaires continues sur Wj .

On rappelle qu'un point u = (u 1 , • • • , u n) est un point de Nash si les inégalité s
suivantes sont vérifiées :

J i(u 1 , u i , u n ) ~ J i (u 1 , . . . ,

	

, u n )

pour tout v i e K i , i = 1, • • • , n .

1 .2. Conditions nécessaires et suffisantes d'existence d'un point de Nash .
Considérons la fonctionnelle :

(1 .6)

	

J i(v i) = J i (u 1 , . . . , u i _ 1 5 vi , u i + 1,
. . . , un )

considérée comme fonction de la seule variable v i . D' après (1 .1), on a aussitôt :

	

n

	

i

(1 .7) Ji( v i) = a ii(v i, v i ) + 2 E b iji(u;, v i) + 2 E b ii j(v i , u;) — 2L ii( v i) + Cte

	

j= i+ 1

	

j= 1

et u i réalise le minimum de Ji(v i ) sur K i .
Il est classique (cf. J . L. Lions [4]) que si a ii(v i , v i ) est >= 0, alors pour que J i(v i )

atteigne son minimum sur Ki , il est nécessaire et suffisant que l'on ait :

(O]i

	

-

	

>(1 .8) 	 	 (ui), vi

	

u i )

	

0 pour tout v i e K i .
(~l' i

On posera pour simplifier les notations :

ai(v i, v i) = aii( v i, v i) ,

b iji( vj , v i) si j > i ,
(1 .9)

	

b i;( v;, v i)
vj) si j <

L i( v i) = Lii(v i )

On déduit aussitôt de (1 .8) le théorème suivant .
THÉORÈME 1 .1 . Sous les hypothèses et notations du § 1 .1, et a i (v i , v i) >= 0, alor s

la C.N.S . pour que u = (u 1 , • • • , un ) soit un point de Nash pour les fonctionnelles
J1 , •••, J,, est que l ' on ait :

a i(u i, v i — ui) + E b ij(uj, v i — u i) — Li(vi — u i) > 0 pour tout v i e Ki ,
(1 .10)

i= 1,•••,n ,

ou encore
n

	

n

	

n

E ai(ui, vi

	

u i) +

	

bij(uj, vi

	

ui) —
E Li(vi — u i ) > 0

i= 1

	

i � ;= 1

	

i= 1
(1 .11)

pour tout v i e K i , i = 1, • • • , n .

Démonstration . Les conditions (1 .10) ne sont autres que la traduction de s
conditions (1 .8) . Quant à l'équivalence de (1 .10) et (1 .11) c'est évident .

1 .3 . Condition suffisante d'existence et d'unicité . Sous la forme (1 .11), l a
C.N.S. d'existence d'un point de Nash se ramène donc à l'étude d'une inéquatio n
variationnelle sur l ' espace de Hilbert dll = ~1 x • • • x 0Cn .
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Plus précisèment posons :

n

	

n

(1 .12)

	

a(v, w) = E ai(vi, wi) +

	

b ij(v j , w i )
i = 1

	

i � j= 1

et

n

L (v ) !- E Li(vi) ;
i =

alors (1 .11) s'écrit :

(1 .11) b ;s

	

a(u, v — u) — L(v — u) ? 0 pour tout v E K 1 x • • • x K n .

On a alors d'après un résultat classique de Lions et Starnpacchia [6] : S i
l'hypothèse suivante est vérifiée :

(1 .14)

	

a(v,v) >= allvlli ,

il existe u unique E K tel que (1 .11 ) bis soit vérifiée . La condition suffisante d 'existence
et d'unicité (1 .11) bis s'explicite donc de la maniére suivante :

n

	

n

	

n

(1 .15)

	

Il existe a > 0 tel que

	

E ai(v i , v i) +

	

bi j(vj , vi) > a E I I vi II 2 .

i= 1

	

i � j= 1

	

i= l

Remarque 1 .1 . Considérons à titre d 'exemple le problème du point-selle
étudié par Lemaire [3] . On prend n = 2, e t

a12( v 2, v 2) = —a 2( v 2, v 2) ,

a21( v 1 , v l) = —a l( v l ~ v l) ?

b121(v2, VO

	

b(v2, v l) ?

1) 22 1( ) 2 , v 1) -- 1)
(v 2

, V O ,

L 12(V2) = — L2(v2) ,

L21(v 1) = — L1(v l) •

Alors (1 .9) donne aussitô t

b 12(v 2 , v 1) — b 121( v 2 , v1) = b(v2, v 1) ,

b 21(v 1 , v 2) = b221(v2 , VI) = _... b(v2 , v l) ,

et donc,

b 12( v 2 , v 1) + b21(v1, v 2 ) = 0

par conséquent (1 .15) devient

(1 .18)

	

a 1( v1, v 1) + a 2( v 2, v2) > 40111 2

ce qui est évidemment équivalent à :

(1 .19)
a 1(v1, v 1) ? a l4 v 1 11 2

a2(v2, v2)
> a Il v 2 Il 2 .

(1 .13 )

(1 .16)

(1 .17)

+ iI v2 II 2 ) ,
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Remarque 1 .2 . Le cas des contraintes couplées . Le cas où décisions sont as-
treintes à des contraintes couplées ne se ramène pas du tout malheureusement à
des inéquations variationnelles . En effet, notons pour simplifier a i l'ensemble de s
coordonnées u 1 , • • • , ui _ 1 , • • • , u n , alors (1 .5) doit étre remplacée par :

n

(1 .5 ' )

	

J i(u) < J i(v i , ûi), pour tout v i tel que (v i , ai) e K c f ~i .
i= 1

Par conséquent la contrainte (v i , ûi) e K peut s ' écrire sous la forme :

(1 .5 ")

	

v i e Ki(i) c

bien entendu u i E K i ( û i ) . Il en résulte que la C.N.S. d'existence d'un point de Nash
s'écrira :

n

	

n

	

n

E a i(ui, vi — u i) +

	

bij(uj , v i — u i) — E Li(vi — ui) ~ 0

(1 .11 ' )
pour tout v i e Ki(i) ,

ce qui s'écrit donc aussi :

(1 .11")

	

a(u , v — u) — L(v — u) 0 pour tout v e K(u)

où

i=1

	

i*j=1

	

i= 1

n

K(u) = JJ K i( u i )
i =

= {

	

v n)I pour tout i, (u l ,
(1 .20)

,un)EK{ ., ui- 1 , ui+ l, .

On voit ainsi que (1 .11)" n 'est pas une inéquation variationnelle classique e t
pose en fait des problèmes d 'un type nouveau .

Remarque 1 .3 . Considérons le cas où K i = , alors pour que J i(v i ) atteigne
son minimum, il est nécessaire que a ii(v i , v i ) >_ 0 pour tout v i . De sorte que l'on
peut énoncer le corollaire suivant .

COROLLAIRE 1 .1 . Sous les hypothèses et notations du § 1 .1, la C.N.S . pour que le s
fonctionnelles J i (v) possèdent un point de Nash sur tout l 'espace est que

(1 .21 )

et qu ' il existe u 1 ,

n

pour tout v i e qiia i(v i , v i ) >_ 0

, u n tel qu e

n

	

n

E a i( u i, v i) +

	

b ij( u j , v i) = E Li(v i )
i=1

	

i*j= 1

	

i= 1

Le point de Nash est unique si et seulement si la solution de (1 .22) est unique.
COROLLAIRE 1 .2 . Si (1 .15) et (1 .21) sont vérifiées, il résulte du Théorème de

Lax-Milgram (cas particulier du Théorème de Lions Stampacchia) (cf ., par example,
Yosida [8]) que les fonctionnelles J i(v) possèdent un point de Nash unique sur tout
l'espace .

(1 .22)

pour tout v i ,

i= 1,•••,n .
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2. Jeux différentiels à N personnes en boucle ouverte .

2 .1 . Données—Notations . Soit un espace de Hilbert . Considérons sur Ye
un opérateur non borné A, dont le domaine D(A) est dense dans Je. On muni t
D(A) de la norme du graphe, c'est-à-dir e

(2.1)

	

II9IIL( A ) = II{PM .r + II A9II ;

et on suppose

A est un isomorphisme de f dans D(A )

et (AT, (P) >_ 0 pour tout pP e D(A) .

On considère alors un système décrit par l 'équation

n

Ay = f + E Bivi ,i= 1

où v i e ~i (espaces de Hilbert) e t

(2 .4)

	

f e i, B 1 E 201 1 ; i), . . . , Bn e (1n
;

	

) .

On se donne ensuite les fonctionnelles

	

n

	

n

(2 .5)

	

J i( v ) = E a i ; II M ;Y II a + E f3i;(N;vi , v i ),

	

i = 1 , . . . , n

	

j=

	

j =

où les ; et /3i; sont des coefficients réels e t

M i e a.i9( ; F), F espace de Hilbert ,
(2 .6)

Ni e 1t(~; ; olt;) autoadjoint

	

0 et inversible .

On pose ensuit e

(2.7)
n

R i = E a ilM*M i .
1 =

Les R i sont symétriques (mais pas forcément �.0) . Un calcul rapide simple
montre alors que l'on a :

aii(vi v i) = /3 ii (N i v i , v~) + (RiA
1 Bivi , A 1 Bivi) ,

(2.8)

	

b i, k(v;, Vk ) _ ( R iA -1 Biv;, A-1B kvk ),

	

j > k ,
Li;(vj) = —(Riÿ, A -1Bpi) .

Le problème consiste à trouver un point de Nash dans tout l 'espace, pour les
fonctionnelles Ji(v) (problème dit en "boucle ouverte" par analogie avec le contrôl e
optimal) .

2 .2. Condition nécessaire et suffisante d'existence d'un point de Nash en boucle
ouverte . On peut appliquer le Corollaire 1 .1 . La condition (1 .21) donne aussitôt :

(2 .9)

	

/3ii(N iv i , v i) + (R i A -1B i v i , A — 1 B i v i ) >= 0 pour tout v i , pour tout i,
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et (1 .22) donne

n
((~~E N ii(Niui , vi) + (R i A 'Bu, A 1 B i vi )

i=
n

	

n

+ E (R iyj(u), .yi(v i)) = - E ( R iy , y i( v i)) , 1
i � j =1

	

i= 1

ce qui s'écrit encore

	

n

	

n

E flii(Niui , v i) + E (Riy(u), A -1B i v i) = 0

	

i=

	

i=

pour tout v 1 , • , V n .

On introduit alors pi e D(A*) solution d e

(2 .12)

	

A*p i = Riy(u)

On déduit aussitôt de (2 .11) que s i

(2 .13 )

alors on obtient

U
t
= Nl 1 Bi* pi

de sorte que l'on obtient le théorème suivant .
THÉORÈME 2 .1 . Sous les hypothèses et notations de § 2 .1, une C .N.S . d 'existence

de points de Nash pour les fonctionnelles J i(v) est que

(2 .15) fii(N i v i, v i) + (R i A -1Biv i , A -1 B i v i) >= 0 pour tout vi ,

	

i = 1 , . . . , n ,

et qu'il existe y, p l , • • • , Pn solutions du système

n B .NT 1 B*

	

Ay + E

	

pi = f,

	

i=

	

p ii

(2 .16)

	

A*pi=Riy,

	

i = 1 , . . . , n ,

y e D(A), p i e D(A*) .

Il y a unicité si et seulement si la solution de (2 .16) est unique .
COROLLAIRE 2.1 . Une C.N.S . pour que les fonctionnelles J i (v) admettent u n

point de Nash unique est que (2 .15) soit vérifiée et qu e

n BiNi 1B * * — 1(2 .17)

	

X = A + E	 A Ri
i =

soit un isomorphisme de D(A) –~
Démonstration . En effet, l'existence d 'une solution unique de (2 .16) es t

équivalente au fait que X est un isomorphisme de D(A) –~

	

(puisque f esteYe
quelconque) .

1 Où on a posé y j(v j) = A- 1 B jvj .

(2 .10 )

(2 .11)

# 0 ,

(2 .14)
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Donnons maintenant deux conditions suffisantes pour que X soit un iso-
morphisme de D(A) --~ Je:

PROPOSITION 2.1 . Si l'une ou l 'autre des conditions suivantes est satisfaite :

n

	

n

E

	

u i) +

	

(R i A T 1B i u i , A 1Bjuj)
i—1

	

i,j = 1

n

a E ( j ui Il 2 pour tout ui, . . , u n ,

=

ou bie n

R i = S i T où Te ~(~ Yt'), T 0 autoadjoint S i h E D(A*) si h e D(A *) ,

(2 .19)
Si e Y(Yf, Yt) ,

et
A*S i = S i A * ,

n
BiNi 1 B*

.
i = 1

alors X est un isomorphisme de Je dans D(A) .
Démonstration. Si la condition (2.18) est satisfaite, on vérifie par un calcul simpl e

que la condition (1 .15) est satisfaite et donc d'après le théorème de Lions e t
Stampacchia (cf. § 1 .3), il existe un point de Nash unique pour les fonctionnelle s
Ji(v), ce qui d 'après le Corollaire 2 .1, implique bien que X est un isomorphism e
de D(A) dans Je:

Par ailleurs si les conditions (2 .19) sont vérifiées, alors on remarque aussitô t
que l'on a

	

(2.20)

	

A* -1S i = S iA* -1 ,

de sorte que le système (2 .16) s'écrit

n BiNi 1 13
Ay+ E	 p i = f,

i= 1

	

(2.21)

	

Api = S i Ty,

	

i = 1, • • • , n

yED ( A), pi e D(A*) .

Tenant compte de (2 .20), la deuxième relation (2 .21) s'écrir a

p i = S i A* -1 Ty .

On peut donc poser p = A* ' Ty et (2 .21) conduit au système en (y, p) :

n B`N`
1 B*S

A

	

l
=Y +

E	
p .Î

,
i =

A* = Ty ,

y e D(A), p e D(A *) .

(2.18 )

(2 .22 )

(2 .23)
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Posons
n BiNi 1 B*S l

(2 .24)
i =

Alors T 0 et g 0 impliquent que (2.23) est le système des équation s
d 'Euler du problème de contrôle optimal suivant : Le système est gouverné par
l 'equation

	

(2 .25)

	

A : = f + g1/2v

et le critère est

	

(2 .26)

	

J(v) = (Tz, z) + 1 1 v 1 1 2 .

Par conséquent (2.23) possède une solution unique, ce qui implique bie n
que (2 .16) possède une solution unique, d ' où le résultat .

Prenons un exemple . Le modèle est le suivant : L 'équation d'état est donné e
par (2 .3) . On a ensuite :

-0 si j

= Ei = ± 1 ,

= 1 ,

Ni = E iEj si iO J ,

M; =M .

Par conséquent on obtien t

	

(2 .28)

	

R i = E .M*M

et donc, on peut prendre S i = Eil . Si donc

n

	

(2 .29)

	

E EiBiNi 1Bi > 0
i= 1

il résulte de la Proposition 2 .1 et du Théorème 2 .1 que s i

	

(2 .30)

	

Ni + E i B* A -1 *M* MA -1B i >_ 0

et (2.29) sont vérifiées, alors les fonctionnelles Ji(v) admettent un point de Nash .
Le problème ainsi traité se reformule aisèment de la manière suivante :

n

. . . min . . . max . . . J(v) = 11 My II 2 + E E i(N i vi , v i ) .
vi(Ei=+1) vi(E.1- -1 )

	

i =

En particulier pour n = 2, on retrouve le classique problème du minima x
pour les jeux différentiels en boucle ouverte (cf. Lemaire [3], Bensoussan [1]) .

2 .3 . Découplage . On introduit les systèmes d 'équations (du type Riccati)
n

	

(2 .31)

	

PiA+A*Pi+Pi
1

B;NT 1 B*P;= i ,

	

= 1,••,n .
i= 1

	

Pu

Nous allons supposer ici que ce système possède une solution . Donnons un cas où
cette condition sera satisfaite .

(2 .27)
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PROPOSITION 2 .2 . Si l'hypothèse (2.19) est satisfaite, alors le système (2 .31 )
possède une solution donnée pa r

	

(2 .32)

	

P= SiP
fii i

où P est la solution unique de l'équation de Riccat i

*

	

n
B;1Vj1B*S;

	

(2 .33)

	

PA+A P+P E	 P= T.
J=

	

Njj

Démonstration . Le fait que (2 .33) possède une solution unique e £(* *)
résulte de la théorie du découplage (Lions [4], [5]) .

On déduit alors de (2 .33) ,

S i PA S i A*P S .P n B;NJ
1

B* S
;P Si

	

(2 .34)

	

+

	

+	 	 = T
j= 1

	

#jj

et tenant compte de (2 .19) on obtien t

SiPA
+

A*SiP
+

S iP n B;NJ 1 B*SjP
_

R i
(2 .35)

Nii
.

Il est alors évident que Pi = SiP/f ii est solution de (2 .31) .
On a ensuite la proposition suivante .
PROPOSITION 2 .3 . Lorsque (2 .31) possède une solution, alors l 'ensemble (y, p i )

solution de (2 .21) satisfait aux relations

Pi = (PiY +

	

,

où les p i sont solutions des équations

n

(2 .37)

	

A*Pi+ Pi E BjNa 1 B~ p ; =Pi f,

	

i— 1, . . .,n .
; =

Démonstration . On définit p i à l'aide des relations (2 .36) . On obtient ensuite

A*P i

	

--=
A

*pi A*P.i Y
i-*i i

= R iY _ A*Pt Y

n

= Pi Ay + Pi E B;N~ 1 B*P;y .
i= l

Or de la première relation (2 .21) on dédui t

n

	

n

(2.39)

	

Ay + E B iNi-1B*PiY + E B i Ni 'Mc p i = f
i

	

i

de sorte que (2.38) conduit aussitôt à (2 .37) .
COROLLAIRE 2 .2 . Si le système (2.31) possède une solution, et si la C.N.S.

d ' existence d'un point de Nash unique (cf. Théorème 2 .1) est satisfaite, alors celui-c i

(2 .36 )

(2 .38)



470

	

A . BENSOUSSA N

est donné par la formul e

	

(2 .40)

	

u = — Ni 1B * p i y — Ni
1 B

*p i ,

	

i — 1,— . , n .

Remarque 2 .1 . Posons

	

(2 .41)

	

1*(y) = —Ni- 1B*Pi y — N i 1B *p i ,

i .e., Y*(y) est la fonction affine de y définie par (2 .41) . Alors (2 .40) montre que
u i = f*(y), pour y solution de (2 .16) . On exprime ce fait en disant que les contrôle s
u i sont obtenus par l'intermédiaire d 'un feedback (ou stratégie) . Ceci ne prouve
pas que les stratégies 2* constituent un point de Nash dans l'ensemble de s
stratégies, problème que nous allons examiner maintenant .

3 . Jeux différentiels à N personnes en boucle fermée .

3.1 . Le problème. On considère des applications Yi , i = 1, • • • , n de
--> A . On dira que ' = 2i(z) est une stratégie pour le joueur n° i . Les joueur s

peuvent choisir leurs stratégies avec la seule restriction que l'équation
n

Az = f + E BiX(Z)
i =

possède une solution unique .
On introduit alors les fonctionnelles i( Y1, Y2, • • • , 2n) définies pa r

(3 .2)

	

i9(271,222,
. . . , -rn) = Ji('1(z), Y2(z), . . . , -rn(z ) )

où z est solution de (3 .1) .
Le problème consiste à trouver un point de Nash pour les fonctionnelle s

e-i ,, c'est-à-dire des stratégies 2(y) telles qu e

. .

	

n) Ç oei(~1 , . .

	

— 1 , i , i + 1

	

~n )

(3 .3)

		

pour toute stratégie Yi .

On dira aussi que (3 .3) consiste à chercher un point de Nash en boucle fermée .

3 .2. Point de Nash en boucle formée .
On introduit les systèmes d 'equations de Riccati

(A* + E QÎBÎNT 1B* Q i + Q* A + E BÎN7 1B*QÎ + Q?'B iN i 1B*Qi
Î � i

R i

	

NJQ*BÎNÎ 1 BÎQÎ+ E

	

i= 1,— . ,n ,
Î * i

et on fait l'hypothèse que ce système d'équations possède une solution . On définit
ensuite les cri e D(A*) solutions du système d'équations :

n

A* 71

	

* B •N- 1 B* a i =

	

~-

	

(fluiQÎ
— * B jN- 1 B*6 • •(3 .5)

	

l+ E Q j ~ ~

	

~

	

q l f

	

E

	

Q l

	

.% .%
j=1

	

;� i

	

fil i
On suppose que les équations (3 .5) possèdent une solution . On admet également
que l'équation

n

	

n
(3 .6)

	

Ay + E BÎN; 1 B*QÎy = f _ E BÎNÎ 1B*6Î
Î =

	

Î =
possède une solution unique y e D(A) .

(3 .1)
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On se restreint enfin aux /iii > 0 .
On a alors le théorème suivant .
THÉORÈME 3 .1 . Sous les hypothèses que (3 .4), (3 .5) possèdent des solutions, qu e

(3 .6) possède une solution unique et que Nii > 0, il existe un point de Nash en boucle
fermée unique défini pa r

(3 .7)

	

~i(z) = —Ni iB*Qiz — Ni- 1-Ma i .

Démonstration . Il s ' agit de démontrer la propriété (3 .3) . Cela revient à montrer
que Yi est solution du problème de contrôle optimal en boucle fermée suivant :
le système est gouverné par l ' équation

(3 .8)

	

Az + E B;N j 1 B*Q jz = f — E B;N; i B* Uj + B i2i(z ) ,
j*i

	

j * i

où Yi(z) est une application de

	

telle que (3 .8) possède une solution uniquece'

et le critère est

Ji(Yi) = (R i z , z) + fii(Ni2(z ), £(z)) + E flij

(3 .9)

	

j # i

• (Nj(—Ni 1 Qjz — N1 1 B*a j), —N; 1 B*Qjz - NJ 1 B7ai) .

A toute stratégie Yi est associée la fonction w i (z) définie par la formul e

(3 .10)

	

wi(z) = Yi(z) + Ni 1 B*Qiz + Ni 1 B ai .

Puisque l'èquation (3 .8) possède une solution unique, la fonction wi a donc la
propriété que l'équation

	

n

	

n

(3 .11)

	

Az + E BjN; iB*Qjz = f— E BjN.T iBÎQj + Bi wi(z)

	

j=

	

;= i

possède une solution unique .
Notons que Yi est une stratégie puisque (3 .6) possède une solution unique .

A 2i correspond la fonction w i = O. Enfin si on pose

	

(3 .12)

	

z=y+z,

alors de (3 .6) et (3 .11) résulte aussitôt

	

(3 .13)

	

M + E B;Ni IBNQ ji = Biwi(z) .
j= 1

En utilisant (3 .10), on transforme (3 .9) de la manière suivante :

J i(X) = J i(wi) = (Riz , z) + Nii(Ni(w i — N i iB#Qiz ~ N i iB ik6i) ~

wi - Ni

iBNiz —

Ni 1Bto- i )

+ E

	

+ Bla3 , Nj iB*Q;z + N; 1 Bl6J)

(3 .14)

	

'$ i

n

+ E fl ii( B*Qjz +

	

Ni iB*Q;z + Ni i B*o-j )

=

= (Riz, z) + Nii(Niwi , wi)

Z13 ii(w i 9 Bt'`Qlz + Bra i ) .
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Par ailleurs, en utilisant (3 .12) on obtient encor e

Ji(wi) = ( R iE, 5) + &(N i wi, wi)

+ (R iy, y) + 2(R iy, 2)

n

+ E Nid{B~ jy + Bj a;, Ni'BIQjy + N T - 'Mai )
=
n

+ E Qiz , Ni 1B; QA
i=

n

+ 2 E j(BIQ Ni 1 B*Q;y + Ni 'Mai)
i=

— 2flii( w i, B;'Qiy + Brai)

— 2flii( w i, BtQA .

On a ensuite, d'après (3 .13)

n

(3 .16)

	

(B i w i , Q i i) (Q1M + E BiNi '
J= 1

On remarque que les èquations (3 .4) peuvent encore s 'écrire

n n

(A* + E M1Ni BT) Qi + Qr( A + E B.N.. 1Bl
=

	

J =

R i

	

"

	

Q.7 BiNi'BîQi
= + fl u

p ii

	

J .

Donc (3 .16) donne

n R *

	

B* Q j ,~

(B i w i , Qii)

	

N

	

+ E	 jQjB iNi '
R .

1i

	

= 1

	

~i i

(3 .15 )

(3 .4')

— A*Q i2'
n

E Q113 iNi l B siT i2'

J= 1

(3 .17)

n

(Rig , 2) +

	

2 E I3 ifQ7 8j'J iBIQ !
1

	

1

d'où

(3 .18)

n

—

	

(Ai, Q i 2) — ( E B;NJ 1 Bj~ Q jZ ~ Q ii)

J =

1

	

1
(Ri

n

i , + , 2', E ~iJQ;BjNi BIQi2'
Pii

	

Pii

	

J .
—(Qi 2 , B i w i) ,

2fl i i(Q , B i z i ) (R i z, 2) +

	

E NIBiNj Bic Qii) .
=1
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Par ailleurs on a

(B i w i, QlY) + ( B i wi, 6 i)

n n

(3 .19)

	

= (QY , A~ +E B.A.T 1 B*Q;2+ (ai , Az" +E B;N; 1 B*Q ;i
j=

	

j =

( 2 , ( A*Qi +E Q*B jN; 1B*Qi Y
=

n

+ (2, A* Qi + E Q*B;N; 'Mai) .
;=

Ni;Q* B;N;1 B* Qj
Y

=

	

N i i
n

E B;N; 1B *Q ; Y
=

+ (2 , Qi
*
f ) +

N
n NijQ*BjNj

1B
*a,1

Z ~ i
J= 1

n

— (2, E QtB;Ni 1 B* 6; ,
; = 1

Et tenant compte de (3 .6) il vient encore

( Bi wi, QiY + 6 i) =
1 ~

R iY) +
E , nE fl i jQ*BjNj 1B* Q j( z ~

	

Y
f3 ii

	

J . 1

	

fl u

(Q1 , f —

	

B;N; 'Mai)
j — 1

+ (2, Qi
*
f ) + 2 , i ~ijQ* B jN;Bj6j )

j =
n

— z, E Q*B 1 B* .
j= 1

Soit
n

(3 .22)

	

QiY + 6 i) = 2(2, RiY) + 2 Z, E fl i jQ*B jN; 1 B*(Qjy + Q') .

=

En utilisant (3 .18) et (3 .22), l 'expression (3 .15) donne

jJ i( wi) = Ji(~) + flii(N i wi, w i) •

Comme f3 ii > 0, on a donc

(3 .24)

Ce qui signifie

n

En utilisant (3 .4') et (3 .5) on obtient

( B i wi QiY + a i) =

	

+ (2 ,

(2, Q* A

(3 .20 )

(3 .21 )

(3 .23)

Ji(wi) ? J i( 0 ) •

ii(Yi)

	

J i(Yi)
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pour toute stratégie Yi . D 'autre part

J i(w i) = J i (0) implique w i (z) = 0

soit z = y en raison de l 'unicité de la solution de (3 .6) . Pui s

(3 .25)

	

Yi(y) = ~i(y) . 2

Remarque 3 .1 . Il est intéressant de noter que Yi est différent de Y*. Vérifions
cependant que dans le cas de l ' exemple (2.27), il y a coïncidence entre Q i et Pi .
En effet, d 'après la Proposition 2.2, on a

Pi = E i P,

où P est solution de
n

(3 .26)

	

PA + A*P + P E E ;B;Ni
1 B*P = M*M.

; =
L'equation (3 .4') s'écrit

(A* + E Q;B;N;
1 B* Qi + Q* A -I- E BjN ; 1 B~Q ;

j =

	

j =

n

= EiM*M + E E iE;Q*B;Ni 1 B*Q; .

j= 1

Vérifions que £i P est solution de (3 .27) . En effet, on doit avoi r

	

n

	

n

(A* + E e PB;Ni 1 B* e P + EiP A + E e B;N7 1 B,*P

	

j=

	

; =

n

= e M* M+ E eie;PB;Ni 1 B*P ,
=

ce qui est évidemment vérifié grâce à (3 .26) .
On a ensuite p i = ai . En effet p i = eip, où p est solution d e

n

(3 .28)

		

A*p + P E c;B;N~ 1 B; p =

	

Pf.
;=

Or ai est solution de (cf. (3 .5))
n

(3 .29)

	

A * 6 i + P E E;B;N
;

1B*6i = iPf,
;=

d'où

	

= Eip .
Par conséquent dans ce cas

	

= 2*, mais il n'y a pas égalité en général .

4 . Etude du cas parabolique .

4 .1 . Notations . Le système que l'on considère est le suivant : soient V et H
deux espaces de Hilbert avec

(4 .1 )

2 Théoriquement Yi peut-être différent de S mais coïncide avec . au point y . Par conséquen t
Yi ne peut être distinguée de Yi, puisqu 'elles conduisent au même état et au même contrôle . On peut
dire que £f est équivalent à ~i . Il y a donc unicité à une équivalence près .

n

	

n

(3 .27)

V c H
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V dense dans H et injection compacte . On identifie H et son dual et on note V'
le dual de V. Alors

(4.2)

	

VcHcV' .

Chaque espace étant dense dans le suivant, avec injection continue . Soit t e [0, T] .
On se donne une famille A(t) e L°°(0, T, 2(V, V')) et vérifiant : p .p . D(A(t)) D D

dense dans H,

	

il existe

	

? 0 tel que <A(t)z, z> + 21z1 2 > a 114

a > 0, pour tout z E V, p .p . t .

On considère alors le système décrit par l 'équation d'évolution :

d y

	

n
+ A(t)y = f ( t ) +

	

B i(t)v i( t ) ,
dt

	

i= ~
(4 .4)

y (0) =y o EH ,
où

f E L 2 (0, T, H), B i e L°°(0, T,

	

, H))
(4 .5)

v i (t) le contrôle e L
2
(0, T, moi) .

Les fonctionnelles de Coût sont définies par les formules : 4

	

T

	

n

	

T

(4 .6)

	

J i (v) =

	

(Ri(t)y(t), y(t)) dt +

	

)640 (N;(t)v ;(t), v;(t)) dt ,

	

o

	

;=1 Jo

où R i(t) E L°°(0, T,

	

H)), symétrique (mais pas forcément >= 0) . Les Ni(t)
E L (0 , T,

	

, ;)) et sont autoadjoints, définis >0 et inversibles (pour presqu e
tout t) . On prendra

(4 .7)

	

fii( t ) = 1 .

4 .2 . Point de Nash en boucle fermée . On considère le problème de la recherche
d'un point de Nash pour les fonctionnelles J i (v) . L'analogue des équations (3 .4) ,
(3 .5), (3 .6) devient ici

d

	

*t
dcp

—

	

A

	

Bi(t)Ni- ( t

	

(Qi(p) + Qi ()
dt+

(t)9 +

	

()B *J ( t )Qj( t )~
dt

	

i# i

	

+ ( A* ( t ) +

	

Q; (t)B ;( t ) N; 1(t)B;`(t))Qi(t)ç(t )
;� i

+ Q*( t)B i( t )Ni 1(t)B*(t)Qi(t)9(t )

= Ri(t )9 +

	

fii ;Q*(t)B;(t)N; 1 ( t )B;(t)Q;(t)9(t)
ii i

pour tout 9 e W = 9 e L 2 (0, T, V )

Qi( T) = 0 ,

3 <, > désigne la dualité V, V ' , • désigne la norme dans H et Il • II désigne la norme dans V. On not e
W(0, T) = {q, e L 2 (0, T, V) I dçp/dt e L 2 (0, T, H)} .

4 Où v désigne le vecteur v 1(), • • • , v„( ).

d9
+ A ( t)EL2 (0 T H

dt

	

~P

	

~

	

~

	

) ~
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da ~ •

	

n	 t + (A*(t) + E Q*(t)Bi(t)Ni 1(t)B*(t) 6 1
dt

	

,

;$ i

ai(T) = 0 ,

6i e L 2 (T, 0 ; V) ,

dt

n
y + A(t) + E Bi(t)Ni 1 (t)BT (t)Q ;(t) y

,

S
n

= f ( t )

	

L, -

	

Bj(t)Nj 1(t)BT ( t )6 ;( t) ,
j= 1

Y(0) = Y o

y e L 2 (0, T; V) .

On peut alors obtenir un analogue du Théorème 3 .1 .
THÉORÈME 4 .1 . Sous l 'hypothèse que les équations de Riccati (4 .8) possèden t

une solution et Q i e L°°(0, T, 2(H, H)) il existe un point de Nash unique en boucle
fermée pour les fonctionnelles J i définies en (4 .6) .

Démonstration . Tout d 'abord le système (4 .9) possède une solution unique .
On peut en effet le réécrire sous forme vectorielle en posan t

16, E

= Q*( t)f (t) + E (fli ;( t )QT (t) — Q*(t))B;(t)N; 1 (t)BT(t)ai(t) ,

(4 .10 )

(4.11)

	

a =

un 1

puis A(t) e 2(V, V') defini par

, H= H n , V = V n , v'= V' n ,

1 A(t)61 1

(4 .12)

	

A(t)a =

` A(t)6„ i

Q*(t) E

	

H) défini par

n

	

n
(4 .13)

	

Q(t)a = E QTB;Nj iB T6i + E (Q* — fii;QT)B ;N; 1 BT 6j
j= 1

	

jo i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

\	

I Q 1f1

f(t) =

,Qnf
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Alors (4 .9) peut s'écrire

da—

	

+ (A*(t) + * (t ))a = f
dt

	

Q

	

~

a(T)=0 .

On vérifie aisément que l 'on peut appliquer à (4 .14) la théorie générale de s
équations différentielles opérationnelles de Lions [4], d'où existence et unicité d e
a e L 2 (0, T ; V) (donc da/dt e L 2 (0, T; V'), ce qui implique a e c ([0, T] ; H) .

Il en résulte aussitôt que l 'équation (4 .10) possède une solution unique . Le
reste de la démonstration se fait comme pour le Théorème 3 .1 .

4 .3 . Etude des équations de Riccati .
Orientation . Pour les points de Nash en boucle ouverte, un moyen de justifie r

les équations de Riccati que l'on trouve (cf. (2 .31)) est d'utiliser la méthodologie
du découplage mise au point par J . L . Lions [4] dans le cas du contrôle optimal .
Cela suppose que soit satisfaite la C.N.S. d 'existence du point de Nash (cf . Théorème
2 .1) .

Par contre, pour les points de Nash en boucle fermée, il est indispensable d e
pouvoir étudier directement les équations de Riccati (4 .8) . Nous connaissons
déjà un cas où les équations (4 .8) possèdent une solution, c ' est le cas de l 'exempl e
(2 .27) (cf. Remarque 3 .1) . Dans ce cas, la solution "boucle ouverte découplée"
et la solution "boucle fermée " coïncident (mais cela suppose que soit satisfait e
la condition (2.29)) .

On va s ' intéresser maintenant à un autre cas où on peut étudier directemen t
les équations (4 .8), ce qui prouvera l'existence d ' un point de Nash en boucle fermée ,
sans pour autant qu 'il existe un point de Nash en boucle ouverte .

4.3.1 . Hypothèses—Enoncé du Théorème . On prend

	

(4 .15)

	

R i >__ 0 pour tout i ,

	

(4 .16)

	

f3 i

	

0 si j

	

i .

On a alors le théorème suivant .
THÉORÈME 4 .2 . Si (4 .15) et (4 .16) sont satisfaites, alors il existe pour T assez

petit une solution pour les équations (4 .8) vérifiant :

Q i E L°°(0, T, 1(H, H)) ,

	

(4 .17)

	

Q*(t) = Qi( t) p .p . ,

Qi( t) > 0 ,

si

	

e L 2 0 T ; V d~ + A(t) e L 2 0 T; H), alor s

(4 .18)

Remarque 4.1 . Les conditions (4.17) et (4 .18) font que l'équation (4 .8) a un
sens, p.p . t en tant qu'égalité de deux éléments de V' .

(4 .14)

	

E L 2 (0, T~ V),	 e L 2 (0 T• V') .Ql~

	

, T ; )~

	

dt

	

, T ;
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4 .3 .2 . Démonstration du Théorème 4 .2. On généralise tres légèrement e n
introduisant une condition initiale . On se place sur un intervalle (To, Ti) (au lieu
de (0, T)) . On pose 1 = Tl — To , et on se donn e

(4 .19)

	

Q i (T1 ) = Q i e 2(H ; H) autoadjoint >= 0 .

On va déterminer une borne supérieure de 1 au dessous de laquelle le théorèm e
d'existence est vérifié .

On construit alors une suite d'approximations de Q i par le procédé suivant :
On part de Q°(t) = Q i et on définit C'1 en fonction de Qk par l'équation de
Riccati :

d— (Qi
k+1 + k+1 d(p + Ago + E B1

	

J

N
J

-l B*Q
J
k (p

dt

	

d t

(4.20)

	

+ A* +E Q.';BjNi l B~ Qk + l + Qk + 1 B1N1 lB*Qk + l~ = R i go
j� i

J � i

d~p
pour tout çp e L 2(To, T1 ; V) + A(t)cP e L 2 (To, T1 ; H) ,

dt

Qk+
1 (T1) = Q i

En effet (4 .20) est une équation de Riccati de type classique (où A est chang é
en A + Ei� i B iN i- 'MO . Elle définit Qk + 1 de manière unique vérifiant (4 .17 )

(sur (To , Ti )) . Par ailleurs (4.8) est liée à la solution du problème de contrôl e
optimal suivant :

Le système est régi par

dz
+ A + E BJN7 l B~ Q~ z = B iv i ,

(4 .21)
z(s) = h E H, se [To, Ti ] ,

et le critère est donné pa r

T 1

	

T i

(4.22)

	

Jk(s , h , v i) =

	

(R iz, z) dt +

	

(N iv i, v i) dt + (Qiz(Ti), z (T1)) •

s

	

s

Alors l'équation d'Euler correspondant à la minimisation de (4 .22) conduit au
système d'équations :

k+ 1

d~	 + A + E B •N-1B1
Q

* k
(l

1 + B N — 'B* k+ 1 = 0,
J

	

1

	

J

	

l

	

l

	

l 7' l
dt

	

j� i

tE]s,T1 [ ,

dk+
(4 .23)

	

—	 + A* + E Q,B

	

1Ac

	

— R i(pk + 1 = 0
,

dt

tP
k+ 1 (Tl) = Qi~k+

1(Tl) ~

cp k
+1 (s)=h ,

dt

	

joi
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et on a

(4 .24)

	

,/,k + 1( s) = QI; + 1( s )h ,

ce qui définit les opérateurs Q ' (s )1 (s) en tout point s . Plus généralement si on con -
sidère le système :

k+1
+ A + E B N 1B*Qk (3~1 + BN-1 B*

J J

	

1 Ni

	

I I

	

IY
+1

	

g l udt

	

j� i

(4 .25)
d

Y
k+ 1

+ A* + E Q'BjN~ 1 B ~
k+ 1

Yi

	

— Ri~i
k+ 1

dt
g 2 ,

Yk+ 1 (Tl) = QiNk + 1 ( T1) ,

fi'r'(s) = h ,

alors on a

(4 .26)

	

Yk '(t) = Qk + 1( t)~k + 1( t) + r k + 1 (t) pour tout t e [s, T1 ] ,

où rk +
1 (t) est solution de

(pour les détails, cf. J . L. Lions [4]) .
On a alors le lemme suivant .
LEMME 4 .1 . On peut trouver un nombre K > 0 tel qu e

	

(4 .28)

	

Il Qk( t) II .z(H,H)

	

K

	

Il Qk + 1 ( t ) IIy(H,H) < K p . p .t ,

le nombre K étant indépendant de k et i .
Démonstration . Un calcul classique (cf. J . L. Lions [4]) montre que l ' on a

	

(4 .29)

	

inf Jk(s , h , v i) = (Qk + 1 (s)h, h) .
V {

Par conséquent si on considère l ' équation

+ (A E BJN- 1 BQJ = 0J

	

J

	

J

	

'dt

	

J$i

T 1

(4 .31)

	

(Q k + 1 ( s ) h , h) < Jk(s , h, o) =

	

( R i~ ~ ) dt + (Qi~(Ti) ~ ~( Ti)) •
S

Posons

II Bill2

	

.

	

>C, = E	 (ou Ni = v i l) ,
;

	

vi

(4 .32)

	

C 2 = max IIR i II ,

C3 = IlQill •

(4 .27)

+ A* + E V; B;N; 1 B* + Qk + 1 B I N_ 1B* rk + 1 = g 2 + Qk+ 1g1
,

rk+ 1(T1) = 0

drk +
l
dt ; � i

(4 .30)
(s) = h ,

alors on a
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Soit 0 un nombre à déterminer . Introduison s

(4 .33)

	

C(t) = e-et ( t)

de sorte que C est solution de l'equation

d
— + A +e1 + E B;N; 1 B*Q; ~-0 ,
dt

	

j # i
(4 .34)

C (s) = h e- es .

Posons

(4.35)

	

Œ=a 1 +a 2 .

On déduit de (4.35) la classique égalité de l'énergi e

T 1

	

T i

	

{ C( Ti)1 2 +

	

< A C , C> dt + 9

	

ICl 2 d t
s

	

s

T 1

+

	

C, E BjN~ 1 B*Q~~ dt = e- 2es{hI2
,

	

s

	

j* i

d'où on déduit si 1101

	

K ,

	

T 1

	

T 1
(4 .37)

	

{C(Ti){ 2 + a l

	

g II 2 dt + (a 2 + 8 — KC 1 )

	

{Cl 2 dt < e -2es IhI 2

s

Posons

(4 .38)

	

E=a 2 +8—KC,, £' =KC, ,

et on impose comme première contrainte g > 0, g ' > 0. On déduit de (4.37) ,

— 20 s

(4 .39)

	

{ C {2
dt < e	 I h { 2 ,

	

{~(Ti) {2
� e -2es {hI 2

s

	

£

J T 1

Mais alors (4 .31) donne

Ĥ
T 1

(Qk
+ 1(s)h, h) < C 2

	

e29tI~I2 dt + C3 e2eT l
{C( T1 ){ 2

s

-29s

+ <max ( e2OT 0, e 2eT 1
)

C2e -20s

	

e—

	

I
2es h

I

2

E

—< max e2eTo e2eT1 max e - 20T °, e- 2°T1 C2 + C
(

	

,

	

)

	

(

	

,

	

)

	

3 lie
E

(C2 + C
3

e 2 IeI ( T 1— To)
I
h

I
2

.

E

(4.36)

(4 .40 )

Par conséquent, grâce au fait que Qk+ 1 (s) est 0 autoadj oint ou déduit de (4 .40)

(4 .41)

	

11Q+1(s)II <
2C

E
+ C 3 e

2IEF'-a2h1 .
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Il s 'agit donc de montrer que l 'estimation (4 .41) peut être rendue K . Autremen t
dit, il faut montrer que l'on peut trouver r, r' > 0 et 1 (qui est à notre disposition)
tels que l'on ait :

C l ( —C2 + C e21E
+E' -a21 1 < ~/

E

	

3

	

= 6 .

Posons
e'

x = —, x > 0 arbitraire ,
r

et choisissons r de façon que

	

(4 .43)

	

E 2 x — rC 1 C 3 — C 1 C 2 > O .

Il suffit de choisir r > racine positive de l'équation du second degré (4 .43) . Ayant
ainsi choisi r, on choisit a 2 , tel que

	

(4 .44)

	

0 < a 2 < min (a, r(1 + x)) .

Alors r + £' — a 2 > 0. On choisit ensuite l de façon qu e

1

	

r 2 x

	

(4.45)

	

0<1
< 2[e(1+x) —a log C 1 C2 + C 1 C 3 8 .

Grâce à (4 .43) l'argument du log est > 1 de sorte que (4 .45) est possible . Mais
alors, on voit immédiatement que (4 .41) est vérifiée. On remarque aussi que

~t)iI <

	

=C 3 < CIIQt(	 	 2 + C3 e2rE(l+x)-a21— E
—K .IlQi ll

	

E

	

- C 1

Ce qui achève la démonstration du Lemme 4 .1 .
Démontrons également le lemme suivant .
LEMME 4.2 . Pour

(4 .42)

(p e z L 2(To, Tl, V )
dz

+ Az e L2

	

H
dt

	

(To, 1~ )

la suite Q(t)(p(t) demeure dans un borné de

W ( To, T1) = {ZEL2(T0, T1 , V )

Démonstration . Considérons le système d'équations :

d (p + A(t )
+ E B (t)N- 1( t)B*Qk (p + B i Ni 1B*,/,k+ 1 — g k+ 1 i '

j� i
d,/,k+ 1
	 4~	 + A* + E Q,BjNi 1(t)B* tPk + 1 — Rl~ = 0

dt

	

j � i
(4 .46) 1

(Tl) = Qi(p (Tl) ,

pp ( To) = (p (To)

que l'on doit interpréter de la manière suivante : 9 est donné, on calcule ensuit e
tg + 1 en résolvant les deuxième et troisième équations (4 .46) . On définit ensuite

dz
E L Z T TI , V' .

dt

	

( o ~

	

)
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gk+ e L 2 (T0 , T1 , H) par la première équation (4.46) . En comparant (4 .46) et
(4 .25) on voit aussitôt que la formule (4 .42) s'applique, d'où

	

(4 .47)

	

0'(t) = rk
'(t)

+ Qk + 1 (t)(p(t) pour tout t E [T0 , T,] ,

où rk '(t) est solution d e

drk+
1

'
	 + A* +

	

Q jB JNj 1 B* + Qk + 1 BiNi 1 B* rk + 1

dt

	

j� i

	

(4 .48)

	

=
Q k+ 1 ( t )gk+ 1,i,

rk +1 (T1 ) = 0 .

Pour montrer que Qk+ 19 demeure dans un borné de W(T0 , Ti), il suffit d'aprè s
(4 .47) de montrer e'1 et rk

+ 1 demeurent effectivement dans des bornés de
W (T0 , Tl ) . On pose alors

	

(4 .49)

	

,j,k + 1(t) = e° t,l,k+ 1 (t)
,

où 8 a la même valeur que dans le Lemme 4.1 . Par conséquent t k
+

1 (t) est solutio n
de

d,%, + 1

—

	

+ A* + 01 + E «AN; 1 B* IT4 1 =
eetR i(p

dt

	

''# i
(4 .50)

t k+l
( Tl) = eeT 1 Qm ( Tl) •

On en déduit par intégration par parties ,

T 1
I
,j,k+

1 (T0)I 2 +

	

~ A*,I,k+ l~ ,j,k + l\ dtY'

	

To

T1

	

IT !(4. 51)

	

+ 8

	

+ 1
(t)1 2 dt +

	

Q~BjN~ 1 B*,j,k + 1 , ,%,k + 1 dtTo

	

To

	

4~

	

4~

J
T 1

	

_

= e20T 1 I
Qi

(p (T1)I 2 +

	

e0t (R i(p, ll/k + 1 ) dt ,
To

d'où
T 1

, I_,

	

T 1

a l

	

Il ~k+ 1 (01 2 dt + (a 2 + e — KC1)

	

I~k+
1

(t)1 2 d t
$To

	

To
1

e20T11
Qi(p(T,)I Z

+\/f
e2et

lR i(P1 2 dt

	

o

	

To

Tenant compte des valeurs (4 .38), (4 .45), on obtien t

T1 _

	

1 ST1
,I ,a l

	

101;+
1(t)112 dt + —

	

lek+
1 (1)1 2 dt

To

	

2l To

(4.53)

	

< e2T1(1 /l
-a2)C3I(p ( Ti) I

+ eT1(1/l-a2)C2

	

1912 dt

	

11 %ik+ 1 (t)I 2 dt ,
To

	

\IfTo `►'

(4 .52)

I~ k+1 ( t )1 2 dt .

2

T 1

	

T 1
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T 1

	

T 1

+ C 2 \if I(pI 2 dt 1 2 C2

	

l(pl2 dt + 21C 3I q)( Ti)I 2 •
To

	

T o

Mais (4 .49) donne puisque 0 > 0 ,

I II e +
1 ( t)IIv dt _

	

II tk+ 1
(t)IIV dt ,

To

	

To

T 1

	

T 1

ce qui avec (4 .55) montre bien que /ik + 1 demeure dans un borné de L 2 (To, T1 , V) .
La deuxième équation (4.46) donne alors, en tenant compte du Lemme 4 .1 ,

de'

dt

C2kp IH+ II A IIy ( V,v' ) II 0k + '11v + KC 1 I0+ 1 IH .

d'où il résult e

T 1

(4.54

e t

(4 .55)

To

T 1

al

	

_

II~k
+

1(t)II2 dt

	

e2Ti(1/l —a2)
C+ 1C'

	

kW dt
To

T 1

$T o

IWk+
1
(t)1 2 dt

	

eT 1(1/l
T 1

- « 2) fic, .\/f I~I 2 dt
To

T 1

+

	

12 C2

	

II ' dt + 21C 3I (p (Ti)I 2
To

(4 .56)

Ri~P
+ A*tg+ 1+E

Q,B,N~
1 B*,/,k+ 1

v , v '

Donc

T 1

	

dt < 3 C2

	

I cpI 2 dt + Il A I I 2
T o

	

1

	

T 1

	

+—

	

I~k+11H2 dt .~
To

2d k +

dt V '(4 .57)
N I; l Il 2 d t

ST o

T 1

Par conséquent dt/ik + 1 /dt demeure bien dans un borné de L 2 (To, T1 , V') et donc
0 k' demeure dans un borné de W(To , T1 ) . Par ailleurs de la première équation
(4 .46) on dédui t

	

S

T 1

	

f
Igk+1,il idt _< 3

	

To

	

o
(4 .58 )

et donc dk+ 1,i demeure dans un borné de L 2 (To, T1 , H) . Il en est de même pou r
e'(t)d'+ ,,i(t) puisque Il Qk + 1 (t) Il K. Par des calculs analogues à ceux faits
pour /ik + 1, on montre que r'i' + 1 appartient également à un borné de W(To , T,), ce
qui achève la démonstration du Lemme 4 .2.

4 .3 .3 . Propositions préliminaires. Avant de passer à l 'étude la différence
Ek = Qk + 1 = Qk , nous allons donner quelques résultats utiles concernant le s

chi)

dt
+ A(t)(P

2

	

T 1

dt + 3KC 1

	

(~pI 2 d t
H

	

T o

T 1
+ 3C 1

	

I0+1 1 2 dt
To
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équations de Riccati dont le second membre n'est pas défini positif. Ces résultat s
nous seront utiles par la suite .

Considérons le système (notations standard) :

âz
+sitz=Bv sur ]To ,

dt

	

O

	

o~ iC ~

z(To) = z o ,

et le critère

T 1

	

T 1

(4 .60)

	

J(v) =

	

(Nv, v) dt +

	

(Sz, z) dt .
To

	

T o

On suppose que S est symétrique mais non 0 et que d(t) E It(V, V ' ) vérifie :

(4 .61) il existe ) et /3 tels que <d(t)z, z> +

	

fi MM z MM 2 pour tout z e V.

On posera

(4 .62)

	

13= fis+13 2 •

En général il n'existe pas de contrôle optimal pour le problème (4 .59), (4 .60) .
11 est nécessaire et suffisant pour cela que la forme quadratique J(v) soit coercive.
Posons

(4.63)

	

z =+ i
ou

dz

-
+ s/ ( t) z = 0

dt

	

'

(4 .59)

2(To) = z o ,

d2

dt- +
si(t)z = Bv,

z( To) = O .

Alors on a

T 1

	

T 1

	

T 1

	

T 1

J(v) =

	

(Nv, v) dt +

	

(Sz, z) dt + 2

	

(Sz, z) dt +

	

(Sz, z) dt .
To

	

To

	

To

	

T o

Cherchons un minorant du terme de plus haut degré en v dans J(v) . Dans (4 .59 )
on fait le changement de fonctio n

d'où
~

dC

	

~
dt

+ (i + d ( t))~ = e 'Bv ,

'C(To) =0 ,
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et par intégration par parties (utilisant le fait qu e

T 1

	

T

	

T

	

T

<d(tg ,

	

d t ? ~ i

	

II ~ II
2 dt +

	

I C 1 2 dt — A J I C 1
z

dt)
To

	

To

	

To

on obtient

T 1

	

T 1

IC(T1)I 2 + (~1

	

11(11 2 + (fl2 + i — A )

	

I C 1 2 d t
To

	

T o

$T' (e ttBv,C)dt
To

T

	

Tç

	

IC(t)I 2 dt

	

e-- 2ti 1 BvI 2 dt .
To

	

T o

To

En posant

(4 .64)

on obtient

= #2+ 'r —A,

	

> 0 ,

T1

	

1

	

T 1
~

	

2tT 1

	

2
1~(t)I

2 dt

	

2 max
(e_ 2tTo

, e-

	

) II BII
2

	

IvI dt .
To

	

rl

	

T o

Par conséquent

T 1

	

T

J I(SZ , 2)1 dt < 11,5'11

	

e2trIC(t)12 d t
To

	

To

T _

~ S II max (e2tTo, e2tT1)

	

IC(t)I 2 dt ,
To

d'où finalement

	

S
T1

	

21~t) 11B112

	

T i1(S2 , 2 )1 dt

	

11S II e 	 	 2	 	 I t•I Z clt

Il en résulte si N >_ vi ,

	

To

	

T

f

T

1

	

T
IISII II B 11 2 e 2hit l

(Nv, v) dt +

	

(S2, 2) dt

	

v —

	

2

	

dt
o

	

To

	

T o

et donc on obtient la proposition suivante .
PROPOSITION 4 .1 . Si la condition

IISII	 IIB11 2 e 21lt l
p=v

	

2	 > 0
rl

est vérifiée, alors le problème (4 .59), (4 .60) possède une solution unique .

(4 .65 )

(4 .66)



alors on a (équations d'Euler analogues à (4.67)) :

d(p

dt
+ ,Q/(t)(p + BN -1 B* t/i = 0 ,
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On peut alors écrire les équations d'Euler relatives à la minimisation de
(4 .60) . On obtient (calcul classique, cf . Lions [4] )

dz
+si

(
t

)
z+BN - 1 B* = 0

dt

	

~

	

'

dq

— dt +si
*

(
t
)q —

Sz= Q
'

q(T1) =0 ,

z(To) = zo ,

et on peut appliquer la méthodologie du découplage. Pour cela on introduit une
famille II(t) e H) définie de la manière suivante. On considère la famille de
problèmes de contrôle (incluant (4.59) et (4.60)) :

dt + `(t)z = By sur ]s, T1 [ ,

z(s) = h ,

T 1

	

T i

(4 .69)

	

Js(v) _

	

(Nv, v) dt +

	

(Sz, z) dt ;
s

	

s

— dt +
d

* (t
4 —S(P

=0
'

tŸ( T1) = 0 ,

9(s) = h

(4 .67)

dz

(4 .68 )

(4.70)

et

(4 .71 )

On a alor s

(4 .72)

1/i(s) = II(s)h .

(II(s)h , h) = inf Js(v) .
v

Notons que H(s) est autoadjoint, mais pas forcément > O . Il nous sera utile de
majorer I(II(s)h, h)I . On a tout d'abord

J
T

(4 .73)

	

(DI(s)h, h) < Js(0)

	

(SO, 0) dt ,
s

où (p est solution de

d(p+si'(t)~P- =0 sur ]s, T1[ s
d t(4 .74)

0(s) = h .
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Par ailleurs, on a
T i

	

T 1

	

T i

Js(v) _

	

(Nv, v) dt +

	

(SO, 0) dt + 2

	

(SO, ~p) d t

	

(4 .75)

	

s

	

s

	

s

T i

	

+

	

dt ,

où ~P = (p — ~P (partie homogène de v --~ 9) . En utilisant la propriété (4 .66), on
déduit de (4.75),

T i

	

T i

	

T i

	

(4 .76)

	

Js(v)

	

p

	

Iv1 2 dt + 2

	

(SO, ~p) dt +

	

(SO, 0) dt .
s

	

s

	

s

En introduisant solution de

dtp si*t = S
—dt

+

	

()~

	

~P ~

O( T1)— 0 ,
on peut écrire

T 1

	

T1

	

d~

	

T i

( S0, ~p) dt =

	

dt + si*(t),p, 0 dt =

	

(l/r, Bv) d t
s

	

s

	

s

et donc (4.75) donne

T i

	

T i

	

T i

Js(v)

	

p

	

1 v1 2 dt + 2

	

(B*, v) dt +

	

(SO, ~P) dt
s

	

s

	

s

—

P v +

	

4'
B*,j 2

	

T 1

	

1 T 1

	

_

dt +

	

( S ~P , 0) dt - -

	

I B*0 2 dt :
s

	

P s

Par conséquent on a

Ti

	

1

	

T i

(4 .79)

	

inf JS(v) = (II(s)h , h) >_

	

(SO, 0) dt - -

	

I B* 0 2 dt .
v

	

s

	

P s

De (4 .73) et (4 .79) résulte aussitôt :

Ti

	

1

	

T 1

I(n( s)h , h)I

	

dt + —

	

IB*0 2 dt
s

	

P s

Ti

	

IIBII 2 ST'
( sep,

	

dt +	 	 IIPI

2
dt .

s

	

P

	

s

Dans (4.77) on fait le changement de fonctio n

= xe -~ t

d'où x est solution de
di

	

-

	

t --
dt

+ ix + ~* (t)x = e S~p ,

(4 .77 )

(4 .78)
T 1

s

(4 .80)
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d ' où on déduit, par intégration par parties, la majoration

T 1

	

T 1

IxI 2 dt <

	

( ertS?p, x) dt
s

	

s

et donc

	

I
Ti

	

1

	

T 1

T
Ixi 2 dt < 2 max (e2rTo

,
e2rT1)

	

ISOI 2 dt ,
s

	

rl

	

s

1

	

I

T 1

	

T 1

	

I~I 2 dt =

	

e
2rt1x12 dt

	

max (e- 2iTo , e - 2iT
1)

	

1212 dt
s

	

s

	

s

e2Nl 'T i

T2

	

15~12 dt .
fT i

Par conséquent (4 .80) conduit à

	

2

	

IIBII2IISII2
e2iTi

	

T i

I(n ( s )h , h)l = 11 ,5'11

	

1 0 1 2

	

+	 2

	

101 2 dt

VIISII

	

T1
101

2
dt .

	

P

	

s

Si enfin dans (4 .74) on fait le changement de fonctio n

(p = S ert,

alors .5 est solution de

d~

dt +
(T + ,Q/(t))3

_
~ = 0 ,

3(s) = h e - rs,

ù, en intégrant par parties,

T 1

	

T 1

I6(Tl)1 2 + T

	

13 1 2 dt +

	

<s/â, b> dt = I 6 (S)I 2 .
s

	

s

Par conséquent, on a la majoration

f

s

i

rl

	

I31 2 dt < e- 2is
1h1 2

	

max ( e
2tT 1, e-

'Tl Ih1 2 ,

d'où

T 1

	

T 1

	

T 1

	

e 2lr.i11h1 2

1(-p- 1 2 dt =

	

e2rt1312 dt < max (e 2rT1 ' e2rTo)

	

1 3 1 2 dt

s

	

s

	

rl

d'où finalement on obtient la proposition suivante .
PROPOSITION 4.2. Si (4 .66) est vérifiée, on a la majoratio n

2,r il

	

2
(4.82)

	

11I(s)h, h)I < vil Sil e

	

I hl .
P~1

(4 .81)
P

	

~

d ' o
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4.3.4 . Etude de Ek. On pose donc Ek = Qk + 1 —
V. Alors d'après (4 .20 )

Ek est solution de l'équation

d E k + Ek — d
9

	

—

	

+ A9) A*E k

	

dt( ~P)

	

'

	

dt

	

+

	

~~P

+Qk+ 1 E BJNJ 1B *QJ~ — Qk E BJN' 1B*Q J - 1 9

(4.83)

	

+ E Q;B J Ni 1B *Qk+

	

E

	

1B *Qk9

	

j � i

	

j� i
+Qk+1B

i
N

i c i

	

eBiN i-- 1 B*Qk+ —

	

i B* Q k (p = 0 ,

	

i

	

i i

*T,) = 0

	

tout

	

L 2 T

	

V
d~p

+ A E L 2 T

	

H .pour

	

9

	

( o, 1~ )~

	

dt

	

~

	

( o~ 1~ )

Un calcul algébrique simple montre alors que (4 .83) se réécrit sous la forme

	

d

	

n

	

—d

	

+ Ek + A9 + E B 1 13709Ek~)

	

1

	

J Jt (L

	

dt

	

; =
n

+ A* + E Q .1;BjNi 1 B* Ek(p + Ek BiN i 1B * E k Cp
j =

= — Qk E B iN; 1 B* E ; -1 9 — E E;
-1 BAI 1B *Qk9 ,

j� i

	

i= i
*T,) = 0 ,

e t

(4.85)

	

E°(t) = e t) -- Q°( t) = et) — Q i

La forme (4.84) montre que Ek est solution d'une équation de Riccati, dont l e
second membre es t

Sk = — Qk E B►jN - 1 B*Ek- 1 — E E k 1 B N - 1

Bj i*
Qk

,
j � i

qui est symétrique, mais non 0 (en général) . On est dans le cadre du § 4 .3 . 3
avec

n

si(t) = A + E B iN i- 1 B*Q I.;
j=

donc = KC 1 âE', fi --a, fi 1 =Œ 1 , f3 2 = a 2 ,n=E,i=o (donc >0).Lacon-

dition (4 .66) s ' écri t

4 7

	

k_

	

— ilsk llilB i ll2	
e 21 9

(•8 )

	

Pi

	

v i

	

2	 >0 .

On a alors le lemme suivant .
LEMME 4.3 . On choisit 0 < x < xo = (1 + /)/4, puis g comme en (4 .45), a 2

comme en (4 .46) et

log[£2x/(C,C2 +C , C 3 £ )] log[ 1 /(4x2+ 2x) ](4 .88)

	

0<1 <min	
2 [e( 1 + x ) --

	

' 2E(1+x) — a2]

	

2 ]

alors Il Ek(t) ll y(,,H) -+ 0 lorsque k -4 uniformément en t sur [To, 7] .

(4 .84 )

(4 .86)
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Démonstration . Remarquons que (4.88) a un sens car 4x 2 + 2x < 1 et (4.47 )
est respectée. Dans ces conditions nous allons montrer que l'on a

2x e2l[E(1 + ' )- '21
(4 .89)

	

11 E1'11

	

1 — 4x e2 l[E(1 + x) - a2] Il Ek-1 II ,

	

k >= 1 .

Si (4 .89) est vérifiée, alors d'après (4 .88 )

e 2l[E(1 +x)-x2] <

4x 2 + 2x '

2x e 2l[E(1 +x)-52] < 1 — 4x2 e2l[E(1 +x)-a2]

et donc si
2x e2l[E(1 +x)-Œ2 ]

a =
— 4x2 e 2l[E(1 + x ) - . 2] ,1

on a 0 < a < 1 . Par conséquent

II*t)ll< ak -
1

II ~°( t) II < 2Kak - 1
ce qui implique aussitôt le résultat . Tout revient donc à démontrer (4.89) . Vérifions
(4 .89) pour k = 1 . Mais Eti est solution de (4.84) avec un second membre Si (cf .
(4 .86)) tel que

48' 2

IIS~ Il <4K2 C 1 =

	

.
C 1

Mais alors

11S? Il I
l	 B i II	

2 e2le < 4 8 ,2
2 e2le ~

	

2 21e
E2

	

= C E2
II Bi II

	

= 4Vix e
1

et comme d'après ci-dessu s

4x2 e2le = 4x 2 e 2l[E(1 +x)-a2] < 1 ,

on a bien (4 .87) . Par conséquent on peut appliquer à (4 .84) (pour k = 1) ce qui a
été fait au § 4.3 .3, et en particulier la Proposition 4 .2 . I1 en résulte s

I(E ~ (s)h,h)I < v`IlSIII 20 1
Il Ei (S) Il

=

Shp

	

h 2

	

=

	

lPE eIl

	

II

	

~

1

	

e 20 1

1 — 4x2 e2le E
2C 1 K II' i

2x e 2e l

1 _ 4x
2 2lel E °ll ,

e

ce qui n'est autre que (4.89) . Supposons (4 .89) vraie pour k — 1 et démontron s
la pour k, k >= 2. D'après (4 .90) on a

II E k -1 ( t )II —_< 2Kak- 2 —< 2 K

5 Car Ek est symétrique.

1

d'où

(4 .90 )

(4.91)
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de sorte que l'on a

I)Skll < 4K 2 C 1 .

Par conséquent (4 .87) est vérifiée . On peut appliquer à (4.84) les résultats d u
§ 4 .3 .3, ce qui donne

~k ~
v iII SkII 2 0

P

l
kE e

1

	

e
201

Ç 1 — 4x2 e
2l0	 2CIKIIE-

1 Il ,
E

c ' est-à-dire encore (4 .89) . Le lemme est ainsi démontré .

4.3 .5. Fin de la démonstration du Théorème 4.2. Soit /i e W(To , T1 ) ,

déduit de (4 .21) l'expression

	

"TI

	

, I,

	

ST '(R i~~ ~) dt

	

(-d
Qk+ 1(P, ~ dt

	

T.

	

To

	

dt

T1

	

d+ Q k+ 1	 ~P + A(P + E B;N; 1B*Q») ,
To

	

dt

	

j # i

+
T 1

(A* + E Q;B,N,
1 B * Qk+

1 (p,

	

dt
To

	

j
#i

	

`Y

T 1
+ (Qk + 1 B

l I l

Nk - 1 B*Qk +
1 (P , d t

l

	

1
T o

S
T1

	

d-` Q k+l 9,

	

d t
To

	

dt

IT1	+f (d (P + A (p

	

B .N-1B*Qk(P Q
k +

	

dt~

	

j J

	

jj~~ L
o dt

	

j

T 1
+

	

(Qk+14 )O dt
T o

T 1

+f ( Qk+

	

E BjNi- 1 B*Qlt(i dt
To

	

j � i

T 1
+

	

(BONI
1B*Qk+

1(p ,
Q+ 1,1,)

dt .

T o

D'après le Lemme 4 .1, la suite Qk demeure dans un borné de LT (To, T1 ,

	

H)) . 6

D'après le Théorème de Dunford Pettis, LT (To, T1 , H)) et le dual de
L 1 (To , T1 , H 1 ) espace des fonctions de t :]7, T1 [ —+ l'espace H 1 des opérateurs
nucléaires sur H .

On rappelle que H 1 est caractérisé de la manière suivante . Un opérateur
F e 18(H, H) est nucléaire s'il peut s'écrire sous la form e

Th -- E

	

ei) .Îi ,
i= 1

6 Fonctions scalairement measurables et bornées.

on

dttk )

(4 .92 )

(4 .93)
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où e i etf sont des systèmes orthonormés de H (donnés), et si EA i < + oo. On sait
qu'alors les Ai sont > 0 et H 1 est un espace de Banach pour la norm e

	

(4 .94)

	

Il r II H l = LL i

Si E e 1(H, H) alors Er est nucléaire et £(H, H) est le dual de H 1 pour la dualit é

	

(4 .95)

	

< Z , F> = IIZF IIH 1 .

Comme la suite Qk demeure dans une boule du dual d'un espace de Banach, o n
peut extraire un sous suite e l convergente vers Q i dans

a(LT (To, T1, 2(H , H)) ; L1 ( To, T1, H i )) ,f
T

i

	

(4 .96)

	

i .e .,

	

Il (Qk1(t) — Q i (t))F(t) Il H 1 dt -+ 0 quand k 1 -+ co ,
To

pour tout r e L 1 (To, T1 , H 1 ) .

Soit fl(t) e L 1 ( To , Tl ) et h e H . On prend F h(t)v = ((h, v)h/I hI 2 0(t)I qui est bien un
élément de L 1 (To, T1 , H 1 ) car II r h( t) II h l = 11,6(0 . Mais alor s

l

	

-

	

(h'
v)(Qk l ( t)rQi( t ))h

(Q
k
i (t)

	

Qi( t))rh(t)v =

	

h 2

	

I fi(t) I
II

	

I I

( h , v) (Qk l ( t ) - Qi(t))h la( t )I I(Qk l ( t ) - Qi( t)) h I

	

I hl I (Qk(t) - Qi( t)) h l

	

I hl

	

'

d'où

I (Qk1 ( t ) - Qi( t)h) I
II (Q

k
i

1
(t) - Qi(t))rh(t) II H1 = et)I

I
h

I

Par conséquent il résulte de (4 .96 )

fT
1

l fl( t)l l(Qk l ( t ) — Qi(t)h)I -4 0 pour tout h e H,

	

k 1 --> oo .

o

Comme fi est quelconque dans L 1 , il en résult e

(4 .97)

	

Qk1(t)h -> Q .(t)h dans H p.p . t, pour tout h e H,

	

k, -4 0 + oo .

Il résulte aussitôt de (4.97) que Q .(t) est p.p .

	

0 autoadjoint . Soit maintenant
~p e W(To, Ti) .

On définit (noter que (p e C(To, T1 , H) )

rp(t)v =
(9( t), v)~(t)

` 19( t)Il
l

qu'est bien un élément de L 1 (To , T1 , H 1 ) car I l F p(t) Il H i = kp(t) I pour tout t. Donc

(Qikl(t) — Q .(t))rçp(t)v

	

(9(0, v)(Qk l ( t) — Q.(t))ço(t)
=

	

190 1

— (9(t),v ) (Qk l ( t ) — Qi(t))p( t)

	

k l

	

— Œ(t))
t .

	

19()1 1(Ql ()

	

Q .())9()1
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Par conséquent,

II (Qk l ( t) - Qi(t))r p( t ) II H1 = I (Qkl(t) - Qi(t))`Y(t) I

et (4.96) implique
T 1

	

(4.98)

		

I (Qkl(t) — Q i(t))9(t)I H dt

	

0, lorsque k

	

-4 ço + oo .
To

En particulier, on peut prendre -p e L 2 (To, T1 , V) I dçp/dt + Açp e L 2 (To, T1 , H) . Or ,
d ' après le Lemme 4 .2, on peut, quitte à extraire une nouvelle sous suite suppose r
que Qk l pp converge dans W(To, T1 ) faible vers un élément t/i E W(To, Ti ) . La
convergence a lieu aussi dans L 2 (To, T1 , H) faible (en fait fort car l'injection d e
W(To, T1 ) dans L2(To, T1 , H) est compacte) . Mais (4.98) montre aussitôt qu e

= Qi(p , d ' où

Qkl(t)(p(t) -+ Q i(t)(p(t) dans W(To, T,) faible

pour tout

	

E L 2 (To,

	

V
d~

+ A e L2(To,

	

H
~p

	

1 ~

	

)

dt

	

1 ~

	

)
,

(4.99)
Qkl(t),/i(t) -+ Q i(t)/i(t) dans L 2 (To, T1 , H) for t

pour tout i/ie W(To, Ti ) .

Considérons maintenant la suite ei'(t) . A priori elle ne converge pas, mais o n
peut extraire de k 1 une sous suite k 2 telle que Qk2 + 1 (t) —> Q1(t) dans o -(L°°(ToT, ,

H)), L 1 (To , T1 , H,)) . De manière analogue à (4.97) on a pour tout h ,

	

Qk2+ 1 (t)h -+ QXt)h dans H p.p . t,

	

k 2 -+ oo ,

	

Qk 2 (t)h --> Qi(t)h dans H p.p. t,

	

k 2 --4 oc .

Mais d'après le Lemme 4 .3 on a

Il Qk2 + 1 ( t ) - e(t)Il = II 1 2 (t) Il — 0

et donc

Qi( t) = Q ;( t ) p.p. t .

On a donc la propriét é

Qk 2 (t)(p(t) -+ Q i (t)(p(t) dans W(To, Tt ) faible pour tou t

Q~k2+1(t)(P( t) --> Q~(t)(P( t)

	

(P EL 2 (To , T1 , V)	 + A tP EL 2 (To , T1 , H~

	

dt

	

) ,
(4.100)

	

k 2

	

Qi (t)tli(t)

	

Qi(t)tk(t) dans L 2 (To, Tt , H) fort

«,2 + 1( t)0( t ) -4 Qi(t)O(t)

	

pour tout

	

W (To , Ti ) •

On peut alors passer à la limite dans (4 .92) écrite pour k = k 2 . On obtien t
T1

	

Tl

	

d
(Ro, dt =

	

(— Qi q ) ~

	

d t
fTo

	

To

Tl d(p

	

+

	

+ A~p + E BAT; 1B*Qj(p ~ Qi t/1 d t
To d t

T 1

	

T 1

	

+

	

<Qi(p , At» dt +

	

Qi(p , E BjN; 1B*Qjtji d t
To

	

To

	

j � i
T 1

	

+

	

( BiN i 1B*Qi(p ~ Qi,Il/) dt
T o

(4 .101)
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soit encor e

J
T1

(dQ0, 0 dt + T

1

(Q .(d(P + A(p + E BjNj-1Bj Q j~ , ~ d t
T°

	

dt

	

T°

	

dt

	

j� i
T 1

	

T 1

	

(4 .102) +

	

< A*Qi(P, t/J i dt +

	

E Q;B;N;
1
B*Q i (p, ~ dt

T°

	

T° jO i

T1

	

,,II,,

	

T 1

	

+

	

(QiB i Ni 1 B* Qi(P , Y~ ) dt =

	

(R i (p , l//) dt
T°

	

T °
pour tout i/i E W(To, Ti ) ,

ce qui prouve bien qu e

_ d Qi(P
+

(d4
+A + E BN- 1B*-+- A *Qi

	

(p

	

Bi
Ni J Q,(p

	

Qi(
dt

	

dt

	

; � i

+ E QJBJNj 1 B 7Qi (p + QiB i N i 1 B *Qi(P = Ri(p
j � i

égalité de deux éléments de L 2 (To , T1 , V) .
Par ailleurs de (4 .92) on déduit en intégrant par parties ,

('T iT

(Ro, 0) dt = — (Qi(P(T1 ) , O(T1 )) + (Qk 2+ 1(To)(p(To), O(To))

(4 .103)

	

T o

De (4 .101) on dédui t

T 1
(R i(p ,

	

dt = — (Qi(Ti)(p(T1), IP( Tl)) + (Qi(To)(p(To), O (To )
T °

T 1

	

di/i

+

	

(Qi(p'
dt

dt + reste inchangé .J T°
On note que

T 1

	

4 T 1

	

d,l,
Qk 2+ 1 (p,

	

dt

	

Qi(p,

	

dt .
T°

	

dt

	

T°

	

d t

Si donc on prend /i E W (To , Ti) tel que i/i(To) = 0, on voit

	

(4 .105)

	

(Qi(T1)(P(T1), tk( T1)) = (Qi(p(T1), ç(T1)) •

Prenons /i = y(t)v, où v e V et y(t) E H 1 (To, T1 ) telle que y(To) = 0. I1 résulte
aussitôt de (4 .105 )

	

(4 .106)

	

(Qi(T1)(p(T1), v) = (Qi (p(T1 ), v) pour tout v e V,

et comme V est dense dans H, on obtient

Qi(T1)(P(T1) = Qi(p(T1 )

T 1
+

	

(v,2+

1(p
d ii

,

	

dt + reste inchangé .
T °

	

d t

(4.104)

(4.107)

pour tout (p e L 2 (To, T1 , V) d(P
dt +

A( t )(p EL2 ( To , T , H) .1
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Prenons en particulier (p solution de

d (p
+ A(t) (p = 0 ,

dt

çp(To) = a,

	

aeH .

Lorsque a varie dans H, (p(T1 , a) parcourt un sous ensemble dense dans H .
Comme Q i(T1 ) et Q i E ar(H, H) et coincident sur un sous ensemble dense, il s
sont égaux ce qui prouve bien que Q i(T1 ) = Qi et achève la démonstration du
Théroème 4.2 .

4 .3 .6 . Etude d'un cas particulier . On étudie maintenant le cas Bi = identité ,
N i = identité ; on suppose de plus que A(t) est indépendant de t et autoadjoint . '
L 'équation s'écrit :

d

	

2
~

--(Qi(P) + Qi(t A(p + E QJ (p + ( A + E Qj Qi~ + Qi ` R i tp
dt

	

J � i

	

J � i

pour tout (p E D(A) ,

Qi(T) = Oi .

On a alors le théorème suivant .
THÉORÈME 4.3 . Outre les hypothèse du Théorème 4 .2, on fait les hypothèse s

précédentes, alors la conclusion du Théorème 4.2 est vraie pour tout intervalle
fini T.

Démonstration . On prend comme norme de V

= <Av,v> .

Ce qui est possible, d'après les hypothèses sur A . On considère alors une base
orthonormée spéciale de V, w i , • • • , w i , • • • orthogonale dans H, et telle que :

<Aw i , v> = ,i(wi, v), A i > 0, pour tout v e V. 8

On note ro m le projecteur sur Vm = espace engendré par w l ,
prolonger ro m à H en posant

ûlmh = E 2i(wi , h)wi .
i =

On considère alors le système d'équations de Riccati :

(4 .108 )

(4.109)

d
_._-(Qinw h ~ wk) + ((A + E Q T( t) )wh , Qin ( t)w k

dt J* i

(4 .110)
+ ((A +

	

QT(t)) Qin(t)wh, wk

+ (Qin ( t) wh , Qm( t ) wk) — (R i wh , w k) ~

(Q m ( T ) wh , Wk) — (Qiwh ~ wk) •

' Hypothèse très probablement inutile .
8 Il suffit de prendre les vecteurs propres de A - ' qui est compact de H --* H.

wm . On peut

h,k = 1, • • • , m,
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Comme le système (4 .110) est un système d'équations différentielles, il posèd e
une solution sur (tm , T) .

Nous avons alors le lemme suivant .
LEMME 4 .4 . La suite Qm vérifie la propriété suivante : Pour hm e Vm , I Qr(s)hm 1

KIhmf , où K est une constante indépendante de s, i, m .
Démonstration . Pour s e ]t m , T], on considère le problème de contrôle optima l

dZ m
Wk +

	

A +

	

Qj(t) Zm Wk

	

= (vi(t), W k ),

	

h = 1, . . . , m ,
dt

T

	

T

(4.112) J;m(s, hm ; v i) _

	

(R i Zm, Z m) dt +
j

Ivil
2 d t + (Qi Zm( T ) , Zm( T)) ,

s

ce qui implique (car (4.110) peut s ' interpréter comme l ' équation de Riccati associée
à (4 .111), (4 .112) )

(4 .113)

	

(Q'(s)hm , h m ) = inf Jm(s, h m ; v i ) .
v;

Par conséquent, en introduisant m correspondant à v i = 0, soi t

(4.111)
zm(s) = hm ,

(4 .114)

d~ m

dt 'Wk + ((A + E QT (t)km ,
i* i

m(s) = hm ,

on a

j
T

(Qin(S)hm , h m)

	

dt + (Qim(T) , m(T)) •

Mais on déduit de (4 .114)

T

2I ~m( T )I 2 + a

	

gm( t ) II 2 dt

	

llhml 2 ,
s

(Qls)h hm)

	

(C2 +

\2Œ

	

C h 2m(

	

m ~

	

3 (mI ~

OU

C 2 = max IIRiII ,

C 3 = max II Qi I I

ce qui, tenant compte du fait que Q'(s) est 0, autoadjoint, implique aussitôt l e
lemme avec

K-- C2 + C 3 .
2a

d 'où



POINTS DE NASH POUR FONCTIONELLES QUADRATIQUES

	

497

Il résulte du Lemme 4 .4 que la solution de (4 .110) peut se prolonger au delà de tm
et en fait est définie sur (0, T) .

Soit maintenant (p e D(A) et f3(t) e H1 (0, T), on a alors le lemme suivant .
LEMME 4.5 . La suite Qm(t)VJm (p/3(t) demeure dans un borné de W(0, T) .
Démonstration. On considère le système d ' équations ((pm(t) _ rum (p J3(t)) :

d~m

	

,I,

	

_
	 W k + ((A + E

Qm(t)
~m wk + ((t), wk)

	

wk )
dt

	

jo i

(4 .115) (-iir ~ w k + ((A + E Q j (t) O m , W k

j� i

k =1, – •,m ,

- (Ri(p m , wk) = 0 ,

k= 1,•••,m ,

(ONT), w k) _ (Qi(Pm( T ), w k), 4 m(0) = (NO) ,

que l'on interpréte comme pour la démonstration du Lemme 4.2. On définira g m

par

gm(t) _ ,6'(t )(p + l3 ( t ) A (P + fl(t) E Qjl(t)2ûm (p + 0in(t) .
j� i

On a alor s

	

(4 .116)

	

te(t) = r
in ( t) + Qin(t)(pm(t) ,

où rm(t) est solution de l'équation

n

– ( drr ,wk) +

	

A+

	

r" t rm ( t ) wE Q~O ~ ~ k
dt

	

j ^

	

(4 .117)

	

pour tout k = 1, • • • , m ,

rr(T) = O .

On vérifie aisément que /im demeure dans un borné de W(0, T) . A partir du Lemme
4.4 on vérifie que g m (t) demeure dans un borné de L 2 (0, T; H) (noter que 1 tu mLp (H ;H )

_< 1) . Puis à partir de (4.117) on vérifie que rm demeure dans un borné de W(0, T) ,

d'où le résultat à partir de (4 .116) .
Posons

(4 .118)

	

Qm(t) = Qm(t)Z7 m .

Il résulte du Lemme 4.4 que Or(t) demeure dans un borné de LS°(0, T ;18(H ; H)) .
On peut donc extraire une sous suite Qm ' (t) qui converge vers Q i(t) dans

6(L:0 (0, T ;18(H ; H)) ; L 1 (0, T ; H,)) .

En raisonnant comme pour la fin de la démonstration du théorème 4.2 ((4 .98) et
(4.99)) on obtient (on écrit m au lieu de m ' )

Qm(t)Vim (p f (t) --* Q i(t)(p f3(t) dans W(0, T) faible ,
(4.119)

Qm(t)m m (p f3(t) -* Q i(t)(p f3(t) dans L 2 (0, T ; H) fort .

= (Qin ( t ) wk , g m( t ))
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On multiplie (4.110) par 0, W h)) et on somme pour h = 1, • • • , m . En remarquan t
que

< AVI m Çp , v> = <Açp, VJmv> pour tout v e V ,

on obtient

d
- -(Qm(t)t5rm(P , wk) + (A(p + Qin ( t) wk

dt

	

j � i

+ ((A + E Qj ( t ) Qm(t) ra m(P , Wk + (Qin ( t ) row, Qin(t)w k

j � i

= ( R is m (p , Wk) .

Soit t/i E D(A) . En multipliant (4 .120) par ((0, Wh)) et en additionant en k, on obtient

d
ro

.,,''//
m4' ) + (A9, Qm(t)(TJm0) + (Qin ( t )tum9, A 4~ )

- dt

(4 .121)

	

+ (Qr( t)m, E QT(t)m )(P + (Qr t m p ,

	

Q T(t)m )0
j � i

	

j� i

+ (Qm(t)rum9, Q m ( t )(um0) = (R itum9, rumtP) •

En multipliant par /3(t) E 9(]0, T[) et intégrant, il vien t

T

	

II,, ((~~

	

T

(Qm(t)~m(P, ~m
,,
4' )N ' ( t) dt +

	

(A(P, Qin(t) .mmO)N(t) d t
0

	

o
T

	

,I,

	

fT
,I,

+ (A4' ,Q in(t)~m~)fl(t) dt + (Qin(t)~m4' , E Q j (t)mmp)fl(t) dt
0

	

0

	

j� i

T

	

,I,

	

fT

,I ,
+ (Qm(t)~m~P, E Qj (t)~m)fl(t) dt + (Qin(t)~m9,Qin(t)~m4~ )fi(t) d t

j� i

	

0

T

	

,, II,,

( R i~m~P ,~m4' )fl(t) dt .
o

En passant à la limite en m, on obtient :

T

	

,I,

	

T

	

,I'

	

T

	

I/
(Qi(t)(p , Y~ )fl'(t) dt +

	

( AcP, Qi(t)Y~ )fi(t) dt +

	

(A,4~ , Qi(t)(p)fl(t) d t
0

	

0

	

o
T

	

T

+ (Qt», Qj( t ) cp l3(t) dt + (Qt)9, Qj(t)O)fi( t ) d t
o

	

j � i

	

o

	

j� i

J
T

	

J

T

	

,I/
+

	

(Qi( t )(p , Qi( t)
,I,
~)fl( t ) dt =

	

( R i~ , ~Y )fl(t) dt ,
o

	

o

d'où on déduit aisément l'èquation différentielle (4 .109) . La condition initiale s e
démontre comme pour le Théorème 4.2, (4.105) .

(4 .120)
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A NOTE ON COMPLETE CONTROLLABILITY AND
STABILIZABILITY FOR LINEAR CONTROL SYSTEMS IN

HILBERT SPACE*

MARSHALL SLEMROD

Almtract. We consider the linear control system Ax + Bu. Here A is the infinitesimal generator
of a strongly continuous semigroup of bounded linear operators T(t) on a Hilbert space E, and B is a
bounded.linear operator from a Hilbert space H to E. We give sufficient conditions for the existence
of a bounded linear operator K from E to H so that the control system with feedback control law
u(t) Kx(t) has the zero solution asymptotically stable. In particular, we study the relationship
between the concept of complete controllability and the existence of K.

1. Introduction. In this note we shall consider the linear control system given
by

(1.1) +/-(t)-- Ax(t) / Bu(t).
Here A is the infinitesimal generator of a Co semigroup of bounded linear opera-
tors T(t), >= O, on a Hilbert space E, and B is a bounded linear operator from a
Hilbert space H to E. We pose the problem of determining conditions for the
existence of a bounded linear operator K from E to H so that the control system
with feedback control law u(t) Kx(t) has the zero solution asymptotically stable.

This problem was considered in [1] where we obtained weaker results than
those given here. In particular, in [1] we required that T(t) be a Co group on E
and satisfy the inequality

B* T*(- t)xl dt >= c3 x E
2

for some e > 0, 6 > 0 and all x in E. This inequality is equivalent to complete
controllability in the case when E, H are finite-dimensional, but is a stronger
condition than complete controllability when E is infinite-dimensional. In this
note we first show that for systems satisfying (1.2) we can obtain stronger results
than those given in [1]. Specifically, we show that under hypothesis (1.2), systems
of the form (1.1) can be stabilized with exponential decay rates, whereas in [1]
we obtained a weaker type of convergence. Second and more importantly, we
show that the weaker hypothesis of complete controllability will imply a type of
stabilizability if some compactness of trajectories is assumed and (Ax, x) <__ 0 for
all x D(A). The method of analysis is a Lyapunov stability approach exploiting
a generalization of the invariance principle of LaSalle [5]. The invariance principle
will be stated and then applied to system (1.1) where our stabilizing feedback is
u(t) -B*x(t). An example illustrating the results when the uncontrolled system
is the wave equation will also be given.

* Received by the editors November 16, 1972, and in revised form June 11, 1973.

" Division ofApplied Mathematics, Center for Dynamical Systems, Brown University, Providence,
Rhode Island. Now at Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New
York 12181. This research was supported in part by the Office of Naval Research under Grant
NONR-N00014-67-A-0191-0009 and by the United States Army Research Office--Durham under
Grant DA-ARO-D-31-124-71-G 12S2.
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Notation. If X is a Hilbert space, we denote its inner product by.(. ,. )x and
norm by I1" IIx. If Y is also a Hilbert space, we denote the space of bounded linear
operators from X to Y by (X, ) with operator norm

2. Definitions, assumptions and preliminary results. Consider the linear control
system given by (1.1).

DEFINITIOrq 2.1. We say that (1.1) is stabilizable (weakly stabilizable) if there
exists K s Y’(E, H) so that the Co semigroup S(t) on E generated by A + BK is
such that S(t)y 0 (S(t)y weakly) as ---, for all y E.

DEFINITION 2.2. We say that (1.1) is completely controllable if for y e E,
B*T*(t)y 0 for all _>_ 0 implies y 0.

Definition 2.2 is equivalent to the standard notions of complete controlla-
bility "Furthermore, Fattorini [2], [-3] has given a theory of completely controllable
systems in Hilbert space and numerous examples.

Now let us note two assumptions which will be used at various times.
Assumption 1. Let A1 be the infinitesimal generator of a Co group Tl(t) of

bounded linear operators on E. We say A1 satisfies Assumption 1 if for some
> 0, there exists 6 > 0 so that

lIB* T’(-t)yllr dt 5 ly I for all y in E.

Assumption 2. Let A1 be the infinitesimal generator of a Co semigroup Tl(t)
of bounded linear operators on E with domain D(A). We say A satisfies Assump-
tion 2 if there exists a constant 2o so that, for/t > 2o,/l is in the resolvent set of A
and (Ax + 21)-a is a compact operator on E.

Remark 2.1. Assumption 1 is equivalent to complete controllability of (1.1)
when A A1 and E, H are finite-dimensional.

Remark 2.2. Assumption 2 reflects the fact that in applications we wish to
consider the case when A is a linear differential operator. In this situation the
domain of A is smoother than E and hence we expect compactness of the
resolvent operator.

Consider, for example, the case when E =/:/(f) @ Ho(f2), some bounded
sufficiently smooth spatial domain in R", and

,A= I0A .;1,, AtheLaplacian.2

In this case D(A1) {H2(f) f3 Bl(f)} @/:/a(f) and 2 Ax represents the
wave equation with homogeneous Dirichlet boundary conditions.

Let 2 be on the resolvent set of A, fle/:/l(f), f2eHo(f), and let
f [f, f2] e E. Then A ix + 2x f may be written as

X2 -- 2X1 fl’
AX1 ’1- /x2 f2,

All Hilbert spaces will be assumed to be real.
In examples using the wave equation we endow E with the equivalent energy norm II(u, v)ll

j’ IVul / Ivl dx
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where Xl H2() ["1/-1(), x2 ff/2/1() and x Ix1, x2] D(Ai.). (Since). is in the
resolvent :set of A1, solutions x l, x2 must exist.) We therefore, know that

AX1 2X1 --f2 /].fl.

It thus follows that Axl 2Xlllno(n)--= I[f2 flllno(a) which in turn implies
a Thus for {If1 f:.]} a bounded sequencethat x H2(f) const, f2 2fl [no(a). ,,

in E we see that the corresponding solutions {Ix1,, x2,]} are uch that {xl,} is in
a bounded set of H2(f) and x2, will lie in a bounded set of Hl(f). Hence by the
Sobolev imbedding theorem, {[Xl,,X2,]} has a convergence subsequence in E.
Thus (A1 + 2I)- is a compact operator on E for any 2 in the resolvent set of A1.

The same argument as given above will be valid when A is replaced by any
linear elliptic operator. In this case, instead of 2 AlX representing the wave
equation, it may also represent more general second order evolution equations
of both the hyperbolic and vibrating-plate nature.

In applications when using Assumption 2 we often wish to use perturbations
of the operator A1 and not A1 itself. This presents no difficulties, as Assumption 2
induces a type of stability under perturbations, as seen in the following lemma.

LEMMA 2.1. Let P e (E, E) and assume Assumption 2 holdsfor A Then there
exists a 21 in the resolvent set ofA so that (A1 + P + 2I)- is a compact operator
on E for all 2 > 21

Proof We know, since A1 is the infinitesimal generator of a Co semigroup
on E, that the Hille-Yosida-Phillips theorem implies I(A1 + 21) -1 I(E,E)
=< M(2 co)- for 2 > co, where co, M are constants. Thus for 2 sufficiently large
we have the inequality [IPIla(e,e)II(A1 + 2I)-IlI.(E,E < 1. Applying the standard
perturbation theorem on bounded invertibility [8, p. 196] yields the desired result.

We are now able to pass to some results on stabilization. The first theorem
is an improvement of [1, Thm. 4.1] and follows from a suggestion by Prof. F.
Massey. The second theorem incorporates Assumption 2 and yields stronger
results than the first theorem.

THEOREM 2.1. IfA satisfies Assumption 1, then (1.1) is stabilizable. Furthermore,
given 2 > O, there exists K (E, H) (depending on 2) so that the Co group S(t)
generated by A + BK satisfies S(t)lt.(v,e) < Me-a, >_ O.

Proof Define

D..;.x e- 2;ttT( t)BB* T*( t)x dt.

Then D, e (E, E) is self-adjoint and, by Assumption 1, possesses a bounded
inverse. Now consider the control system given by

(2.1) 2(t) (A + 2I)y(t) + Bu(t).

Substituting u(t) B*D[,) y( t) into (2.1) we see that (A + 2I) BB*D -.1 is the
infinitesimal generator of a Co group Si(t on E. A simple computation shows

This follows from the well-known a priori elliptic estimate. See [10, p. 170].
4 For the Sobolev imbedding theorem, see [10, p. 169].
The computation essentially parallels a similar computation made for the finite-dimension

stabilization problem in [11]. See Appendix.
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that for Yo D(A*),

(2.2)
d
(S;(t)yo, D,S;(t)yo) =-]Ie-B*T*(-e)S’(t)yo t B*S{(t)yo .

Hence by the denseness of D(A*) in E we have S(t)ll.te,e) <= M for 0, M a
positive constant. Since Sl(t) e’S(t), it follows that IlS(t)]etE,E) ----< Me-t when
K -B*D-x

TOREM 2.2. If A satisfies Assumption and A* satisfies Assumption 2, then,
given 2 > O, the K (E, H) specified in Theorem 2.1 is such that the group S(t)
generated by A + BK satisfies eS(t)y 0 weakly as for all y in E.

Prooj Again, consider the control system given by (2.1) with feedback control
u(t) -B*D)y(t). Denote S(t) as the Co group on E generated by (A + 2i)
BB*D). From equality (2.2) we know IIS(t)yolle Llly0lle for some constant

L and all Yo in D(A*). Using the semigroup property of S(t) we also see that
II(A* + 2I BB*D))S(t)yolle < LII(A* + 2I BB*O-.a)yo for all Yo in
D(A*). Now let 21 bea number given by Lemma 2.1 which makes (A* + P + 2/)-
compact, where we identify P 2I BB*D). It then follows from the triangle
inequality that

II(A* + 21 BB*D-. + 2I)S’(t)yollE < LII(A* + 21 BB*D/)yoI[E

It then follows that for Y0 D(A*), S’(t)yo lies in a compact set of E for >__ 0.
Since D(A*) is dense in E we have from [6, Prop. 3.4] that for Yo E, S(t)yo lies
in a compact set of E.

At this point if we make the identification (A + 21) with the operator A of
Theorem 4.1 of [1] and apply Theorem 4.1 of [1] we can conclude that Sl(t)y 0
weakly as --, for all y in E. Since Sl(t) etS(t) the theorem is proved.

3. Relationship between complete controllability and stabilizability. In this
section we will consider the relationship between complete controllability and
stabilizability. In particular, we will restrict ourselves to the case when A is the
infinitesimal generator of a Co contraction semigroup T(t) on E, i.e.,
=< 1 for _>_ 0. For this class of generators it will be shown that Assumption 2
and complete controllability of (1.1) imply weak stabilizability of (1.1). Further-
more, in the special case when A -A* we will obtain the stronger result
that Assumption 2 and complete controllability of (1.1) imply stabilizability
of (1.1).

The principal tool in our analysis will be Hale’s generalization [4] of the well-
known invariance principle of LaSalle [5]. For completeness we will state a simpli-
fied linear version of the invariance principle. For the general nonlinear theory
the reader is referred to [4], [6]. Also, it should be noted that questions similar to
those studied here have been investigated in a similar invariance-principle spirit
by Dafermos in [7].

Let R (-, ), R+ [0, ) and 3 be a Banach space with norm
for 4-
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DEFINITION 3.1. Let U’R + x -o be a Co semigroup of bounded linear
operators. The positive orbit O +(qS) through 4 e is defined as

o +() u
t>o

DEFINITION 3.2. A set M + in M is a positively invariant set for the semigroup
U if for each 4 e M+, O+(4) c M +.

DEFINITION 3.3. If U is also a Co group on M, we will say a set M in M is
invariant for the group U if for each q5 M, U(t)ck M for R.

Remark 3.1. It is obvious that for U(t) a group invariance implies positive
invariance.

DEFINI.TION 3.4. If V is a continuous scalar function on M, define the func-
tional

l?(q) lim
,-o ,-7 [v(U(t)4*) v()].

DEFINITION 3.5. V’ --* R is said to be a Lyapunov functional on a set G in
if V is continuous on (, the closure of G, and if 12(4) =< 0 for in G. Further-

more, denote

S {b in G; l?(b)= 0}.
With these definitions it is possible to prove the following theorem.
THEOREM 3.1. Let U be a Co semigroup (group) on :. If V is a Lyapunovfunc-

tional on G and a positive orbit 0+() belongs to G and is in a compact set of,
then U(t)qb M + (U(t)4) M)as oo, where

M + the largest positive invariant set in S

(M the largest invariant set in S).

It is self-evident that in applications to the problem of asymptotic stability
the objective is to find a suitable functional V and show M+ {0} in the case
of semigroups and M {0} in the case of groups. (Of course, in the group case,
since M+ M, M+ {0} implies M {0}.)

We will now indicate our stabilization results. First let us choose our stabiliz-
ing feedback as u(t) -B*x(t) so that our stabilized control system is given by

(3.1) 5(t) Ax(t)- SS*x(t).

Since BB* C(E, E), A BB* is the infinitesimal generator of a Co semigroup
(group) on E when A is the infinitesimal generator of a Co semigroup (group) on
E. Let us denote this semigroup (group) by S(t). Our aim is to find conditionsso
that S(t)y 0 as ---, for y e E.

THEOREM 3.2. Let A be the infinitesimal generator ofa Co contraction semigroup
T(t) on E for O. If (i)for every y E, S*(t)y remains in some compact set of E
(which may depend on y)for >= O, (ii) (1.1) is completely controllable, then S(t)y 0
weakly as for all y E, i.e., (1.1) is weakly stabilizable.

Proof Let C A BB*. Then C* is the infinitesimal generator of S*(t),
where D(C*)= D(A*). Consider the functional on E given by V(x)= 1/211xlle2.
Since T(t) IZetE,E) =< we have (x, A*x)E <= 0 for all x D(A*) and thus a simple
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computation shows l?(S*(t)Xo) <= -IlB*S*(t)Xoll for Xo e D(C*). Now let y e E.
Since D(C*) is dense in E there exists {y,} c D(C*) so that y, y in E. Then

(3.2)

I?(y)- lim
,-o+

[V(S*(t)y) V(y)] t-0+iim ,-lim [V(S*(t)y,,) V(y,)]

,o+ , B*S*(s)y, ll ds

-IIB*yl foryinE.

Now we are ready to apply Theorem 3.1. We identify the semigroup U of
Definition 3.1 as S*(t) and the set G in Definition 3.4 as E. V is then a Lyapunov
functional on E. Furthermore, hypothesis (i) implies that for the semigroup S*(t),
O /(y) belongs to a compact set of E. Theorem 3.1 then implies that S*(t)y --, M +

as , where M/ is the largest positive invariant set in {y e E; l?(y) 0}.
Our task is now to show that M/= {0}. Let m eM/ and define z(t)

o S*(s)m ds. Since C* is closed it follows that z(t)e D(C*) and6

(3.3) (t)=A*z(t)-BB*z(t)/m for >=0.

From the definition of M + it follows that B*S*(t)m 0 for all t> 0. Thus
B*z(t) 0 for >_ 0 and we see, using (3.3), that this implies by the standard
variation ofconstants formula and z(0) 0 that z(t) o T*(s)m ds. But B*z(t) 0
so

B*T*(s)mds =0 for >_-0.

This in turn implies B*T*(t)m 0 for all _>_ 0 and, employing the complete
controllability hypothesis, we see that m 0. Applying Theorem 3.1, we then
conclude that S*(t)y - 0 in E as for y e E. Thus S(t)y 0 weakly in E as

and we have proved weak stabilizability.
THEOREM 3.3. Let A be the infinitesimal generator of a Co contraction group

T(t) on Efor >= O. If (i) for every y e E, S(t)y remains in a compact set ofE (which
may depend on y)for >= O, (ii) (1.1) is completely controllable, (iii) A -A*, then
S(t)y 0 as for all y e E, i.e., (1.1) is stabilizable.

Proof Again, let C A BB*. Consider the functional on E given by V(x)
1/211xl[, Since T(t)ll,) we have (x, Ax)e 0 for all x e D(A) and thus a

simple computation shows that (/(S(t)Xo) <= -IIB*S(t)Xo I for Xo D(C) (= D(A)).
Following the same argument as in the proof of Theorem 3.2, we can conclude
that

(3.4) l?(y) =< IIB*y II for y in E.

See the Appendix.
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Again, we wish to apply Theorem 3.1. We identify the semigroup U of Defini-
tion 3.1 as S(t) and the set G in Definition 3.4 as E. Furthermore, hypothesis (i)
implies that for the group S(t), 0 +(y) belongs to a compact set of E. Theorem 3.1
then implies that S(t)y- M as , where M is the largest invariant set in
{y e . (y) 0}.

Let m e M and define z(t)= S(s)m ds. Since C is closed it follows that
z(t) e D(C) and

$(t)=Az(t)-BB*z(t)+ m for - < < .
From the definition of M it follows that B*S(t)m 0 for all -c < < . Thus
B*z(t) 0 for all - < < and we see, using (3.5), that B*T(t)m 0 for all- < < . Since A -A* we know that T(t) T*(-t) and in particular
this implies B* T*(t)m 0 for all >= 0. Thus m 0 and, applying Theorem 3.1,
we can conclude S(t)y 0 as --. .

Remark 3.2. In the preceding two theorems we have made compactness
hypotheses on the trajectories of the semigroups S(t) and S*(t) in order to apply
Theorem 3.1. There is a special case where these hypotheses are satisfied without
any further assumptions. This is the case when T(t) is a compact operator for all
> 0. This is the situation, for example, when A is the infinitesimal generator of a

solution ofa linear parabolic equation. When T(t) is compact for all > 0 it then fol-
lows that S(t) and S*(t) are compact for all > 0. Hence, for any y in E, S(t)y and
S*(t)y will lie in compact sets of E for => 0. It should also be noted that if S(t)
is compact for all > 0 then S(t)y - 0 weakly as in E implies S(t)y 0 as
t in E which, by a result of Datko [9, Thm. 3] implies that IlS(t)lle(e,)
<_ Me -’t for M => and 03 > 0. These results are summarized in the following
corollary.

COROLLArt’ 3.1. Let A be the infinitesimal generator of a Co contraction semi-
group T(t) on E. If(i) T(t) is a compact operator for every > O, (ii) (1.1) is com-
pletely controllable, then S(t)llt,) _-< me-’ for M >= 1 and 03 > O.

The above corollary is of little usefulness in applications since compact
semigroups are usually associated with linear parabolic equations which are
inherently asymptotically stable. The more interesting case is the one motivated
by linear hyperbolic equations, for example, the wave equation, where the un-
controlled system is stable but not asymptotically stable. Furthermore, for linear
hyperbolic equations S(t) is never compact for any and we must verify the com-
pactness hypothesis of Theorems 3.2 and 3.3 by the type of technique used in
Theorem 2.2. This is illustrated in the following result, where we show that
Assumption 2 will yield the desired compactness properties.

THEOREM 3.4. (i) If A is the infinitesimal generator of a Co contraction semi-

group T(t) on E and A* satisfies Assumption 2, then for y in E, S*(t)y remains in a

compact set of E for >= O.
(ii) If A is the infinitesimal generator of a Co contraction semigroup T(t) on

E and A satisfies Assumption 2, then for y in E, S(t)y remains in a compact set of E
fort >=O.

Proof (i) Let P -BB* and let 21 be a value of 2 in Lemma 2.1 so that
(A* BB* + 211)-1 is compact. We know from (3.2) that for Yo D(A*), >= O,
S*(t)yo E <= Ily011, Using the semigroup property of S*(t) we then have
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II(A* BB*)S*(t)yolIE <= II(A* BB*)yolIE. This in turn implies, by the triangle
inequality, that I(A* BB* + lI)S*(t)yoll <= I(Z* BB*)yolI / 121111Yoll.
Since (A* -BB* + 211) -1 is compact, we therefore know that for Yo D(A*),
S*(t)yo lies in a compact set of E for >= 0. Since D(A*) is dense in E we can apply
Proposition 3.4 of [6] to conclude that for y E, S*(t)y lies in a compact set of E
for > 0.

(ii) The proof is exactly the same as in (i).
Theorems 3.2, 3.3 and 3.4 can be combined to give the following results.
THEOREM 3.5. Let A be the infinitesimal generator ofa Co contraction semigroup

T(t) on E for >= O. If(i) A* satisfies Assumption 2, and (ii) (1.1) is completely con-
trollable, then S(t)y - 0 weakly as - for all y in E, i.e., (1.1) is weakly stabilizable.

THEOREM 3.6. Let A be the infinitesimal generator of a Co contraction group
T(t) on E. If (i) A satisfies Assumption 2, (ii) (1.1) is completely controllable, and
(iii) A -A*, then S(t)y - 0 as - o for all y in E, i.e., (1.1) is stabilizable.

An example’perturbed wave equation. We consider as a model case the prob-
lem of stabilizing the perturbed wave equation. Let

(3.6) A= IA0 101 +P, P’(E,E),

where E =/:/1(f2) Ho(f2), 92 some bounded sufficiently smooth spatial domain
in R", D(A) {Hz(f2) f) (f2)} /-)(f2), and (Px, x) <_ 0 for all x in E. In this
case Ax represents some stable perturbation of the wave equation and A is
the infinitesimal generator of a Co semigroup of contractions on E. It follows from
Remark 2.2 and Lemma 2.1 that A and A* satisfy Assumption 2. We can then
apply Theorem 3.5 to conclude that for A given by (3.6), complete controllability
implies weak stabilizability. Furthermore, in the case P- 0 we have from
Theorem 3.6 that complete controllability implies stabilizability.

It should be noted that Remark 2.2 implies that the same results as given for
the perturbed wave equation can be obtained for more general second order
evolution equations as long as the uncontrolled system defines a contraction
semigroup.

Appendix. Computation of equation (2.2). Let w(t) S(t)yo. Then w(t)D(A*)

and

d
a-(w(t), o,

2(D,A*w(t), w(t))e + 22(D,w(t), w(t))E- 2 B*w(t)ll 2H

2 e-X(T(-s)BB*r*(-s)A*w(t), w(t))ds

+ 22(D,zw(t), w(t))- 2 B*w(t)

-2 e-xs r(-s)BB*sr*(-s)w(t),w(t) ds
E

(cont.)
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4- 2(D,aw(t), w(t)) 2llB*w(t))l[t

2 e- zz _d B* r*( s)w(t) B* r*( s)w(t)

+ 22(D,zw(t), w(t))e 2 IB*w(t)ll

f d -’B*lie T*(-s)w(t)12n ds 2llB*w(t)[lzn

lie- ;’B* T*(- e)S’(t)yo

ds

Computation of equation (3.3). For x D(A*) we know

d
S*(t)x A*S*(t)x BB*S*(t)x.

dt

Integrating with respect to from 0 to yields

S*(t)x x A* S*(s)x ds BB* S*(s)x ds,

where the fact that C* is closed is used to move A* BB* outside the integral.
Since D(A*) is dense in E and A* is closed the above equation holds for all x in E
and in particular for x m. Equation (3.3) follows immediately since z(t)

I’o S*(s)m ds.

Acknowledgment. The author would like to thank Prof. D. Henry of the
University of Kentucky for pointing out an observation by Prof. F. Massey which
yielded the improvements over the results given in [1]. Also, the author would
like to thank Prof. C. Dafermos of Brown University for several stimulating
conversations.

REFERENCES

1] M. SLEMROD, The linear stabilization problem in Hilbert space, J. Functional Analysis, to appear.
[2] H. O. FATTORINI, On complete controllability oflinear systems, J. Differential Equations, 3 (1967),

pp. 391-402.
[3] --, Controllability of higher-order linear systems, Mathematical Theory of Control, A. V.

Balakrishnan and L. Neustadt, eds., Academic Press, New York, 1967, pp. 301-311.
[4] J. K. HALE, Dynamical systems and stability, J. Math. Anal. Appl., 26 (1969), pp. 39-59.
[5] J. P. LASALLE, Stability theory for ordinary differential equations, J. Differential Equations, 4

(1968), pp. 57-65.
[6] C. M. DAFERMOS, Uniform processes and semicontinuous Lyapunovfunctionals, Ibid., 11 (1972),

pp. 401-415.
[7] --, Applications ofthe invariance principlefor compact processes. 1. Asymptotically dynamical

systems, Ibid., 9 (1971), pp. 291-299.
[8] T. KATO, Perturbation Theoryfor Linear Operators, Springer-Verlag, New York, 1966.
[9] R. DATKO, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J.

Math. Anal., 3 (1972), pp. 428-445.
[10] L. BERS, F. JOhN and M. SCHECTER, Partial Differential Equations, Interscience, New York, 1964.
[11] D. L. LUKES, Stabilizability and optimal control, Funkcial. Ekvac., 11 (1968), pp. 39-50.



SIAM J. CONTROL
VOI. 12, No. 3, August 1974

AN EXISTENCE THEOREM FOR PENALTY FUNCTION THEORY*

J. P. EVANS’ AND F. J. GOULD

Abstract. A necessary condition is presented for the existence of global maxima of penalty functions
without a barrier. This condition with one additional restriction is proved to be sufficient.

1. Introduction. Consider the nonlinear programming problem

maximize f(x)

subject to gj(x) < O j= 1 m

where f" R" R, gj" R" R, j 1, ..., m, and all functions are assumed con-
tinuous on R". A frequently employed solution technique is to compose, using f
and the g’s, a penalty function which often contains a scalar parameter, say .
The penalty function P(x, fi) is formed in such a way that, hopefully, the following
properties are obtained"

(i) For each parameter value (k the function P(x, 6k) has a global maximum
in x, say at xk.

(ii) As 6k the points x (or, more typically, any convergent subsequence
of these points) tend to a solution to the nonlinear program.

Numerous classes of penalty functions have appeared in the literature and
considerable research has been devoted to both the theoretic and the computational
aspects of their usage. The two most heavily studied classes are barrier functions
and exterior functions. A third less studied class is the exponential functions.
An excellent survey of the history of penalty function development is found in
the book by Fiacco and McCormick [6].

At this time most of the theory is sufficiently well developed that the thrust
of interest is in the computational sphere. However, there is an important loose end
concerning the existence of the unconstrained maxima xk. For the barrier methods
the existence is guaranteed by the method of construction of the function P. For
the classes described as exponential and exterior the existence is not guaranteed
and it is a trivial matter to construct examples where P(x, 6) has no global maximum
in x. In previous works on these latter classes any mention of this problem has
usually been limited to the assumption that the maximum does indeed exist.
The purpose of this paper is to clarify those circumstances under which such an
assumption is valid. In particular, for a general class of penalty functions a global
growth rate condition is shown to be necessary for the existence of global maxima;
with an additional mild restriction this growth rate is sufficient. The class ofpenalty
functions will include the above-mentioned exponential and exterior functions.
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In certain favorable circumstances our condition is operationally verifiable,
though in practice such verifications are rarely attempted and the result is presented
mainly for the sake of theoretic completeness.

2. A class of multiplier functions. In this section we introduce a class of
multiplier functions on which the subsequent discussion of existence results will
be based. A representative list of examples indicates roughly the generality of the
class.

Let 2"RxA--,RU{+o}, where A={R’>__0}. Define the class m of
multiplier functions to be that set of functions 2 satisfying the following properties

1. 2(, e) is continuous on R x A, nondecreasing in __< 0, increasing in
>0and2(0, e)=< lforalleeA.

2. > 0, e > 0 implies 2(, e) > 0.
3. For each > 0, 2(, e) is increasing in e, and 2(, e) --, o as .
4. For each e R, 2(, e) is convex in .
5. 2(, ) __> -1 for all R, eeA.
Examples.

(2.1a) 2(, e) e 1,

(2.1b) 2(, ) e;

(2.2) 2(, 0)=
(0, < 0,, >0,

where p is a fixed positive integer;

(, )
0,

(2.3)
e 1,

Next we define the penalty function P" R x A x A + RU{- o} by

P(x o, ) f(x) 2(gj(x),
j=l

where 2M,eA+ {/3eR’/3 > 01. If 2 is chosen as in example (2.1b) and
/3 1, we have the exponential penalty function studied by Allran and Johnsen [2].
Again taking 2 as in (2.1b) but now allowing/ to vary in A + subject to the restric-
tion e __>.. 1// >__ we have the more general exponential function investigated by
Murphy [7] and Evans and Gould [4]. The/l of example (2.2) in conjunction with
/? is the potential function of Pietrzykowski [8] and includes as a special case
the quadratic loss function investigated by Ablow and Brigham [1], Camp [3],
and Zangwill [9]. Examples (2.2) and (2.3) give rise to penalty functions of the
exterior type. That is, no penalty is assessed in the feasible region, but a penalty,
which increases with the extent of constraint violation, is levied on each infeasible
point.

Observe that example (2.1b) assigns a finite positive penalty to each point at
which a constraint is satisfied; in particular, this applies to points in the boundary
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of the feasible region. Intuitively, this places such functions in an intermediate
position between barrier functions and the exterior penalty function mentioned
above. Section 4 contains a more precise description of the properties of this class
and shows that under favorable conditions a weak barrier property holds; namely,
the unconstrained maximizers are eventually all feasible, i.e., within the constraint
set {xR"’gj(x) <= O, j 1,..., m}.

3. Existence of a penalty function maximizer. The major step in penalty
methods is the unconstrained maximization of the penalty function. For compact
constraint sets this maximum is guaranteed to exist for barrier functions by the
assignment of an infinite penalty to boundary and infeasible points. However,
for the class offunctions of interest in this paper it is easy to construct programming
problems such that the resultant penalty function has no unconstrained maximum.
In this section we develop necessary and sufficient conditions for P(x; , fl) to have
an unconstrained maximum.

All results in this section are for penalty functions constructed with multiplier
functions from the class M defined in 2. In addition we shall employ a growth
rate condition the satisfaction of which depends upon the programming problem
under consideration. First define

S {x R"’gj(x) <= (, j 1,... m},
(x) max {gj(x)’j 1,..., m}.

The growth rate property to be exploited is"
C1. For each 6 > 0 there exist scalars 4 > 0 and K > 0 such that f(x)

__< K2((x), 4) for all x R" S.
Observe that if condition C1 holds for 4 A, property 3 of 2 implies that C1 holds
for each a >__ 4. Moreover, if C1 holds for K K" it also holds for K _>_ .

TIORFM 3.1. Suppose condition C1 is satisfied and that for some 6 > 0 the set

S is compact. Then for each fl > 0 there is an o* A such that o >= * implies that
P(x o, fl) has a global maximum and each global maximizer belongs to S.

Proof. Let fl > 0 be given. Let X So {x R"’gj(x) <= O, j 1, ..., m}.
Then from property of 2,

2(gj(ff),a)<m for allaA.
j=l

Hence

max [P(x; , fl)" x e S] >= f() mfl for all e e A.

Now suppose x R" S; thus (x) > 6. From condition C1 there exist constants
4 A and K > 0 such that f(x) <= K)(]g(x), 4) for each x R" S. By property 4
of2forp=> lwehave

p2(, 00 =< 2(,pe)+ (p- 1)2(, 0).

Without loss of generality we can assume 2K >/. Thus for _>_ 2K4/

For example, take 2(. as in (2.2) with p 2,f(x) x and g(x) x 1, where x e R.



512 J. P. EVANS AND F. J. GOULD

we have for x

f(x) < K2((x) ) fllZKI
fl__12K- fl)(3.1) < -fl2((x)) + 2(x) O)=2

-2 2

in which the last inequality follows from property 3 of 2. By this same property
we can choose such that e implies

Then for e e* max [e, ], (3.1) and (3.2) yield

f(x)- f() + (2m- 1)fl __< fl2(x), z).

By property 5 of 2, 2(gj(x), o) >_ 1, j 1, ..., m, for each x e R". Thus for
x e R" S0 we have

2((x), o) =< 2(&(x), )+ (m- 1).

Thus x e R" So and a >__ * yields

P(x o, fl) f(x) fl 2(&(x), o) =< f(ff) mfl <= max [P(x; e, fl) x e So].
j=l

The conclusion follows.
The following result is a close relative of Theorem 3.1 and can be established

from the conclusion of that theorem.
THEOREM 3.2. Suppose the conditions of Theorem 3.1 hold. Let > 0 be given

and suppose z* A is such that each maximizer of P(x z*, ) belongs to So. Let
be any continuous function such that

(i) /3(x) => P(x o*, fl), x So,
(ii) /(x) =< P(x *, fl), x e R" So.

Then P(x) has a global maximizer in R" and each such maximizer belongs to So.
We now show that if P(x; , fl) has a global maximum on R" then condition C1
must be valid.

THEOREM 3.3. Let oo A, flo > 0 be given and suppose P(x Oo, flo) has a global
maximum on R". Then condition C1 is satisfied.

Proof. Let c5 > 0 be given; we must show that there exist positive scalars
0, K such that

Let

f(x) <= K2(x), ) for all x e R" So.

max [P(x; zo, flo) X e R"] >= f(x) flo 2(gj(x), o)
j=l
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for each x s R". Since, for each j, gj(x) <= 2o(x), we obtain, from property 1 of 2,

2(gj(x), e) _< m2((x), e) for all e e A;
j=l

hence

P(x , flo) >- f(x) mflo2((x), o) for all e e A.

Now we can choose K > 2mflo and > eo such that

K2(6, ) >= 2
by property 3 of 2. Then for x e R" S,

K
f(x) <_ f + mflo2(fg(x), Co) =< 2(6, )+ mflo2(fg(x), o)

<= I,;,(x), ),

where the last inequality holds by properties 1, 2, and 3 of 2. Since 6 was arbitrary,
the theorem is proved.

It should be noted that Theorem 3.1 shows that conditions C1 and the compact-
ness of S, for some 6 > 0, is a sufficient condition for the existence of a penalty
function maximizer. Theorem 3.3 shows that C1 alone is necessary, without regard
to compactness of Sa. In this sense C1 is necessary and nearly sufficient. It should
be clear that verification of condition C1 for any specific problem requires a
certain amount of knowledge of the functions involved. In various cases this
verification may be more or less difficult or even impossible. We now show that if
the 2 functions are convex in the first argument, then C1 will always hold for the
functions in a concave programming problem with a compact constraint set.

THEOREM 3.4. Suppose that the multiplier function 2 satisfies properties 1
through 5 of 2 and the following additional property.

6. For each >= 0, ,(, ) is convex in over {’ >__ 0}. Assume the nonlinear
program is concave with f continuously differentiable and that the constraint set So
is compact. Then for each 6 > 0 there exist positive scalars , K such that

f(x) <= K2(x), ) for all x R" S.
Proof. Let 6 > 0 be given. Since the constraint functions are convex and

since So is compact it follows that, for each 6 > 0, the set S is also compact. Since

So 4: it follows that, for some x, x) __< 0, and hence

gj(x) < 6, j 1,..., m.

It then follows from Lemma 3.1 of [5] that there is an e > 0 such that for each
x e R" S there is a z e cS and a constraint active at z (i.e., gj(z) 6) such that

(3.3) gj(x) >= e, x

where z and j may depend on x, but e does not. Also note that since S is compact
there exist constants p and P2 such that for each z

(3.4) f(z)<= p and IlVf(z)ll -< p2.
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Now let x R" S0 and let z be as in (3.3). Then

f(x) <__ f(z) + (x z)rVf(z)

<=pl+pz X--z

<= Pl + Pzgj(x)/e

<= P + PzY(x)/e

(by concavity of f)

(by (3.4))

(by (3.3))

Hence by property 3 of 2 there is an > 0 such that

(3.5) f(x) <= 2(6, ) + 2(6, )(x).

Now since 2(, a) is convex in for a >= 0, for any => we have

6 6
(0(6, ) __< (, )+

which can be rearranged in the form

[(6, ) (0, )] _<_ 6[(, ) (0, )]

in which both terms in square brackets are positive by property of 2. Hence

>= 6 implies that
6)(6, o) 62(0,

(6, ) <
(6, ) (0, )

(’ )
(6,

in which the second term on the right is nonnegative by the properties of 2. Thus
letting K’ 62(6, )/[2(6, ) 2(0, )] yields

x)2(6, ) =< K’)((x), ) for all x

Now if we let K K’ + 1, substituting this last inequality in (3.5) yields

f(x) <= 2(6, a) + K’2(x), )

<= (gx), ) + K’(x), ) K(gx),

for each x R" S0, which is the desired result.
Remark. Note that the Slater condition is not required.

4. Application ofthe existence theorem. In this section several specific relations
to previous works are identified. Let

I {xe R"’gj(x) < O, j 1,..., m}
and as before

So {x R"’gj(x) <= t, j 1,’’’, m}.
It will be assumed that I is nonempty and that the constraint set So is compact.

A. Exponential penalty functions. These functions, exemplified by the first
example in 2, have been investigated by Allran and Johnsen [2] and Murphy [7].
In 1970, Allran and Johnsen studied the exponential penalty function determined
by selecting 2 as in example (2.1b). That is,

P(x , 1) f(x) E eg(x)"
j=l
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Though the work involved in their primary results is substantially in error, correct
arguments can be provided to show that without convexity assumptions"

(i) For all e sufficiently large, maxx P(x;7, 1) is attained for some x in I.
This implies that, in particular, since I is open, P(x; , 1) has a local maximum in !
for all e sufficiently large.

(ii) As e oe any convergent subsequence of x (and there must be at least
one since xe I c So, a compact set) converges to a solution of the problem
max [f(x)’x e closure I].

(iii) Consequently if closure I So the subsequence converges to a nonlinear
programming solution.

The above results reduce the original constrained problem to another
constrained problem (maxx/P(x;o, 1)) which in general may be no more con-
venient to solve than the original problem. However, in the special case where
P(x; e, 1) is strictly concave in x it follows immediately that for e sufficiently large,
maxxeRn P(x; o, 1) exists at some unique x which is in I. This then facilitates
matters by allowing for the use of sequential unconstrained methods on the penalty
function.

In a 1971 investigation by Murphy, again taking 2 as in example (2.1b) but
allowing / to vary subject to the restriction _>_ 1// _>_ 1, it has been shown
that’

(iv) In the general (not necessarily concave) case, if closure I So and a
sequence of penalty function maximizers exists, and is eventually in a compact set,
then each convergent subsequence has a limit point which solves the original
problem.

(v) In the differentiable concave case (but without strict concavity), when
the product e/ is sufficiently large, maxxR P(x; , ) exists and moreover all of
the maximizing values of x are feasible (though not necessarily in I as in (iii)
above).

Our existence Theorem 3.1 supplements this development by providing
conditions directly related to the structure of the original problem which are
sufficient for the existence of the penalty function maximizers in a compact set
as required in (iv) above.

B. Exterior methods. In this section the multiplier functions 2 are selected as
in examples (2.2) and (2.3), and we suppose that for some 6 > 0 the set S is compact.
Then without further assumptions the following results are true.

(vi) Select any 7 such that 0 < /< . Then for all e sufficiently large,
maxxs P(x;, [3) is achieved at some x St.

(vii) As e oe any convergent subsequence of the x’s (there is at least one)
converges to a solution to the nonlinear program.

Thus far, again, this result merely replaces one constrained problem with
another. However, Theorem 3.1 is directly applicable. If the growth rate assump-
tion C1 is satisfied, then the operation maXxs, can be replaced with maxxR,,
the above same results (vi) and (vii) hold, and unconstrained optimization can be
used on the penalty function. In most expositions on exterior methods maximiza-
tion over R" is required, but nowhere, to our knowledge, is there any existence
justification in nonconcave problems.
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REALIZATION AND STRUCTURE THEORY OF BILINEAR
DYNAMICAL SYSTEMS*

PAOLO D’ALESSANDRO, ALBERTO ISIDORIf AND ANTONIO RUBERTI

Abstract. Starting from the description of the system provided by the series expansion of the zero-
state response, this paper develops the realization theory for bilinear systems. It is shown that the
condition of realizability corresponds to that of the factorizability of the kernels of this expansion.
The paper then analyzes the properties of the minimal and nonminimal factorizations and provides
a solution of the problem of characterizing the minimal realizations. Subsequently, developing the
structure analysis of the state space, it is shown that there exists a canonical form of the equations and
the results of the realization theory are interpreted on this basis. Lastly, the bases are laid for developing
realization procedures, and it is shown that the sequence of kernels of a bilinear system is completely
identified by a finite number of these kernels.

1. Introduction. In this paper we present a complete realization theory of
bilinear systems, a class of nonlinear systems which has raised considerable
interest in the last few years (see, for example, [8]).

The system model considered in this theory is the sequence of kernels
characterizing the Volterra series expansion of the zero-state response. It is
shown first that a necessary and sufficient condition for the existence of bilinear
realizations can be expressed as a sort of factorizability property ( 3). Then we
present quite a complete analysis of the sequences that satisfy this condition
(4), in order to derive the tools for studying minimal bilinear realizations. A
complete characterization of these realizations reveals the interest in considering,
besides the dimension of the state space, also the least number of multipliers needed
to implement the nonlinear map. The analysis shows that this number assumes
its minimum just over the minimal realizations. These, moreover, are a single
equivalence class ( 5).

As for linear systems, the minimal realization theory can be connected with
the structure analysis of the state space. This latter is developed here on the basis
of reachability (from the origin) and unobservability. As a result, we obtain a
canonical form of the equations and we show that the kernels of the Volterra
series expansion of the zero-state response depend only on one of the subsystems
identified in the decomposition. This subsystem provides, modulo an equivalence,
a minimal bilinear realization ( 6). Finally, we present an outline of the pro-
cedures for constructing minimal bilinear realizations ( 7).

For the sake of brevity and notational simplicity, the analysis is presented
here for single-input, single-output systems; the extension to the multidimensional
case can be found in [4]. Some results of the present paper (statement (c) of
Theorem 4 and Theorem 8) have been proved, simultaneously and independently,
by R. W. Brockett [1].

* Received by the editors June 8, 1972, and in revised form May 21, 1973. This work was supported
in part by the National Council of Research of Italy.

" Istituto di Automatica, University of Rome, 00184 Rome, Italy.
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2. Bilinear equations and their solutions. The input-state-output equations of
a single-input single-output bilinear system are usually written in the form

(1)
(t)-- Ax(t) + Nx(t)u(t) + Bu(t),
y(t) Cx(

where u(t) R is the input, y(t) R is the output, and x(t) R" is the state at time t.
The matrices A, N, B, C are constant matrices of suitable dimensions.

If the system described by equations (1) is in the initial state Xo at time 0,
the response y(t) can be decomposed into the sum

(2) y(t) y,(t) + y,(t) + y,,(t),

in which the first two terms respectively represent the zero-input response and the
zero-state response.

The expression for yx(t) can be obtained immediately by putting u(t) 0 into
equations (1), i.e.,

(3) Yx(t) C ea’xo
If the input belongs to the class of functions bounded on finite intervals [2], the
response y,(t) can be expanded in a Volterra series with symmetrical kernels
according to the expression

(4) y,(t) i= . wi(tl, ti)
k=,

u(t k) dtl dti.

The symmetrical kernels of series (4) can be calculated from

(5) Wi(tl’ ti)-- 2 Vi(tl’ t,),
per

where the summation is carried out over all the i! permutations of the variables
l, ..., ti. The functions vi(t, ..., ti) are given by

(6a) Vl(tl) C eAt’B,
(6b) Vi(tl, ti) C eAtiN eA(ti- l-t,) N eA(t’-t2)

IiI2 )]B 6_ l(tk + tk + 2 > 1,
k= 0

where 6_ l(t) denotes the unit step function.
On the basis of the same assumptions, the response y,(t) can likewise be

expanded in a Volterra series according to the expression

(7) Yx,(t) . zi(tl, N)ea{t-t*)xo u(t tk) dt, dti.
i= k=l

Here the expressions for the symmetrical kernels z(t, -.., t0, 1, .-.,
can be determined from the expressions (5) and (6) of the kernels w(t,...,
by replacing the matrix B by an n n identity matrix.
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3. Realizability conditions. Starting from expression (4) of the zero-state
response of system (1), it is natural to assume the following definition of realiza-
bility.

DEFINITION 1. A sequence {wi(tl, ..., ti)) of symmetrical kernels of a
Volterra series expansion is realizable by means of a constant bilinear dynamical
system with finite-dimensional state space (briefly: is bilinearly realizable) if there
exist four constant matrices A, N, B, C, respectively n n, n n, n 1, n,
such that the following relations are satisfied:

(8a) C ea’lB Wl(tl) for all tl,

(Sb)
Z C eAt’N eA(t’-’-t’) N eA(t’-t2)B H (- i(tk+ tlc+
per 0

wi(tl,... ti) for all tk, k 1,..., i, for all > 1.

The first result concerns a condition of realizability, and is expressed by the
following theorem.

THEOREM 1. A necessary and sufficient condition for a sequence {wi(t 1, "’", ti)}
of symmetrical kernels of a Volterra series expansion to be bilinearly realizable is:

(a) that wl(tl) have a proper rational Laplace transform;
(b) that there exist three matrices F(t), G(t), H(t), respectively m m, m 1,
m, offunctions with proper ratibnal Laplace transforms, such that the following

relations are satisfied:
(9a) Wi(tl, "’", ti)-- H(ti)F(ti_l ti)"" F(t2 t3)G(t /-2)

on

(9b) Si {(t l, ti):tl > t2 > > ti} for all > 1.

Remark 1. The above condition also holds if the variables 1,..., ti in (9)
are permutated in any way.

Proof. Necessity. If the sequence {wi(tl,..., ti)} is realizable, then, by
hypothesis, there exist four matrices A, N, B, C such that equations (8) are satisfied.
The first of these implies the condition (a). Equation (8b), considered over the
sets Si defined above, reduces to

(10) C eAtiN eA(ti- -t,) N ea(t’-t2)B wi(tl, ti) for all > 1.

If the matrix N is now factorized in the form

(ll) U U’U"

where N’ is n m and N" is m n, it is immediately seen that (10) can be trans-
formed into the form (9), with the substitutions

(12) C eAS H(t), S" eAS F(t), S" eAB G(t).

Since all these functions have proper rational Laplace transforms, it follows that
condition (b) is also satisfied.



520 PAOLO D’ALESSANDRO, ALBERTO ISIDORI AND ANTONIO RUBERTI

Sufficiency. Suppose that (a) and (b) are both. satisfied, and consider the
matrix

(13) L(t) l/Wl(t) H(t)’
G(t) F(t)

Since all the elements of L(t) have proper rational Laplace transforms, this may
be interpreted as the weighting pattern of a constant linear system of finite order
with m + outputs and m + inputs. Consequently, there must exist three
matrices A, R, S, respectively n x n, n x (m + 1), (m + 1) x n, such that

(14) S eatR L(t).

By partitioning S and R in the form

(15) S
$2

R (R1 R2),

where $1 is a x n matrix and R1 an n x matrix, one obtains

(16)
Wl(t) S1 eAtR1,

G(t) S2 eAtR1,
Now substitute (16) in (9) and let

H(t) $1 eAtR2,

F(t) S2 eatR2

(17) B R1, C S1, N R2S2.

It follows that the bilinear system characterized by the matrix A and the matrices
N, B, C defined in (17) verifies the equations in (8) over the sets Si.

On the other hand, since wi(tl, ..., t) is symmetrical by definition, equations
(8) are satisfied for all values of the variables l, ..., ti. This completes the proof.

4. Factorizable sequences of kernels. The result established in Theorem
naturally leads to the consideration of those subsequences {wi(tl,..., t)} which
can be expressed in the form (9). In the sequel such sequences will be called
factorizable and the triplet {F(t), G(t), H(t)} a factorization.

In order to analyze the properties of these sequences, it is convenient to
introduce the following matrices (note that F(t) is m x m, G(t) is m x and
H(t) is x m):

(18) P[.F, G](tl,..., t)= [G(tl) F(t2)G(tl)... F(t)F(t_ 1)"" G(tl)],

(19) Qk[F,H](tl,

H(tl)

H(t ):F(t2) ).
H(t 1)"" F(tk- x)F(tk)/

We shall be concerned with the problem of testing whether the m rows of
Pk[F, G] (the m columns of Qk[F, HI) are linearly independent functions or not;
since F(t), G(t) and H(t), by hypothesis, are functions with proper rational Laplace
transform (see Theorem 1), it will be sufficient to test the linear independence
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over some subinterval of Rk, e.g., over Ak {(t l, "’, tk)’O < ti <= 1, for all i}.
This leads to introducing the Gramian matrices

(20) @[F, G] ; PP dt.., dt,

(21) k[F, HI | QQk dtl dtk.

The first basic results concerning matrices (20) and (18) are expressed by the
following lemmas.

LEMMA 1. There exists an integer k’ such that

(22) [] N[+ i]

(23) N[] N[+ i]

and, furthermore,

(24) k’ __< m.

for all k < k’,

for all k >= k’,

Proof Relations (22) and (23) can be proved by first showing that

(25) [ik] --- [ik + 1] for all k

and that

(26) N[’k-,] [Nk] for some k N[’k] NiCk+ 1]

whose validity is a direct consequence of definitions (18) and (20). Lastly, (24)
follows from (22), (23) and

(27) [k] - R" for all k.

LEMMA 2. /fonly rfi < m rows of Pm[F, G] (t 1,’", t,,) are linearly independent
over A,,, then there exists a constant nonsingular m x m matrix T such that

(28) TF(t)T_I= (F1;(t) F12(t)
TG(t)=

Gl(t)

F22(t)] 0

where the matrices F1 l(t) and G l(t) are respectively rfi rfi and rfi and
(t l,’", t) has its rfi rows linearly independent over A,.

Proof If only rfi rows of P, IF, G] are linearly independent over Am, there
exists a constant nonsingular m m matrix T such that

](tl, tm)’
(29) TPm[F, G] (t l, tin)

0

with the rfi rows of/(tl, .-., tin) linearly independent over
Bearing in mind definition (18), this proves the second equation of (28) and,

after the partition

(30) rF(t)r-l= (F11(t) F12(t)/
F2 l(t) V22(t)]’
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also gives

(31)

(32)

P(tl, tm) Pm[Fll, G1](tl, ’’’, tm),

F21(t)Pm_l[Fl G1](tl, tin_l) 0.

It follows from (31) that m[Fll, G1] has rankrfi; therefore, on the basis of
Lemma 1, ,[FI, G x] also has rank rh, or, what is the same, the rfi rows of
P,[F11, G1] (t 1,..., t,) are linearly independent. From this and from (32) it
follows that Fz1(t) 0 and this completes the proof.

Similar results can be proved for matrices (21) and (19).
LEMMA 3. There exists an integer k" such that

(33)

(34)

and, furthermore,

[k] [k+ 1] for all k < k",

["k] ["k+ II for all k >= k",

(35) k" =< m.

LEMMA 4. If only fi < m columns of Qm[F, HI (t l, tin) are linearly inde-
pendent over Am, then there exists a constant nonsingular m x m matrix T such that

(36) TF(t)T-1
Flu(t) 0

F21(t F22(t)
H(t)T-’ (Hi(t) 0),

where the matrices F11(t) and Hl(t are respectively rfi x rfi and rfi, and
Qa,[F11, H1](t, ..., t,) has its rfi columns linearly independent over As,.

On the basis of these preliminary results, it is possible to examine the proper-
ties of the factorizable sequences of kernels and, particularly, to describe the set
of all factorizations. In this analysis the integer m will be called the dimension of
a factorization and, thus, a factorization will be minimal when its dimension
assumes the smallest value over the set of all factorizations of a given sequence.

The properties of the minimal factorizations are expressed by the following
theorem.

THEOREM 2. An m-dimensional factorization {F(t), G(t), H(t)} of a factorizable
sequence of kernels is minimal if and only if the rows ofP[F, G] and the columns of
Qm[F, HI are linearly independent over A. The minimal factorizations are a single
equivalence class modulo the relation

(37)

Fl(t) TF2(t)T -1

{Fl(t), Gl(t), H(t)} {F2(t), G2(t), H2(t)} Gl(t) TG2(t)

U,(t) H2(t)T- ’,
where T is a constant nonsingular m x m matrix.

Proof The proof will be divided into two parts, the first concerning the
minimality and the second the equivalence.

Part 1. Necessity. Suppose, for example, that the matrix Pm[F, G], correspond-
ing to a minimal factorization, has only rfi < m linearly independent rows. As a
consequence of Lemma 2, there will then exist a constant nonsingular m m
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matrix T such that

(38) TF(t)T_ (Fx(t)
Considering also the partition

(39) H(t)T-’ (H,(t) H2(t)),

it is immediately seen that the triplet {F (t), G(t), H(t)}, which has a dimension
rfi < m, is also a factorization of the sequence {wi(tx,..., ti)} and this contra-
dicts the hypothesis of minimality. A similar proof, based on Lemma 4, can be
given for the matrix Q,,[F, HI.

Part 1. Sufficiency. Suppose that the factorization {F(t), G(t), H(t)}, for which
the matrices Pm[F, G] and Qm[F,H] have, respectively, their rows and their
columns linearly independent, is not a minimal one and that, consequently, there
exists a factorization {/(t), (t), (t)} of dimension rfi < m for the same sequence
{w(t, ti)}. Considering now the matrices Pm[, ] and Qm[, ], it is readily
seen that (see (9))

(40)

Q[F, HI(t,,..., t)Pm[F, G](tm+ ,,..., t2m

Qm[,/-](t,, tm)Pm[ ](tm+,,’’" t2m).

Premultiplying both sides of (40) by Q*[F,H](tx,..., tin), postmultiplying
by P*m[F, G](t,..., tin) and then integrating, one obtains

’m m I Q*m[F, H]Qm[ff ffI] dt, dtm
(41)

[. Pm[, 8]P*m[F, G] dtm+, dt2m.
The rank of the matrix on the L.H.S. is equal to m by hypothesis, while the

rank of the matrix on the R.H.S. does not exceed ; it follows that

(42) m __< rfi.

This contradicts the hypothesis that n5 < m and completes the proof of the first
part.

Part 2. If the triplet {F(t), G(t), H(t)} is a minimal factorization of the given
sequence of kernels, it can be verified immediately that the triplet { TF(t)T-1,
TG(t),H(t)T-} is also a minimal factorization (see (9)). Vice versa, let {F(t),
Gx(t),H(t)} and {Fz(t), Gz(t),Hz(t)} be any two minimal factorizations of the
given sequence of kernels. Considering the matrices Qm[F,H], Pm[F, G x],
Q,,[F2, H2] and P,,[F2, G2], one finds that

(43)
Qm[F,H,](tl, tm)" Pm[F1, G,](tm+l, t2m)

Qm[F2, Hz](t, tin)" Pro[F2, G2](tm+ ,..., t2m).

By virtue of the results proved in the first part, the m columns of Qm[F, Hx] and
Qra[F2, H2] and the m rows of Pm[F1, G] and Pm[F2, G2] are linearly independent
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over A Consequently, generalizing the methods and results established by
D. C. Youla in [9] with regard to functions defined in R 1, one finds that

(44)
Qm[FI, H,] QmEF2, H]T- ’,
Pm[FI, G,] TPm[F, G2],

where T is a constant nonsingular matrix. Bearing in mind the expressions (18)
and (19), it follows that

(45) Hi(t) H(t)T- ’,
(46) Gl(t) TG2(t).

As concerns the relation between Fl(t) and Fz(t), one can first of all write

(47)
Qm[F1, H,](t, tin). F,(tm+ ,). Pm[F1, Gl](tm+ 2,’", t2m+ 1)

Q,,[F2, H2](t,, , tin)" F2(tm+ 1)" P,,[F2, G2](t,,+ 2, "’", t2m+ 1).

Substituting the expressions (44) in the L.H.S. of (47), and bearing in mind the
linear independence of the columns of Qm[F2, H2] and of the rows of Pm[F2, G2],
one finally obtains

(48) Fl(t) TF2(t)T -1,

thus concluding the proof of the second part.
In addition to the result expressed by the preceding theorem, it is also conve-

nient to find a relation between any factorization and a minimal one. This is
expressed by the following theorem.

THEOREM 3. Any factorization of a factorizable sequence of kernels can be
written in the form

F(t) TIz!(t)
Go(t)

G(t) T

(49)

0 F13(t 0

F22(t F23(t F(t0 F33(t

0 F43(t) F44(t)/

H(t)=(Ho(t 0 H3(t 0)T-’,

where T is a constant nonsingular matrix, and the triplet {Fo(t), Go(t), Ho(t)} is a
minimal factorization of the same sequence.

Proof It is a direct consequence of Lemmas 2 and 4 and of Theorem 2.
We observe that this result also provides a rule for computing too.
COROLLARY 1. The dimension mo of a minimal factorization of a factorizable

sequence of kernels is given by

(50) mo rank {,,[F,H]m[F, G]},
where {F(t), G(t), H(t)} is any given factorization of the same sequence.
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Before concluding this section it is important to stress that all the results
proved here are valid even if the hypothesis that F(t), G(t) and H(t) are functions
with proper rational Laplace transform is relaxed. In fact, the only requirement
was the possibility of testing the linear independence of the rows of Pk[F, G!
(columns of Qk IF, HI) only on the interval A; for this, for example, it is sufficient
to require analyticity on F(t), G(t) and H(t).

5. Minimal realizations. We are now in a position to prove a basic result
concerning minimal bilinear realizations. Consistently with the case of linear
systems, we shall assume the following.

DEFINITIOrq 2. A bilinear realization {A, N, B, C} is minimal if the dimension
of the state space assumes the minimum value over the set of all realizations of a
given sequence of kernels.

Denoting by 6{L(t)} the order of the weighting pattern L(t), we then have the
following theorem.

THEOREM 4. Let {wi(tl,’’’ ti)} be a sequence ofbilinearly realizable kernels,
and let {Fo(t),Go(t),Ho(t)} be a minimal factorization of the subsequence
{wi(tl, ti)}. The minimal bilinear realizations are such that

(a) the state space dimension is given by

(51) no 6([wl(t) Ho(t)’}.(\ 60(0

(52)

(b) the matrix N has minimum rank, given by

ro dim {Fo(t), Go(t), Ho(t)} mo;

(53)

(c) they are a single equivalence class modulo the relation

Ax TA2T-
N TNz T-1

{AI,NI,B, C} {Az,N2,B2, C2} " B TB2

C1 C2T- I,
where T is a constant nonsingular matrix.

Proof Let {F(t), G(t), H(t)} denote any factorization of {w,(t,..., t,)} and
consider the matrix

(54) L(t)
w,(t)
G(t) F(t)

From the proof of sufficiency in Theorem 1, it follows that every linear realiza-
tion of the matrix L(t) identifies a bilinear realization of {wi(t,..., ti)); con-
versely, from any bilinear realization it is possible to construct a factorization
and, consequently, a matrix such as (54). One can therefore conclude that all
bilinear realizations can be obtained by taking all linear realizations of all matrices
L(t) associated with the given sequence, and then applying (14), (15) and (17). It
follows that the dimension of the minimal bilinear realizations is equal to

(55) no min 6{L(t)}.
L(t)
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If now the forms (49) are substituted in (54) and the matrix [10 0T]
the left, and its inverse on the right, it is seen that

(56) {L(t)} > {Lo(t)} for all L(t),

where Lo(t) denotes the matrix

is factored on

[Wl(t) Ho(t)](57) Lo(t)
Go(t) Fo(t) ]"

This, since Lo(t) is an element of the set of matrices L(t), proves statement (a).
In order to prove statement (b), let {A, N, B, C} denote a minimal bilinear

realization and let

(58) N’N"= N

be a factorization of N such that N’ and N" have full rank r rank (N). Clearly,
the triplet

(59) F(t) N"eatN’, G(t)= N"eAtB, H(t)= CeAtN
is an r-dimensional factorization. From this it follows that r >= mo because, by
assumption, the dimension of.any factorization cannot be lower than too. We shall
also prove that the inequality r > mo yields a contradiction. In this case, in fact,
the triplet (59) would be a nonminimal factorization and therefore, according to
the results achieved in the preceding section, reducible. Assume, for instance, that
(59) is not minimal because only r < r rows of P[N"eatN’, N"e’tB] are linearly
independent; then it is possible to find a nonsingular r x r matrix T that reduces
(59) to the r-dimensional triplet (see (38) and (39) in the proof of Theorem 2)

(60) Fll(t eA’i, G,(t)= eAtB, H(t)= CeA’i,
where and ] (respectively r x n and n r x) are defined by

(61) TN"= , N’T-’=(Nq ).

Furthermore, this matrix T is such that

(62) ge’B O, ge’gq O.

The triplet (60) is still a factorization and, therefore, the quadruplet
{A, ’,’’ B, C} is still a bilinear realization, minimal because its dimension is

is a minimalunchanged. From this it follows that the triplet A,(B Nq),

linear realization of

(63) el(t)
1(0 1

(since, otherwise, the quadruplet {A,q,B, C} would not be a minimal bi-
linear realization). As a consequence, the n rows of the matrix ea(B q) are
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linearly independent and this, applied to (62), implies ~"N2 0. But this is in contra-
diction with the assumption that N" has full rank r > mo and thus we conclude
that r mo.

As concerns statement (c), it is immediately verified that two quadruplets of
matrices equivalent according to (53) yield the same sequence {wi(tl,..’, ti)}.
Consider now any two minimal bilinear realizations of the same sequence
{AI,N1,Bx, C} and {Az,Nz,B2, C2}. It has been proved (statement (b))that

(64) rank {N } rank {N2} rno
and it is therefore always possible to construct from these realizations, according
to (12), two too-dimensional (i.e., minimal)factorizations {Fl(t), Gl(t),H(t)} and
{Fz(t), Gz(t), H2(t)}. These factorizations are equivalent by Theorem 2; therefore,
constructing for both factorizations the matrices (54), we have

(65) (l(t) H(t)]=(; 0M)Wl(t) Hz(t)(; 0

(t) F(t) Gz(t) Fz(t) M-where M is a nonsingular mo mo matrix.
On the other hand, bearing in mind (59), the above expression (65) becomes

(66)
C1 eAlt(B, N’)=
N’ N

eA’(Bz N’2)

In (66) there appear two minimal linear realizations of the same matrix.
These must therefore be related by

’ M

(67) (B1 Ni) T(B2 N’2)
0

0 M-1

A TA2 T-l,

where T is a nonsingular n n matrix. It follows from this that the two arbitrarily
chosen minimal realizations are equivalent modulo the relation (53) and this
completes the proof of the theorem.

The relevance of the result proved in part (b) of this theorem will become clear
from the inspection of the simulation diagram of Fig. 1. Here the rank of N
assumes the meaning of the least number of multipliers needed for the simulation
by means of this diagram (note also that there does not exist any other diagram
providing a simulation with a lower number of multipliers). This consideration
suggests the interest in characterizing the simulation of a bilinear realization
through the number of integrators and of two input multipliers; from this point
of view it is nice to verify that, rather unexpectedly, the minimization of the first
one implies that of the second.

6. Structure analysis. The preceding sections have been concerned with the
problem of realizing the input-output description of bilinear systems. In analogy
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FIG.

with the theory of linear systems, and for the same reasons, it is now interesting
to develop a structure analysis from the state space description. As a result, we
shall show that it is possible to effect a decomposition of the state space and to
prove the existence of a canonical form of the equations, thereby laying the founda-
tions for a complete analysis of the correlation existing between the minimal
realizations and one of the subsystems resulting from the decomposition of the
state space.

This analysis will be based on suitable properties of input-state and, respec-
tively, state-output interaction. As concerns the former it is convenient to assume
the following.

DEFINITION 3. A state x of system (1) is reachablefrom the origin if there exists
an admissible input function that maps the origin of the state space into the state
x in a finite interval of time.

Due to the nonlinearity of system (1), the subset of all states reachable from
the origin is not a linear subspace. However, a state-space decomposition is still
possible if this subset is embedded into a suitable (i.e., the least one) linear sub-
space. For the purpose of evaluating this subspace, we introduce the sequence
of matrices

(68a) P1 B,

(68b) Pi (APi_I NP_ 1), 2, 3,...,

and we then have the following theorem.
THEOREM 5. The subset of all states of system (1) reachable from the origin

spans a subspace fv ofR" which"
(a) is the least subspace invariant under A and N and containing [B];
(b) can be expressed as

(69)

Proof The proof of statement (a) is an extension of that used in the case of
linear systems. It is readily observed that, for any given subspace of R",

(70) x(t) for all [0, T] t(t) for all [0, T].
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By hypothesis, at least a basis {x l, ..., x,.} of 59p is reachable from the origin.
Therefore, for (70),

(71) (A+Nuxj+Bu)659p for allu6R and for allj.

But, again for (70),

(72) Bu 59p for all u R

and, hence, from this and (71),

(73) (A + Nu)59, 59p for all u e R.

From (72) and (73) it follows that 59p contains [B] and is invariant under A and
N. Moreover, observing that any trajectory starting from the origin belongs to a
subspace invariant under A and N and containing [B], it is easy to prove, by
contradiction, that 59p is the least subspace with these properties.

As concerns statement (b), we easily verify that

[PI Pi- ,] - IEP1. P,]
_

R"(74)

and that

(75)
[PI"’" Pk-1] [PI"’" Pk] for some k

= [PI"’" PAl [Pl"’" PA+,],

from which it follows that [P1 P,] is invariant under A and N and contains
[B]. To prove that this is the least subspace with these properties, observe that
any subspace 59 of this type must satisfy

(76a)

(76b)

and, then,

(76c)

59
_

A59
_
A[P1], 59 - N59

_
NtEP1]

59 [P1 P2.].
By iterating this construction it follows that any subspace invariant under A and
N and containing [B] contains, in turn, [P1" P,] which, consequently, is the
least of them. This completes the proof.

The state-output interaction property considered in the present analysis is
expressed by the following definition.

DEFINITION 4. A state x of systems (1) is unobservable if the component of the
response depending on the initial state is identically zero for every admissible
input function.

From (2), (3) and (7) it immediately follows that the set of all unobservable
states is a subspace. Introducing the matrix sequences

(77a) Q1 C,

Oi-lAI i- 2 3(77b) Q’
Qi 1N

we have the following theorem.
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(78)

THEOREM 6. The subset ofall the unobservable states ofsystem (1) is a subspace
ofR" which
(a) is the largest subspace invariant under A and N and contained in .U[G];
(b) can be expressed as

Proof The proof can be developed along the same lines as that of Theorem 5.
Referring to the properties of teachability from the origin and unobserva-

bility, or, more exactly, to the subspaces ’p and q, it is possible to effect the
decomposition of the state space Y" of the system (1) into the direct sum of four
subspaces z’, , cg and @, following the procedure adopted in the case of linear
systems, i.e.,

(79)

On the basis of a decomposition of this type, which will be called a canonical de-
composition, it is possible to prove the following theorem.

THEOREM 7. Assuming as basis in the state space the union of bases of the four
subspaces , , c and of a canonical decomposition, equations (1) assume the

form

(80)

a(t) /Aaa Aab Aac AadI /Xa(t)
+/-b(t) 0 Abb 0 Abd [ Xb(t)

&d(t) 0 0 0 Add/ \Xd(t)

Nab
N 0 Nd x(t) ]+
0 Ncc Ncd Xc(t)]U(t)+ o

o0 0 Ndd Xd(t)/

u(t),

y(t)=(O Cb 0 Ca)

x.(t)\
x(t)
Xc(t)]
x(t)/
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where (xT, 0 0 O)T, (0 x 0 O)T, (0 0 xr O)w and (0 0 0 x)w are
coordinates of vectors belonging respectively to the subspaces
(canonical form).

Moreover, within the equivalence relation induced by a constant coordinate
transformation in the state space, the quadruplets {A, N, B, C} which assume the
.form associated with (80) are an equivalence class modulo the transformation defined
by a matrix of the type

0
(81) T

0 0

0 0 0

where the partitions are consistent with those oj" the state vector.

Proo The proof of (80) is a standard consequence of statements (a) in
Theorems 5 and 6. The proof of the equivalence between canonical forms can be
deduced directly from that given by the authors in [3] for a similar result in the case
of linear systems.

A further direct analogy with well-known results in the case of linear systems
can be obtained by calculating the kernels w (t,..., t) of the Volterra series
expansion for the zero-state response. In fact, one finds that these kernels depend
only on the matrices Abb, Nbb, Bb, Cb associated with the "part b" resulting from
the canonical decomposition.

Furthermore, always on the basis of the analogy with the case of linear
systems, it becomes natural to establish a connection between the results of the
structure analysis and the realization theory, characterizing the minimality by
means of the properties that identify the "part b".

To this end it is convenient to show that the subspaces fp and fq, considered
in the structure analysis, can also be characterized in terms of the matrices (20)
and (21) on which the realization theory was based. In fact, we have

(s2) v {[e’N, e’B]},
(83) {[Ne, Ce’]}
that are alternative to the ones provided by (69) and (78). To prove this result,
observe first that, from definition (20), we have

(84) k[etN, e’B] [etN, etB] + etNk_ [eN, etB]N*eA*t dr.

Again, by definition,

(85) N{[e’N, e’B]} N[B AB

from which (84) supplies

(86)
{2[eA’N, eA’B]} [B

+ [N(B

AB A 1B],
AB A B) A 1N(B AB .A"- 1B)].
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By iterating this construction, and taking into account (68) and (69), it is possible
to arrive at

(87) {Ee’N, e’B]} [P P... P] C.
Equation (83) is proved in a similar way.
We are now in a position to prove the following theorem.
THEOREM 8. A realization {A, N, B, C} of a bilinearly realizable sequence of

kernels is minimal if and only if its state space is both observable and spanned by the
states reachable from the origin.

Proof. Clearly, minimality implies the structure properties of the statement;
otherwise, it would be possible to find a realization with a lower dimension (i.e.,
the one defined by the quadruplet {Abb, Nb, B, C} of the canonical form (80)).
The converse may be proved in the following way. Let {A, N, B, C} and {A, N, B, C}
be any two realizations with their own state space reachable from the origin and
observable; let n, denote their dimensions. On the basis of definitions (18) and
(19) and from factorization (9), denoting max (n, ) with , it can be seen that

Qn[NeAt, CeAt](tl, t)Pn[eArN, eAtB](t+ 1, "’", ten)
(88)

Q[Neat, e2t](tl, t)P[etN, egt](t+ 1, t2)"

The hypothesis that the state space of the quadruplet {A, N, B, C} is spanned
by the states reachable from the origin and observable implies, thanks to (82)
and (83), that the n columns of Q and the n rows of P in the L.H.S. of (88) are
linearly independent. The same can be said for the columns of Q and the fi rows
of P in the R.H.S. of (88). From this we conclude that n h. This, together with
the result proved in the first part of the proof, implies that any realization with
the aforesaid structure properties is minimal.

Remark 2. Since, by construction, the matrix quadruplet {Ab, N,B, C}
identified by the canonical decomposition satisfies the conditions of Theorem 8,
it can be considered as a minimal realization of the sequence of kernels associated
with the Volterra series expansion of the zero-state response of system (1).

We have also the following corollary.
COROLLARY 2. The dimension no of a minimal realization of a realizable

sequence of kernels is given by

(89) no rank l.,[NeAt, CeAt]:,[eAtN, eAtS]},

where {A, N, B, C} is any given realization of the same sequence.

7. Outline of realization methods. In the proof of the condition of bilinear
realizability for a sequence of kernels (Theorem 1), in the analysis of the properties
of the factorizations of such sequences (Theorem 2), and also in the study of the
connection between the structure analysis and the realization theory (Theorem 8),
there have emerged various procedures that can be considered as steps on the way
to the construction of minimal realizations, when a triplet {F(t), G(t),H(t)} is
available. In order to get an overall view of the various possibilities, it might
perhaps be useful to list the partial computational procedures which, as mentioned,
emerge from the previous analysis"
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(a) Reduction of a factorization, i.e., construction of a minimal factorization
{Fo(t), Go(t),Ho(t)} from any given factorization {F(t), G(t), H(t)} (see proof of
Theorem 3).

(b) Construction of a linear realization from the matrix

L(O [Wl() H(O

G(t) F(t)/

using one of the many existing procedures (see proof of Theorem 1).
(c) Reduction of a bilinear realization, i.e., construction of the quadruplet

{Abb, Nbb, Bb, Cb) from any realization {A, N, B, C} (see Theorem 7 and Remark 2).
Combining these procedures, various methods for the construction of

minimal bilinear realizations can be developed. For example, one could apply
procedure (b), without seeking a minimal realization, and subsequently procedure
(c). Alternatively, one could successively apply procedures (a) and (b), being careful
to ensure that the latter leads to a minimal realization.

It seems worthwhile to stress the considerable analogies that exist between
these procedures and the ones that are used in the realization theory of time-
invariant linear systems.

The outlined methods presuppose the knowledge of a triplet {F(t), G(t), H(t))
satisfying the factorizability condition (9) for all integers i. An interesting problem,
at this point, would be to determine whether the triplet may be computed from a
finite sequence of kernels, or not. This problem is not considered in full in the
present paper; we only observe that its actual significance relies upon the result
expressed by the following theorem.

THEOREM 9. A factorizable sequence of kernels {wi(tl,... ti} is uniquely
specified by the sequence {w(t,..., t)}22m+ , where mo is the dimension of its
minimal factorizations.

Proof The proof will be constructive; in other words, it will consist of a
procedure for determining uniquely the kernel WZmo+ 2 from {wi(tl, ti)}22m+ 1.

Consider a minimal factorization {Fo(t), Go(t),Ho(t)} of the given sequence
and put

(90) ,,(t,, ..., t+) Q[Fo, H0](tl, "", t)P[Fo, Go](tk+ 1,’’’, tk+h),

where (see (9)) the element in position (i, j) is equal to the kernel of order + j
calculated for suitable arguments.

Proceed now by constructing:
(a) A factorization

(91) mo,,no(tl, "", t2mo)= R(t,,..., tno)S(t,no+ ,..., t2m0)
such that the columns of R(t, ..., tno) and the rows of S(t, ..., tmo) are linearly
independent. By comparing this with (90), written for k h too, and recalling
Theorem 2, it follows (see [9]) that

R Qmo[Fo, HolM,
(92)

S M-Ipmo[Fo, Go],

where M is a constant nonsingular matrix.
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(93)

(b) The nonsingular matrices

U fA R*R dtl dt,o,
mO

(94)

(95)

(96)

V fA SS* dtl dt,,o.
mO

(c) The matrices

/(tl,"’, tmo+l) f/x mo+l,mo(tl, "’’, t2mo+l)

S*(tmo+ 2, t2mo+ 1) dtmo+ 2 dt2mo+ V- 1,

(tmo+ 2,’’’, t2mo+ 2) C-1 ;A R*(t2,.", tmo+ 1)
mO

mo,mo+ 1(t2, t2mo+ 2) dr2 dr,,o+ 1"

By direct substitution it is possible to verify that

(97) )(R(tl, tmo+ tmo+2, t2mo+2) 5gmo+ 1,mo+ l(t, t2mo+2).
The procedure outlined above made use of the kernels w2, "’’, W2mo+

which form part of the matrices 5eo,,,o, 5eo,,, + 1,5emo + 1,too" AS a result one obtains
the matrix 5emo + 1,mo+1 and this, as shown by (90), written for k h =mo + 1,
contains the additional element w2,,o + 2; this additional element is the very kernel
it was desired to construct. Since this procedure can be iterated, the proof is
complete.

The validity of this theorem does not rely (see the remarks at tile end of 3)
upon the assumption that F(t), G(t) and H(t) are functions with proper rational
Laplace transforms. If this is the case, it is possible to reduce further the amount
of information needed to specify the sequence {wi(tl,..., ti)} (see, for example,
[4]).

8. Conclusions. We end this paper with some concluding remarks. First of
all we would emphasize the strict analogy between the theory developed here
and that of the linear systems, whose well-known results can easily be obtained
merely by putting N 0. Another advantage of this theory is the systematic use
of linear algebra tools.

Results similar to the ones presented here in 6 are given in [5] for discrete-
time bilinear systems. A complete analysis including both discrete-time and
continuous-time systems is also presented in [4].

The present theory can be extended to cover the cases in which the initial state
is an arbitrary equilibrium state [7]. This makes it possible to handle bilinear
systems homogeneous in the state (i.e., B 0 in equation (1)).

Finally, for the sake of completeness, we also note that another approach is
possible to the problem of constructing minimal bilinear realizations from a given
nonlinear input/output map. This approach reduces the realization problem to
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that of matching an infinite sequence of input/output parameters: on this basis
it is possible to develop, for bilinear systems, a realization theory !-6] analogous to
the one originated after a well-known paper by B. L. Ho and R. E. Kalman.
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CAUSALITY, STRICT CAUSALITY AND INVERTIBILITY
FOR SYSTEMS IN HILBERT RESOLUTION SPACES*

ROMANO M. DE SANTIS’

Abstract. The Hilbert resolution space setting is used to obtain some new sufficient conditions for
the existence and causality ofan inverse system. These conditions are applicable when the system under
consideration is characterized by a behavior which is special, in some sense, with respect to the notion
of causality. Relevant conceptual connections with recent problems in system sensitivity and stability
theory are pointed out.

1. Introduction. Given an operator T defined on the Hilbert space H, and
denoting by I the identity operator on H, the main objective of this article is to
establish some sufficient conditions on T which insure the invertibility of (I + T)
and the causality of (I + T)- 1.

The question of invertibility for (I + T) has already received considerable
attention in the technical literature. In particular, Browder [2], Dolph [10] and
Minty 17], among others, have given sufficient invertibility conditions for the case
in which Tis a monotone operator. Similar results have been obtained by Petryshyn
[19] and Shinbrot [28], who considered operators T with special compactness
properties. These and other developments are summarized by Damborg [5] and
will not be detailed here.

In regard to the causality of (I + T)- 1, the most familiar results are perhaps
those offered by Foures and Segal [12] and Youla, Castriota and Carlin [29].
These results are essentially based on the Paley and Wiener theorem [18] and
their application is confined to the case of linear and time-invariant systems. More
recent developments concerning systems of a more general type are also available.
Sandberg [27], for example, has considered nonlinear time-variant systems and has
given an interesting connection between causality and energy related concepts.
Damborg [3], [4] has established a sufficient condition for the causality of(/+ T)-
in terms of an expression involving "incremental truncated" gain and phase
shift concepts. Saeks [25] has considered linear systems in Hilbert space and has
established the causality of (I + T)-1 when T is causal and satisfies an inner
product type condition. In a similar context Porter [22] has shown that (I + T)-
is causal whenever T is causal and dissipative.

A distinctive feature of the present development is that the invertibility of
(I + T) and the causality of (I + T)-1 are investigated by focusing attention on
those causal systems for which the future of the output is determined by the strict
past of the input; such systems are said to be strictly causal. This approach leads
in a natural way to the utilization of the Hilbert resolution space framework pro-
posed in [22] and [26], and to the exploitation of the strict causality treatment
developed in [25].
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The interrelation of strict causality with causal invertibility has already been
emphasized in the technical literature. Relevant efforts in this direction are
illustrated by the work of Zames [34] and Willems [31] (see, in particular, [31,
5.2, pp. 93-101]). More recently it has been shown that some results of Gohberg

and Krein 14], 15] on the abstract theory of Volterra operators can be interpreted
[7] as showing that if T is linear, completely continuous and strictly causal, then
(I + T) is invertible and (I + T)- is causal. The scope and applicability of these
results are hampered, however, on the one hand by the requirements of linearity
and complete continuity and on the other hand by the adoption of a strict causality
concept which is more restrictive than that usually considered in the technical
literature.

The present development will show that linearity and complete continuity
requirements are not at all essential to establish results of the Gohberg and Krein
type. In particular, we will find, for example, that a sufficient condition for (1 + T)
to be invertible and for its inverse to be causal is that Tbe given by the composition
of a weakly additive causal and Lipschitz continuous system with a linear bounded
and strictly causal system. This type of result will be shown to be applicable to a
large class of systems which are not necessarily.strictly causal.

The paper is organized as follows. Section 2 establishes the mathematical
framework in which the study is embedded. Section 3 summarizes the definitions
and properties associated with the notions of causality and strict causality. The
aforementioned invertibility and causality results are to be found in 4 and 5.
In particular, 4 gives a number of sufficient conditions which simultaneously
insure the invertibility of (I + T) and the causality of (I + T)- 1. In 5, (I + T)-
is assumed to exist and we offer sufficient conditions for its causality. Section 6
illustrates some connections between present results and problems of sensitivity
and stability theory, and 7 contains some concluding remarks about the overall
development.

2. Mathematical preliminaries. The reader is assumed to be familiar with
the notions of metric, linear, normed, Banach, inner product, and Hilbert spaces.
The notions of linear and nonlinear mappings between such spaces are also as-
sumed to be familiar. A unified treatment of such concepts is available, for example,
in [20].

If x is an element of a Banach space B, the norm ofx is indicated by the symbol
Ixl. If T is an operator on B, then T is said to be bounded if

TI sup Txl/Ixl < o.
0 xeB

The number IT[ is called the norm of T. T is continuous if for any x B and any real
e > 0, there exists a real 6 > 0 such that [Tx Tyl <- when Ix Yl -< 6. T is
Lipschitz continuous if

I1Tll- sup Tx- Tyl/lx- Yl <= oe.
0 x-yB

IIT is called the Lipschitz norm of T. Observe that when T is linear, then the
concepts of boundedness, continuity and Lipschitz continuity are equivalent. T is
called compact if T(S), the closure under T of a bounded set S, is a compact set.
When T is compact and continuous, then it is said to be completely continuous.
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Next the structure of Hilbert resolution spaces will be presented [223, [24],
[25]. Suppose that H is a Hilbert space, and v a linearly ordered set with o and t,
respectively, minimum and maximum elements. A family [ {Pt},t v, of
orthogonal projections on H is a resolution of the identity if it enjoys the following
two properties"

(Ri) PtH O, PtH H, and pkH
_
PH whenever k > 1"

(Rii) if {U} is a sequence of orthogonal projections in and there exists
an orthogonal projection P such that {Px} -. Px, for every x e H, then P

A Hilbert space, H, equipped with a resolution of the identity, [R {P’}, is
called a Hilbert resolution space (in short" HRS) and is denoted by the symbol
[H,U.

Example 2.1. Suppose that H is given by L2[0, ), the Hilbert space of
Lebesgue square integrable real functions. In L2[0, ) a family of orthogonal
projections {Pt}, [0, cx3], can be defined as follows" if x, y L2[0 o) and
y ptx, then y(s) x(s) on [0, t] and y(s) 0 in It, ). When then Px

x. The family {pt}, as it enjoys properties (Ri) and (Rii), is a resolution of
the identity. It is then possible to view [L2[0 (3), Pt] as a HRS in the following
sections.

The notion of integral on HRS will play a major role in this development.
Suppose that T(s), s v, is a family of operators on a HRS indexed by s e v, and
consider the following operations"

(i) Choose a partition f of v, f {o, , "’", }, where o to,
and j < j+l, J 1,2,..., N 1.

(ii) Consider the partial sum
N

(1) In AP(k)T(Sk),
k=l

where AP(k) P P-’ and k- <= Sk <---- k"
(iii) On the set of all partitions f of v, define a partial order as follows"

’1 -" "2 if every element of ’2 is contained in
(iv) Suppose that there exists an operator T such that for any e > 0 there is

a partition fl of v such that the operator norm IT Inl is less than e if f2 _< f.
The operator T obtained through operations (i)-(iv) is called the integral of the
family T(s) with respect to and is denoted by T f dPT(s).

It is useful to consider slightly different variations of the above concept of
integral. To this purpose, the notations r dPT(s) and dPT(s) will be used to
indicate the integrals which are obtained by choosing SR in operation (ii) respectively
as follows" s k- or sk k" Similarly, the operator f dPT(s) dP will denote the
integral which is obtained by replacing equation (1) in operation (ii) by the follow-

Ning
I= AP(k)T(sk)AP(k)

k=l

In the course of the development it will be natural to associate with an operator
T on [H, U], the family TW. This family will lead to integrals such as f dPTW,
dPTW, dPTP, and f dPT dP.

The Hilbert space whose elements are square summable sequences,/2, can be viewed as a HRS
in a similar way, and this is true also for the cross-product space Lz x l’. For other important examples
of HRS, the reader is refered to [11] where reproducing kernel Hilbert spaces are considered.
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Example 2.2. In [L/[O, oe), pt], the HRS described in Example 2.1, consider
the operator T defined according to the following rule" if y Tx, then y(t) g(t)x(t)
+ k(t, s)x(s)ds, where g e L2[0, oe) and k(t, s) is a Lebesgue square integrable
kernel. In this case, it is not difficult to recognize that the operators dPTdP,
ldPTPs, and dPTW are well-defined. In particular, they are described as
follows"

f dPT dPx (t)= g(t)x(t),

dPrpsx (t) k(t, s)x(s) ds,

derWx (t) g(t)x(t) + k(t, s)x(s) ds.

3. Some causality properties. In the sequel it will be supposed that T is a
bounded operator defined on [H, pt]. As proposed by Porter [22] and Saeks 25],
T will be called causal (anticausal) if PtTy PtTy2, whenever Uyl pry2
((I Pt)Ty (I U)Ty2, whenever (I Pt)y (I e’)y) for all Yl, Y2
c [H, U] and c v. T is memoryless if it is simultaneously causal and anticausal.
T is strictly causal if T ffa dPTW.2

For later use and to gain some familiarity with these concepts, some causality
properties are presented.

LEMMA 3.1 [25]. The following statements are equivalent" T is causal; T

?I dPTW; PT ptTpt.
LEMMa 3.2 [9]. A necessary and sufficient condition for a linear and causal T

to be strictly causal is that dPTdP O.
The proofs of Lemmas 3.1 and 3.2 are a direct consequence of the definitions

of causality and integral, and will be omitted for brevity. A partial illustration of
the techniques involved in these proofs is given by the proof of the following result.

THEOREM 3.1. If T is linear and strictly causal and T2 is causal, then T2T and
T1T2 are also strictly causal.

Proof By the definition of strict causality and Lemma 3.1, the following
relations hold"

TI adPT1P and T2 fi dPT2P.
From Lemma 3.2 and the definition of integral, these relations imply that, given
any e > 0, it is possible to find two partitions, f’ and f;’ of v, with the property that
for all partitions f such that f {0, 1, "’", N} ->_ f f’ U f;’, the follow-
ing holds"

N

k=l

This definition is conceptually identical to that proposed in [25] and is more restrictive than that
considered in [9] or the definition of strong causality used in [31]. In our terminology, a delay time in

Lz[a, b] is strictly causal only if a and b are finite.
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where

N

AP(,)T1P’-
k=l

and
N

2 AP(,)T2P’.
k=l

It follows that

Hence

Zx Z= Zl Z=l IZlZ2 Zl Zl + Z Z= TIT21 (1%.1 + IZll +
where (by virtue of the linearity of T1)

N

1 AP()T1T2P’-
k=l

< lZ21,

These last two equations imply that T1T2 r dPT1T2Ps. Hence T1T2 is strictly
causal. A similar argument applies for T2 T

COROLLARY 3.1. If T1, T2,..., T, are linear causal operators, and To is
strictly causal for some o {1, 2,..., n}, then the operator T1T2... T, is also
strictly causal.

Example 3.1. Consider in [L2[0 ), pt] the operators T1, T2, T3, T4 defined
as follows: if Yi Tx, 1, 2, 3, 4, then:

Yl(t)- Nl(X(t))

where Nl(. is a bounded Lipschitz continuous real function;

Y2(t) 2 g.x(t- At.),
n=0

where Ato > 0, At. > At._ 1, and = g. < oo

Y3(t) k(t r)x(t)dr,

where

Y4(t) h(t)x(t),

where h e L[0, ) and lim,oo ess sup [h(t)l 0.
It is easy to verify that for each x e L20 oo) and e 0, oo) the following

relations hold"

P’TlX P’TIP’X
P’T2x P’T2P’x
P’T4x P’T4P’x4

and (I P’)Tlx (I P’)TI(I P’)x;

P’Tax p’TaP’x

and (I- P’)T4x (I- P’)T(I- P’)x.
It follows then that T and T are simultaneously causal and anticausal, hence they
are memoryless T2 and Ta are simply causal.
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Observe that while none of the operators T T2, T3 and T4 is strictly causal,
the composition T4T2 gives an example of a strictly causal operator. To prove this
fact, it is sufficient to show (see Lemma 3.2) that given any e > 0, a partition f of
v [0, oe can be found with the property that, for any other partition f’ ;,
’1, ’n’} "e, the following holds’

AP(’i)TTAP(I) <= .
i=1

This is easily done by choosing an element [0, ) such that

I(I v)r,,(Z V)l <= e/(2lr2l)

and by verifying that every partition

a {0,,,,..., ,}
such that ]i i-] < Ato for all 1, 2, ,.., n, enjoys the desired property.

Arguments similar to the above would also show that T2 T, TT and T4 T3 are
all strictly causal operators. Moreover, it is interesting to note that, for every
permutation (il, i2, i, i) of (1,2, 3, 4), the operator T/, T/T/T/ is also strictly
causal.

4. Existence and causality of (I + T)-1. The concepts of causality, strict
causality and memorylessness will now be supplemented with the concept of weak
additivity. 3 This is done via the following definition and the two subsequent
lemmas.

DEFINITION. T is called weakly additive if Tx Tptx -Jr- T(I Pt)x holds for
every x e H, and all e v.

LFMMA 4.1 [6, p. 114]. The following operators are weakly additive:-every
linear operator; every memoryless operator; the linear combination of weakly
additive operators;the composition TaT1, where T is weakly additive and T2 is

linear; the composition T T1, where T is memoryless and Ta is weakly additive.
LFMMA 4.2. If T is weakly additive and causal, then for every pair p1, p).

e {pt} one has the following operator identity:

(P P)T (P p1)Tp1 + (P P1)T(P p1).

We are now in a position to state and prove the first fundamental result of the
paper.

THEOREM 4.1. Suppose that T T1NT, where:
(i) N, is a causal, weakly additive, bounded and Lipschitz continuous operator;
(ii) T and T are linear, bounded and causal operators;
(iii) either T1, or T2, or T2T is strictly causal. Then (I + T) is invertible and

its inverse is causal, bounded and continuous.

Proof. First, it will be shown that it is sufficient to prove the theorem in the
special case where T coincides with the identity and T is strictly causal. Indeed,
if the theorem is valid in this special case, then from Theorem 3.1, one would

In a system theory context, the concept of weak additivity has been explicitly exploited by earlier
authors. In particular, it has been adopted by Zadeh [32], and, more recently, by Gersho [13].
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obtain the following :if T1 and T2 satisfy (ii) and (iii), then the operator (I + T2 TINI)
is invertible and (I + T2T1N,)-1 is bounded, causal and continuous. This latter
result implies the validity of the theorem in the general case. To see this, note that
the invertibility of (I + T) is equivalent to the property that for every element
y H there exists one and only one x H such that

(2) y X + Z1NlZ2X.

This, in turn, is equivalent to the existence of a unique element Tzx H such that

(3) T2y Z2x -b Z2 ZlN Z2X
But, from the invertibility of (I + T2T1NI) one has that the desired T2x exists and
is given by

(4) T2x (I + T2 T1NI) -1T2y.

It follows that the solution of equation (2) also exists, is unique and has the pro-
perty that

(5) x y T1NI(I -4- T2 T1NI) -1T2y.

The operator (I + TI NIT2) is then invertible and its inverse is given by

(6) (I + TNIT2)- I T1NI(I + T2T1NI)-1T2.
This last equation shows also that (! + T1NtT2)-1 can be expressed by the sum
and composition of causal, bounded, and continuous operators, and therefore
(I + T1NIT2)-1 is itself causal, bounded, and continuous.

It remains then to show that the theorem is valid in the case where T is
strictly causal and T2 !. To verify the invertibility of (I + T) in this special
case, one has again to show that for every y H there exists a unique x H such
that

(7) y x + Tx.

From Lemma 3.2 one has dPT dP 0. This implies that there exists a partition
{to 0, 1’ 2, N t} v such that

AP(i)TAP(i)II < 1/IIN, II,

that is,

AP(,)T1AP(,)II < 1 ! U

for each 1, 2, ..., N. Using Lemma 4.2, and the fact that N is memoryless, it
follows that

(8) IIAP(i)T1NIAP(i)[I [IAP(i)TAP(g)II <

for each 1, 2,..., N.
Observe now that solving equation (7) is equivalent to finding an x H

such that

(9) AP(i)y AP(i)x + AP(i)TP’x,
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where 1, 2, ..., N. Indeed, if x 6 H satisfies (7), then, from the causality of T,
AP(i)x must clearly satisfy (9). Conversely, suppose that the element x H is
such that AP(i)x does satisfy (9). Then it would follow that

N N N

AP()y AP()x + AP(i)TP’x,
i=1 i=1 i=1

and this equation coincides with (7).
For 1, equation (9) becomes

(10) AP(I)y AP(I)X -- AP(I TAP(I

But from (8) one has that AP(I)TAP(I) the restriction of T to the Hilbert space
AP(1)H, is Lipschitz continuous and has a Lipschitz norm smaller than 1. Apply-
ing Lemma 4.3 (given below), there exists then a causal operator K such that the
element

(11) AP(I)x K 1AP(I)Y

is the unique solution of equation (10).
For 2, equation (9) becomes

(12) AP(2)y AP(2)x + AP(2)TP2x.
Noting that T is weakly additive (see Lemma 4.1), and using Lemma 4.2, this last
equation can be rewritten as follows:

aP(2)y- AP(2)TAP(I)X AP(2)x + AP(2)TAP(2)x,

where, once again, AP(2)TAP(e) is Lipschitz continuous and has a Lipschitz
norm smaller than 1. Lemma 4.3 can then be applied again and there exists a
causal operator K: which provides the following unique solution to (12):

AP(2)x K2[AP(2)(y- TAP(I)X)]

where AP()x is defined by (11). By induction, having computed AP()x, AP(2)x,
.., AP(_ 1)x, the unique solution to (9), AP()x, can be computed as follows:

(13) AP(,)x=K, AP(,) y- T AP(j)x
j=l

where K is a causal operator.
The above recursive relations define the element x 7= iP(i)x, and this

element is the unique solution to (7). It can then be concluded that (I + T) is
indeed invertible.

With regard to the causality of (I + T)-1, it is sufficient to show that for
every v and all y H, the following holds (see Lemma 3.1):

(14) U(I + T)- y pt(l + T)- 1pry.

Consider the partition f’ of v given by

’-’ {to 0,1,2, "’’, i-l,t,i, "’’, N- t},
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where {0, 1, "’", ,N} is the partition f considered in the first part of the proof,
and it has been assumed, without any loss of generality, that i-1 < < i. Use
the following notations"

x (I + T)-yl x2 (I + T)-y2

where yl y and y2 pry. From equation (13) the following relation holds"
N

xq (I + T)-yq= K2[Ap(2)(yq- Tp-xq)-I
j=l

+ Kt[(Pt- P’-’)(yq-

+ K[(p, nt)(yq_ Tnxq)],

where q 1, 2. By inspection, from this equation it follows that

p,x px2 p2x1 p2x2 p,-,x p-,x2 ptx ptx2

This implies the validity of equation (14). The proof of the boundedness and con-
tinuity of (I + T)- can be obtained in a similar way (the missing details can be
found in [6]).

LEMMA 4.3 [6, p. 131]. If T is a causal, bounded and Lipschitz continuous

operator with Lipschitz norm less than 1, then (I + T) is invertible and its inverse is

causal, bounded, and Lipschitz continuous.
Example 4.1. Consider on [L2[0, ), P’] the operator T given by the composi-

tion TT(T3 + Te), where T, T2, T3 and T4 are the operators defined in Example
3.1. Note that T3T and T2T are linear and strictly causal, hence T3T + T2T is
also linear and strictly causal. Moreover, T is memoryless and Lipschitz contin-
uous. It follows then that T satisfies the hypotheses of Theorem 4.1, and con-

sequently (I + T) is invertible and its inverse (I + T)- is causal, bounded and
continuous.

It is of interest to observe that the statement of Theorem 4.1 is automatically
valid when T is linear and strictly causal. In this special case, however, that result
can be further strengthened as follows.

THEOREM 4.2 [6, p. 141]. If T is a linear bounded and strictly causal operator,
then (I + T) is invertible and its inverse is causal and bounded. Moreover, (I + T)-
can be computed by the following Neumann series"

+ W)-’= + E
n=l

where T T and T"+ is given by the composition of T" with T.
This theorem can be proved by applying techniques similar to those already

used in the case of Theorem 4.1. The proof is based on the following well-known
specialization of Lemma 4.3 and is omitted for brevity.

LEMMA 4.4 [6, p. 140]. If T is a linear causal bounded operator with norm less
than 1, then (I + T) is invertible and its inverse is causal and continuous. Moreover,

4 In the case where T is also completely continuous, this theorem provides the Gohberg and Krein

result remarked on in the Introduction.
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(I + T)-1 can be computed by the following Neumann series"

(I+ T)-’=I+ (-1)"T".
n=l

When T is not strictly causal, Theorems 4.1 and 4.2 cannot be directly applied.
A number of variations on these theorems are, however, available. This is illus-
trated, for example, by the following two theorems.

THEOREM 4.3. Suppose that the operator K is given by the sum K + T,
where satisfies the hypotheses of Theorem 4.1, and T is a linear bounded causal
operator with the property that (I +. T)- exists and is causal. Then (I + K) is
invertible and its inverse is causal, bounded and continuous.

THEOREM 4.4 [6, p. 141]. Suppose that the operator K is given by the sum
K + T, where satisfies the hypotheses of Theorem 4.2 and T is a linear
bounded causal operator with norm less than 1. Then (I + K) is invertible and its
inverse is causal, bounded and continuous. Moreover, (I + K)- can be computed by
the following Neumann series"

(I + K)-I= I +
n=l

5. Additional results on the causality of (I + T)-1 When an operator T on
a Hilbert resolution space [H, pt] satisfies the hypotheses stated in Theorems 4.1
or 4.3, then those hypotheses are also satisfied for every operator of the family
PsTPS, where too -s e v. Unfortunately, the converse of this statement is not
necessarily true. Indeed, in many system problems of interest it occurs that the
operators psTps, too s v, satisfy the hypotheses of Theorems 4.1, 4.3, while the
operator T does not. Under this assumption, nothing can in general be said about
the invertibility of (I + T). The next result establishes, however, that if (I + T) is
invertible, then its inverse is causal. 6

THEOREM 5.1. Suppose that T is a causal operator on [H, U] and that for each
s v, s too, PTP satisfies the hypotheses of Theorem 4.1 (or Theorem 4.3). If
(I + T) is invertible, then its inverse is causal.

Proof. Given any y eH, consider the element x (I + T)-y. Clearly
y x + Tx and for each s v, one has that

Py Px + PSTx.

Using the causality of T, one finds that

Py Px + PTPx.

The proof of this result is contained in the proof of Theorem 6.2.
It is noted that the causality of T is not sufficient to establish the causality of (I + T)-2. In this

regard, some illustrative counterexamples can be found in [5] and [30].
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But by hypothesis, PsTPS satisfies the conditions of Theorem 4.1 (or Theorem 4.3).
This implies that (I + PsTP) is invertible in PH, and therefore

Px [P + PTps] Py.

From this last equation one obtains that

Ps(I + T)-I= [e + psTps]-1psy ps(i + T)-lesy,

and, by Lemma 3.1, it follows that (I + T)- is causal.
Example 5.1. Consider in [L2[0 o(), pt] the operator T given by T T3

or T T1T3, where T and T3 are the operators defined in Example 3.1. The
operator Tis not necessarily strictly causal and in general neither Theorem 4.1 nor
4.3 can be applied. Indeed, many instances can be mentioned where the operator
(I + T) is not invertible. Theorem 5.1 says, however, that if (I + T) is invertible,
then (I + T)- is causal. This result can be applied because, as it is easy to verify,
the restriction of the operator T3 to L2[0 s),Pt] is strictly causal for every
s e [0, oe), and as a consequence the restriction of T to pS[L2[O, ), pt] satisfies
the conditions of Theorem 4.1.

In a number of other interesting situations, it may happen that while T is
strictly causal, neither T nor PsTps satisfies the hypotheses of Theorem 4.1 or
4.3. As in the previous case, the invertibility of (I + T) cannot in general be
ascertained. However, if (I + T)-1 is known to exist, then its causality can be
estab.lished.

THFOrtFM 5.2. Suppose that T is a strictly causal bounded operator and that
(I + T)-1 exists and is Lipschitz continuous. Then (I + T)-1 is causal.

Instead of proving this theorem, a slight generalization of it will be proved.
This also will provide an opportunity to illustrate the techniques necessary to
ex.end Theo,’ems 4.1 and 4.2 respectively into Theorems 4.3 and 4.4. The generaliza-
tion ii-; qaestion is the following.

THEOREM 5.3. Suppose that T satisfies the following conditions:
(a) T Tc + Tc, where Tc and Tc are respectively strictly causal and causal

operators.
(b) Tc is bounded and Tc is Lipschitz continuous.
(c) Tc is weakly additive and has Lipschitz norm less than 1.
(d) (I + T) is invertible and (I + T)-1 is Lipschitz continuous.

Then (I + T)-1 is causal.
Proof. Note first that, since Tc is strictly causal, there exists a sequence of

operators

N

In‘= AP(j)Tc_P-’
j=l

such that {In’} Tc, and {In’+ Tc} T. Moreover, for each operator(In’+ Tc)
and any element y e [H, pt], the equation

y= x + In’x + Tcx
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has the unique solution x defined by the following recursive relations .v

AP(,)x AP( 1)(1 + Tc)- 1AP( 1)Y,

An(2)x AP(2)(I + Tc)-lAn(2)y- AP(2)TcAP(I)x- An(2)In,An(l)x,

An(j)x AP(j)(I + Tc)-1An(j)y- An(j)TcnCJ-’x

AP(N)x AP(N)(I + Tc)-lAn(u)y- An(u)Tcn’-’x An(u)In’p’-’x.

These equations clearly imply that (I + In’ + Tc) is invertible and its inverse
(I + In’ + Tc)-1 is causal. In view of Lemma 3.1, to prove that (I + T)-1 is
causal, it is then sufficient to show that if y is. any element of [H, P’], then the
following relation holds"

(15) l(I +in,+ Tc)-ly_(I+ T)-ly[O.

Indeed, if this relation holds, then it would follow that

{U(I + In’+ Tc)-ly} P’(I + T)-

{U(I + In’+ Tc)-1p,y} pt(i + T)-

and, since from the causality of (I + In’ + Tc)- one has that

pt(i + in,+ Tc)- y pt(i + in,+ Tc)- 1pry,

one would also have that

P’(I + T)- y U(I + T)- 1p,y.

Suppose that equation (15) is not true. Then there would exist a positive real
and {T,}, a subsequence of {In‘ + Tc}, such that

(16) I(I + T,)-ly_ (I + T)-ly > e.

To see that this is impossible, denote {(I + T,)-ly} and (I + T)-ly respectively
by {x,} and x, and observe that

(17) y=x,,- T,,x,,=x- Tx.

Note also that from the boundedness of (I + T)-1, it follows that (I + T,)-1 is
uniformly bounded, and consequently the sequence {x,} is also uniformly bounded,

These relations follow from the hypothesis that the Lipschitz norm of Tc is less than and Tc is
weakly additive, plus the application of Lemma 4.3.
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that is,

(18) Ixnl--I(I + Tn)-lyl -<- My,

where M is a positive number conveniently chosen. 8

Consider now the sequence {Yn} given by y. (I + T)xn and observe that
from (17) and (18) one has that

(19)
--I(T- T,)x,I <= MIT- T,Iy.

Moreover, clearly one has also that

(I + T)-ly- (I + T)-ly, (I + T)-y- (I + T,)-ly.

From this equation and (16) it follows that

I(I / T)-

Applying (19), one obtains

I(I / T)- y (I + T)- ynl

lY
But, as the sequence T,} converges to T, IT T,I can be as small as desired.

As a consequence, the last equation implies that (I + T)-1 is not Lipschitz con-
tinuous, and one obtains a contradiction to hypothesis (d).

6. Applications. Potential applications for the ideas and results developed in
the previous sections can be envisioned in a number of engineering areas, such
as system sensitivity, stability, game theory, optimal control, communication
theory and others. In this section we shall briefly illustrate how some of these
applications can be realized in a system sensitivity and stability theory context.

Consider the systems represented in Figs. and 2, where the blocks G, P, M
are described by linear bounded and causal operators on the Hilbert resolution

FIG. 1. The system considered in the sensitivity problem

By the boundedness of (I + T)- 1, there exists a positive real m such that for every x [H, pt]
the following relation holds"

I(l +
2m.

Ixl

On the other hand, one can always choose an integer N such that n >= N implies IT- TI -< m. For
n > N one has then that

I(I + r)xl I(I + T)xl_ I(T- r)xl
I11 Ixl Ixl

It follows that I(I + T,)xl Ixl and therefore I(I + T,)-ll 1/m M.
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FIG. 2. A feedback compensation scheme for system sensitivity improvement

space [L[0, oe), pt] and r/is an element of [L[0, c), U]. In a typical sensitivity
problem, P represents a given physical plant, and G and M are two compensators
with the property that the compensated system (Fig. 2) is input-output equivalent
to the original system (Fig. 1). This input-output equivalence can be obtained, for
example, by choosing G I + MP. The question of interest is then to determine
M in such a way that the compensated system has a sensitivity with respect to the
"perturbation" r/which is better than that of the original system.

While a proper review of philosophy, motivations and results related to this
sensitivity problem is well beyond the scope of the present discussion, here it
will be sufficient to consider the following widely adopted sensitivity criteria (see,
for example, Anderson and Newcomb [1], Porter [21], [23], and Zahm [33]).

Sensitivity reduction criteria (Zahm [33, p. 51 ]). The sensitivity of the compen-
sated system is better than the sensitivity of the original system if the following
conditions are satisfied"

(i) 5 (I + PM)-1 is a well-defined operator in Lz[0,
(ii) 5e is a causal operator;

(iii) (x, x *x) >__ 0 for every x e L[0,
The above system sensitivity criteria reduce a good portion of the sensitivity

problem to an invertibility and causality problem. The development ofthe previous
sections can then be used to gain insight into the structure of sensitivity reduction.
The following theorem illustrates the types of results which are obtainable in this
regard.

THEORE 6.1. If either the plant P, or the compensator M, or PM, is strictly
causal, then the first two conditions for sensitivity reduction are satisfied and the
third condition becomes"

Re (x, (I + PM)-PMx) >
[(I + PM)-IPMxl 2 2’

where x is any element in Lz[0,
Proof Applying Theorem 3.1, the operator PM is strictly causal, and there-

fore, from Theorem 4.2, (I + PM) is invertible and (I + PM)- is causal. More-
over, (I + PM)- is given by the following expression:

(20) (I + PM)- I + (-1)"(PM)".
n=l
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The third condition for sensitivity improvement then becomes

(x,x 6’6x) (x, x) (I + PM)-ix, (.I + PM)-ix) >= 0,

and from equation (20),

(x,x)- + (-1)"(PM)"x,x+ (-1)"(PM)"x __>0.
n-1 n=l

This leads to

(21) -2 Re (- 1)"(PM)"x, (-1)"(PM)"x2 >__ 0.
n=l

Observe now that

(- 1)’(PM) (I + PM)-PM,

and therefore equation (21) becomes

Re ((I + PM)- PMx, x) >__ 1/21(I + PM)- PMxl.
If, with Damborg [5, p. 32], we interpret Re (x, Tx)/lTxllxl and ITxl/Ixl as

the phase and gain respectively of T, then the above result can be paraphrased as
follows.

THEOREM 6.1. If either P, or PM is strictly causal, then a necessary and sufficient
condition for sensitivity improvement is that the ratio between the phase and the
gain of (I + PM)-lpM be bigger than or equal to 1/2.

Let us now turn our attention to the feedback system of Fig. 3 where K
is a bounded, continuous and causal operator on [H, pt]. We will say that this
feedback system is (bounded input-bounded output) stable if it has the property

FIG. 3. The feedback system considered in the stability problem

that in correspondence to any input y e H, the output x is a well-defined element
of H and the input-output mapping is causal bounded and continuous. This
definition of stability is consistent with that used in the normed space stability
approach developed by Damborg [5] and Willems [30]; a discussion of its con-
nections with the more classical definition used in the extended space stability
approach (see, for example, Zames [35]) goes beyond the scope of the present
development and can be found in [3] and [31]. Note that these latter references
also consider the case where K is unbounded and not necessarily defined in all
of H. For our purpose it is sufficient to recall the following result.
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LEMMA 6.1. Necessary and sufficient conditions for the basic feedback system
to be stable are that (I + K) be invertible and (I + K)-1 be causal, bounded and
continuous.9

This lemma allows us to view most of the development of the previous sections
in a stability context. The full exploration of this connection is beyond the intended
scope of this paper. However, we shall state a single theorem and corollary which
foster conceptual insight.

THEOREM 6.2. Suppose that T is a linear operator and that the basic feedback
system is stable for K T. Then the basic feedback system is also stable for K

(T + ), where denotes an operator satisfying the hypotheses of Theorem 3.1.
Proof. By Lemma 6.1, it will be sufficient to show that (I + T + ) is invertible

and that (I + T + )-1 is causal, bounded and continuous. To this purpose
observe first that if the operator [I + (I + T)- 1] is invertible, then (I + T +
is also invertible and

(22) (I + T + )-1 ii + (I + T)-1-1(I + T)-I.

Indeed, suppose that [I + (I + T)-I is invertible. Then for every y
there would exist an x such that

x- [I / (I / T)-l]-l(I / T)-ly.

It would then follow that

(I + T)-ly x + (I + T)-ly
and therefore

y=x + Tx + Tx.

This last equation would imply the invertibility of (I + T + ) and the validity
of equation (22).

At this point the proof can be completed by showing that [I + (I + T)-
is in fact invertible and that[/+ (I + T)- 1]- iscausal, bounded and continuous.
This is readily done by observing that (I + T)- is (by hypothesis and Lemma 6.1)
causal, bounded and continuous and by verifying that (I + T)-I satisfies the
conditions, of Theorem 4.1.

COROLLARY 6.1. IlK is given by the composition ofa weakly additive, bounded
and Lipschitz continuous operator with a linear, bounded and strictly causal operator,
then the basic feedback system is stable.

7. Conclusions. The primary results of this paper are embedded in Theorems
4.1 and 5.2, and emphasize the importance of the concept of strict causality in
connection with questions of existence and causality of an inverse system. In
particular, Theorem 4.1 states that the strict causality of a system Tplus some other
reasonable conditions are sufficient to insure existence and causality of (I + T)- 1.
Theorem 5.2 considers more relaxed conditions and establishes the causality of
(I + T)- when this system exists and is Lipschitz continuous. These results can
be extended in various directions, and some examples of these extensions are

In a framework slightly different from that adopted here, this result can be found either in [5]
or in [31]. In [8] it is shown that the proof used by these two authors is also applicable to the present
HRS context.
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provided by Theorems 4.3, 5.1 and 5.3. Useful specializations are also possible.
For instance, in the case of linear systems, Theorem 4.1 leads to Theorems 4.2
and 4.4 which offer substantial generalizations of a well-known Gohberg and
Krein result.

Finally, some connections of the theory to system sensitivity and stability
problems have been pointed out. In this regard, Theorem 6.1 illustrates the rele-
vance of the concepts of gain and phase shift in connection with sensitivity theory.
Theorem 6.2 provides formalization to the conceptual connections between
causality, strict causality and weak additivity on the one hand, and the stability
of a basic feedback system on the other.

Acknowledgment. This paper has benefited from a number of suggestions
and comments by Professor William A. Porter of the University of Michigan.

REFERENCES

[1] B. D. O. ANDERSON AND R. W. NEWCOMB, An approach to the time-varying sensitivity problem,
TR 6560, Stanford Electronics Laboratory, Stanford, Calif., 1966.

[2] F. E. BROWDER, The solvability of nonlinear functional equations, Duke Math. J., 30 (1962),
pp. 557-566.

[3] M. DAMBORG AND A. W. NAYLOR, Stability structure for feedback systems having unstable open
loops, IEEE Trans. Automatic Control, AC-18 (1973), pp. 318-319.

[4] ---, The fundamental structure of input-output stability for feedback systems, IEEE Trans.
Systems Science and Cybernetics, 1970, pp. 92-96.

[5] M. DaMBORG, Stability of the basic nonlinear operator feedback system, Tech. Rep. 37, Systems
Engineering Laboratory, University of Michigan, Ann Arbor, 1969.

[6] R. M. DE SaNTIS, Causality structure ofengineering systems, Ph.D. thesis, University of Michigan,
Ann Arbor, 1971.

[7] , On some connections between causality and stability, Preprints 14th Midwest Symposium
on Circuit Theory, Denver, 1971.

[8] --., Espaces de resolution Hilbertienne et theorie de la stabilitY, Tech. Rep. EP73-R.-1, Ecole
Polytechnique de Montr6al, 1973.

[9] --, Causality for nonlinear systems in Hilbert resolution spaces, Math. Systems Theory,
vol. 17, no. 4, to appear.

10] C. L. DOLPH aND G. J. MINTY, On nonlinear integral equations ofthe Hammerstein type, Nonlinear

Integral Equations, P. M. Anselone, ed., University of Wisconsin Press, Madison, 1964,
pp. 99-154.

[11] D. L. DUTTWEILER, Reproducing kernel Hilbert space techniques for detection and estimation
problems, Tech. Rep. 7050-18, Information Systems Laboratory, Stanford University,
Stanford, Calif., 1970.

[12] Y. FOURES aND I. SEGaL, Causality and analicity, Amer. Math. Soc. 78 (1955), pp. 385-405.
13] A. GERSHO, Nonlinear systems with a restricted additivity property, IEEE Trans. Circuit Theory,

CT-16 (1969), pp. 150-154.
14] I. Z. GOHBERG aND M. G. KREIN, Introduction to the Theory ofLinear Nonselfadjoint Operators,

vol. 18, American Mathematical Society, Providence, R.I., 1969.
[15] --., Theory of Volterra Operators in Hilbert Space and Applications, vol. 24, American

Mathematical Society, Providence, R.I., 1970.
[16] T. KAILATH AND D. L. DUTTWEILER, Generalized innovation processes and some applications,

14th Midwest Symposium on Circuit Theory, Denver, 1971.
[17] G. M. MINTY, Monotone nonlinear operators in Hilbert space, Duke Math. J., 29 (1962), pp. 341-

346.
[18] R. E. A. C. PALEY AND N. WIENER, Fourier Transform in the Complex Domain, Colloquium

Publications, vol. 19, American Mathematical Society, Providence, R.I., 1934.
[19] W. V. PETRYSHYN, On a fixed point theorem for nonlinear P-compact operators in Banach space,

Bull. Amer. Math. Soc., 72 (1966), pp. 329-333.



CAUSALITY, STRICT CAUSALITY AND INVERTIBILITY 553

[20] W. A. POaTER, Modern Foundations of Systems Engineering, Macmillan, New York, 1965.
[21], On the reduction of sensitivity in multivariate systems, Internat. J. Control, 5 (1967),

pp. 1-9.
[22] W. A. PORa’ER AND C. L. ZAnM, Basic concepts in systems theory, Tech. Rep. 44, Systems Engineer-

ing Laboratory, University of Michigan, Ann Arbor 1969.
[23] W. A. PORrER, Sensitivity problems in linear systems, IEEE Trans. Automatic Control, AC-10

(1965), pp. 20-24.
[24] R. SAEIS, State in Hilbert space, SIAM Rev., 15 (1973), pp. 283-308.

[25], Causality in Hilbert space, Ibid., 12 (1970), pp. 357-383.
[26] ., Resolution space-A function analytic setting for control theory, 9th Allerton Conference

on Circuit and Systems Theory, 1971.
[27] I. W. SANDnERG, Conditions for the causality of nonlinear operators defined on a function space,

Quart. Appl. Math., 23 (1965), pp. 87-91.

[28] M. SnINRo, A fixed point theorem and some applications, Arch. Rational Mech. Anal., 17 (1964),
pp. 255-271.

[29] D. C. YOULA, L. J. CASTRIOTA AND H. L. CARLIN, Bounded real scattering matrices and thefounda-
tions of linear passive network theory, IRE Trans. Circuit Theory, CT-6 (1959), pp. 102-124.

[30] J. C. WILLEMS, Stability, instability, invertibility and causality, this Journal, 7 (1969), pp. 645-671.
[31] --, The Analysis ofFeedback Systems, MIT Press, Cambridge, 1971.
[32] L. A. ZADEH, Optimum nonlinear filters, J. Appl. Phys., 24 (1953), pp. 396-404.
[33] C. L. ZAHM, Structure of sensitivity reduction, Tech. Rep. 33, Systems Engineering Laboratory,

University of Michigan, Ann Arbor, 1968.
[34] G. ZAMES, Realizability conditions for nonlinear feedback systems, IEEE Trans. Circuit Theory

CT-11 (1964), pp. 186-194.
[35] ., On the input-output stability of time-varying nonlinear feedback systems, IEEE Trans.

Automatic Control AC-11 (1966), pp. 228-238, pp. 466-476.



SIAM J. CONTROL
Vol. 12, No. 3, August 1974

STABILITY ANALYSIS OF INTERCONNECTED SYSTEMS*

ANTHONY N. MICHEL?

Abstract. Sufficient conditions for the Lyapunov stability of several classes of (a) continuous-
time composite systems described by ordinary differential equations, (b) discrete-time composite
systems described by difference equations, (c) sampled-data composite systems, and (d) composite
systems described by functional differential equations are established. In all cases the objective is
the same: to analyze the stability of large-scale composite systems in terms of their lower order sub-
systems and in terms of their interconnecting structure.

In order to demonstrate the usefulness of the present approach, several specific examples are
considered.

1. Introduction. Despite its elegance and generality, the usefulness of the
direct method of Lyapunov is severely limited when applied to problems of high
dimension. For this reason it may be advantageous to view high order systems
as being composed of several lower order subsystems, which, when interconnected
in an appropriate fashion, yield the original composite or interconnected system.
The stability analysis of such systems can then often be accomplished in terms
of the simpler subsystems and in terms of the interconnecting structure of such
composite systems. In this way, complications which usually arise when the
direct method is applied to high order systems may be circumvented. Utilizing
vector Lyapunov functions, Bailey [1] and others adopted this point of view. An
excellent survey of work done in this area is contained in the survey paper by
,iljak [2].

In the present paper some new stability results for several classes of inter-
connected systems are established. Systems considered include (a) continuous-
time systems described by ordinary differential equations, (b) discrete-time
systems described by ordinary difference equations, (c) sampled-data systems,
and (d) systems described by functional differential equations. The results ob-
tained for (d) are generalizations for most of those established for (a)-(c), and, as
such, constitute a unifying setting for a large class of problems.

In order to demonstrate the usefulness of the present approach, several
specific examples are considered.

2. Notation and preliminaries. Let V W denote the Cartesian product of
arbitrary sets V and W. Let e denote set membership and let = denote set in-
clusion. Let R" denote Euclidean n-space and let l. denote the Euclidean norm.
Let x’= (x 1,’.., x,) denote the transpose of x R". If x,yR", then x y
denotes xi < Yi, 1,... n.
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For a real rectangular matrix A ((aij)), A > 0 indicates that aij > 0 for
each pair (i, j), A 0 denotes the null matrix, and A - 0 indicates that for some
pair (i, j), aij 0.

The eigenvalues of a square matrix A are denoted by 2(A). If all eigenvalues
of A are real, then the largest and smallest eigenvalues are denoted by ,max(A) and
2rain(A), respectively. A square matrix A is said to be stable if the real parts of all
its eigenvalues are negative.

The norm of a rectangular matrix D induced by the Euclidean norm is given
as [lOll min {’lxl >-IDxl, x R"} %//;max(D’D), where D’ denotes the trans-
pose of D.

Let J [to, ), to >= 0, and let I denote the sequence {to + k}, k 0, 1,

A real-valued function (p(r) is said to belong to class K if it is defined, con-
tinuous, and strictly increasing over 0 _< r < oe, and if it vanishes at r 0.

Systems are considered which may be described by ordinary differential
equations of the form

{) gx, t),

where 2 dx/dt and where g R" x J R".
A function g:R" x J R" is said to belong to class E if (a) for every Xo e R"

and for every to => 0, equation (1) possesses one and only one solution x(t :Xo, to)
for all e J, where Xo x(t0; Xo, to), and (b) f(x, t) 0 for all e J if and only if

Results which yield conditions for the Lyapunov stability of the equilibrium
x 0 of (1) involve the existence of mappings V:R" x J R1. Henceforth it is
assumed that such mappings are continuous on R" x J and that they satisfy
locally a Lipschitz condition with respect to x. The upper right-hand derivative
of V with respect to time along solutions of (1) is given as

DVI lim sup
At- 0 ) V[x(t +/xt; Xo, to), + t] V[x(t Xo, to), t]}.

If V6 C1, i.e., if V is continuously differentiable on R" J, then the total
derivative of V with respect to time along solutions of (1) is given as

DI VV(x, t)’g(x, t) +
eV(x,t)

where VV(x, t) denotes the gradient of V.
Also considered are discrete-time systems described by difference equations

of the form

(2)

where g’R" I R". If for every Xo 6R" and for every to >-0, equation (2)
possesses a unique solution x(r’Xo, to), with Xo X(to’Xo, to), which is defined
for all r I and if g(x, ) 0 for all r I if and only if x 0, then g is said to belong
to class E.
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Conditions for the Lyapunov stability of the equilibrium x 0 of (2) involve
mappings V’R" I R and the first difference AV(x, r) along solutions of (2)
expressed by

zX 2(x, ) v[g(x, ), + 1] V(x, ).

Also considered are systems which are most appropriately described by
functional differential equations. The following additional notation is required.

For given h > 0, let C denote the space of all continuous mappings of the
interval [-h, 0] into R". With q9 C, define the norm on C by I1oll sup
-h =< 0 < 0. Let Cn denote the set of all q9 C such that I1ol < H. If x(u) denotes
a continuous n-vector defined on -h =< u, let xt(" denote the restriction of x(u)
to the interval It h, t], i.e., xt(" C is defined by xt(" x(t + 0), h <= 0 <= O.
In this case is to be considered as a parameter. Let :t(t) denote the right-hand
derivative of x(u) at u. Finally, let f(qg, t) be an n-vector-valued function de-
fined for all q0 Cn and for all 0 _< < .

Functional differential equations of the form

(3) (t) f(x,, t)

are considered. A function x(t" q), to) is said to be a solution of (3) with initial
vector oe Cu and initial time to >_-0 if (a) for each > to, xt(" "q),to)e Cu,
(b) Xto("" q, to) qg(to + 0) ___a qg, -h _< 0 __< 0, and (c) equation (3) is valid for all
>-to, i.e.,

lim
{xt+ at(’" qg, to) xt(’" qg, to)}

f[xt(." q), to), t].
ato At

The function f is said to belong to class E if for every q Cu and for every to >= 0,
equation (3) possesses a unique solution xt(’" , to) for all => to, with Xo( q,. to), and if in addition, f(xt, t) 0 for all >= to if and only if xt O.

Conditions for the Lyapunov stability of the equilibrium x 0 of (3) involve
the existence of functionals V(q, t) defined for all q Cu and for all >= to. Hence-
forth it is assumed that V(q, t) is continuous for all q0 Cu, => to, and that it
satisfies a local Lipschitz condition in q. Along solutions of (3), the upper right-
hand derivative of V with respect to is defined as

DV(3 limsup l--7/{V[x,+at(." qg, to),t + At]- V[x,(." q, to), t-l}.
AtO

In the remainder of this paper it is assumed that all systems considered belong
to clas E. The usual definitions and theorems for Lyapunov stability of systems
(1), (2) and (3) can be found in any standard text (e.g., [33).

3. Composite systems considered. Systems are considered which may be
represented by the set of ordinary differential equations

(4) i fi(zi t) + gi(z z,,, t) 1,..., m,

where zi6R"’, f/’R"’ JR"’, and gi’R"1 R"" J R"’ Letting

m nj n, letting x’ (z’ z,) e R" letting f(x t) [f(z t)’,.., f,,(z,, t)’]j=l
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and letting g(x, t)’ [gl(zl,..., Zm, t)’, gm(Zl,’", am, t)’] [gl(X, t)’,
gin(X, t)’], one can represent (4) equivalently as

yc f(x, t) + g(x, t) - h(x,

where .f’R" x J--+ R" and where g’R" x J--+ R". System (5), which is of the
form (1), is called a composite system. It may be viewed as a nonlinear, time-
varying interconnection of m isolated subsystems Si which are of the form

(6) i f(z, t).

The unique solutions of (6) are denoted by zi(t" Zio, to) with Zo z(to’Zio, to).
Subsequently, several special cases of (4) are considered. In particular, let

gi(x, t) Cijzj,
j=l

:/:

where C is a constant n n matrix. Then (4) assumes the form

(7) e ,fi(zi, t) -[- 2 Cijzj, 1, m.
j=l

Equation (7) represents a system consisting of m isolated subsystems (6) which
are linearly interconnected.

Now let

gi(x, t) 2 Cij(z1, Zm, t)zj 2 Cij(x’ t)zj,
j=l j=l
i4:j i4:j

where Cj(x, t) is an n nj array. Then (4) assumes the form

(8) i fi(zi’ t) -}- 2 Cij(X’ t)zj,
j=l

Next, let

,m.

gi(x, t) Aijf(zJ, t),
j=l
i*j

where Aj is a constant n nj matrix and wherefj is determined by the jth isolated
subsystem. Then (4) assumes the form

(9) 2i= Aofj(zj, t), l m,

where Au l, 1, ..., m.
Lastly, let

gi(x, t) gij(zj, t),
j=l
i*j
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where gij" Rnj J R"’. Then (4) assumes the form

(10) i fi(zi, t) gij(zj, t), 1,... m.
j=l
ij

Also considered are discrete-time composite systems described by the set of
difference equations

(11) Zi(T Jr- 1) .Ezi(T), "15 + gi[Zl(-), Zm(75), T,], 1,..., m,

where zi R"’, fi’R"’ I R"’, and gi’R"l R"" R"’. Defining f, g and
h as in (5), equations (11) can equivalently be represented as

(12) x(r + 1) =/[x(), r] +. g[x(:), :] h[x(:), r],

where f’R" x I- R" and g’R" x I--, R". Clearly, (12)is of the same form as
(2). Composite system (12)with decomposition (11)can be viewed as a nonlinear,
time-varying interconnection of rn isolated subsystems which are of the form

(13) z( + ) .[z,(), r].

The unique solutions of (13) are denoted by zi(" Zio, to) with Zio zi(to" zo, to).
Let

j=l

where Cij is as defined in (7). Then (11) assumes the form

(14)

Next, let

z( + 1)= .z(), ] + y Cjzj(),
j=l
j

j=l

where Aj is as defined in (9) and Where fj is determined by the jth isolated sub-
system. Then (11) assumes the form

(15) zi(z + 1)-- Aijfj[zy(’r), ], i= 1, ..., m,

where A, 1, 1,...
Finally, let

,m.

j=l

where gj is defined similarly as in (10). Then (11) assumes the form

(16) Zi(l" + 1) "-./i[Zi(’t’), "t’] + Z gij[Zj(’C)
j=l
j

,m.
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Also considered are composite sampled-data systems described by the set of
equations

(17)
,(t) f[z,(t), t] + Cijzj(kT),

j=l
:j

kT<=t <(k + 1)T, k =0,1,2,..., i= 1,...,m,

where i(t) denotes the right-hand derivative of z(t) with respect to t, zi R";,
fi R"’ [0, ) R";, Cj is a constant n nj matrix, and T denotes the sampling
time.

Composite system (17) may be viewed as a linear interconnection of m
subsystems described by (6).

Another class of composite sampled-data systems considered are those
described by the set of equations

(18)
i(t) .Ezi(t), t + E b(t)Coz3(k T),

j=l
:/:

kT<=t <(k + 1)T, k=0,1,2,..., i= 1,... ,m,

where .i(t), zi(t), fi and Cij are defined as in (17) and where

6(t)={; ift=kT,k=O,1,2,...ift
Finally, consider composite systems described by the set of functional differ-

ential equations

(19) zi(t) fi(zl, t) + gij(z{, t), 1,..., m,
j=l

where z is an n-dimensional vector, f(q9, t) is an ni-vector-valued function de-
fined for all q9 Cu, and for all >= to, and where g(q9j, t) is an hi-vector-valued
function defined for all q Cuj and for all => to.

Composite system (19) may be viewed as a nonlinear, time-varying inter-
connection of m isolated subsystems described by functional differential equations
of the form

(20)

Now let " n n, and letj=l

’(t) f,(zl, t).

z 1 (191 ZL(,,t)

x, qg f(x,, t) g(x,, t)

zT f(zT, t)

g,(z,t)
j=l

E gmj(Z/’ t)
j=l
:j
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Then (19)can be written equivalently as

(21) (t) f(x,, t) + g(x,, t) - h(x,, t),.

where x is an n-dimensional vector and where f and g are n-vector-valued
functions. Equation (21) is clearly of the same form as (3).

The unique solutions of isolated subsystem (20) are denoted by zi(’" q9i, to).
The initial function vector q9 of the solution of (21) is defined over the domain

E,o, where E,o is the set of values hi, _>_ o 1,..., m, which are
smaller or equal to to, and where {q:q9i Cn,, 1, ..., m} c Cn.

Remark 1. Systems (7), (8), (9), (10), (14), (15), (16), (17) and (18) are all special
cases of system (19).

4. Main results: Continuous-time systems. Subsequently, the following con-
ventions will be employed.

DEFINITION 1. Isolated subsystem (6) possesses Property A if there exist a
continuously differentiable function :R"’ J R’, two radially unbounded
functions Pi,, qi2 s K, and a function Pi3 K, such that the conditions

(i) qgi,(lzl) =< V/(zi, t) __< qgi2(lzil),
(ii) D V/(6) qgi3(Izil)

hold for all z R"’ and for all J.
DEVINITION 2. Isolated subsystem (6) possesses Property B if there exist a

continuously differentiable function V:R"’ J R and four positive constants
c, ci2, ci3, cu, such that the conditions

(i) cixlzil 2 <= Vi(zi, t)<= ci2lzil 2,
(ii) DV/6 =< -ci31zil 2,

(iii) IVV(z, t)l =< c,lz,l
hold for all zi R"’ and for all J.

Remark 2. If subsystem (6) possesses Property A, then its equilibrium z 0
is asymptotically stable in the large. If it possesses Property B, then its equilibrium
is exponentially stable in the large (see, e.g., [3]).

The proofs of the following results are given in 9.
THEOREM 1. The equilibrium x 0 of composite system (4) is asymptotically

stable in the large if the following conditions are satisfied:
(i) each isolated subsystem (6) possesses Property A;
(ii) for each scalar product VVi(zi, t)’gi(x,t), i= 1,..., m, an inequality of

the form

VVi(zi, t)’gi(x, t) <= [qi3(lzil)] 1/2 aij(x, t)[p3(lzjl)] 1/2

can befound: and
(iii) there exist an m-vector a’= (1, "’’, Zm), i > O, i= 1, ..., m, aml

> 0 such that for each x R" and each J, the array (S + el) is negative definite,
where S ((sij)) is defined by

-ai + aiau(x, t) if i= j,
si (aiaU(x, t) + aai(x, t))/2 if # j,

and where I denotes the identity matrix.
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COROLLARY 1. The equilibrium x 0 of composite system (8) is exponentially
stable in the large if the following conditions are satisfied"

(i) each isolated subsystem (6) possesses Property B"
(ii) there exists an m-vector a’=(a,...,am), ai>0, i= 1,...,m, and

e > 0 such that for each x R and for all J, the array (S + eI) is negative
definite, where S ((sii)) is defined by

f--OiCi3 + ici411Ci(x, t)[ if j,
Sij

((,c,lIC,(x, t)ll / clIC,(x, t)ll)/2 if =/: j.

Here Cii(x, t) {2max[Ci(x, t)’Ci(x, t)]}/2.
THEOREM 2. The equilibrium x 0 of composite system (9) is asymptotically

stable in the large if the following conditions are satisfied"
(i) each isolated subsystem (6) possesses Property A"
(ii) for every z R’, z :/: O, there exists a 6 > 0 such that ]f/(zi, t)[ .__> b for

all J"
(iii) for each isolated subsystem (6) there exist positive constants ci and ci2

such that the conditions
(a) O(6, -< -cillfi(zi, t)[ 2,
(b) IWVi(zi, t)l =< ci21f(zi, t)l

hold for all z e R"’ and for all e J" and
(iv) there exists an m-vector ’= (,..., m), i > O, i= 1,..., m, such

that the matrix S ((s)) defined by

--OiCil if j,
s,-

(,c,211A,ll / c211A11)/2 if # j,

is negative definite. Here,

A,ll sup IA,f(z, t)l
yt,,o If(zj, t)l

Remark 3. For autonomous systems, Theorem 2 finds applications when
the isolated subsystems

(22) i fi(zi)

satisfy the following result due to Krasovskii [3]" The equilibrium x 0 of (22)
is asymptotically stable in the large if the Jacobian J(z) cf(z)/c3z is such that
}max[Ji(zi)’ q- Ji(zi)] - < O.

A Lyapunov function which satisfies Krasovskii’s result is V(zi) fi(zi)’f(zi)
[f/(zi)[ 2. Now D1//(221 -6[f(z)[ 2 and IV(z)l _-< {2sup,lJ(z)l}lf(z)l. In

cases where SUpz, Ir(z)l < , let ci2 2 SUpz, Ir(z)l, and let cil 6. Then it
follows that

D22) _-< -clf(z)l 2 and IV(z)l _-<

which are precisely the requirements of hypothesis (iii) of Theorem 2.
THEOREM 3. The equilibrium x 0 of composite system (10) is exponentially

stable in the large if the following conditions are satisfied"
(i) each isolated subsystem (6) possesses Property B"
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(ii) for each i,j 1,..., m, # j, there exists a positive constant kij such that

Igi(z, t)l <=
for all z R" and for all J" and

(iii) there exists an m-ector ’= (,..., ), > O, i= 1,..., m, such
that the matrix S ((si)) defined by

ici3 if j,
Sij

.(iciki + cki)/2 if :/: j,
is negative definite.

Remark 4. Conditions for the exponential stability of composite system (7)
follow immediately from the last result by replacing k by
and by deleting hypothesis (ii).

Remark 5. Following the proof of Theorem 3, another set of conditions for
the expotential stability in the large of composite system (8) can be obtained. In
this case hypotheses (ii) and (iii) of Theorem 3 are changed as follows"

(ii) for every x e Rn, x # O, there exists a fi > 0 such that [[Cij(x, t)[[ >_ ,fi for
alltJ"

(iii) there exists an m-vector ’= (1,"’, ,,), i > O, i= 1,..., m, such
that the matrix S ((sij)) defined by

--(ZiCi3 if j,
Sij

(callCj(x, t)ll / jcjallcj(x, t)ll)/2 if # j,

is negative definite for all x R" and for all J. Here IICj(, t)ll is as defined in
Corollary 1.

THEOREM 4. The equilibrium x 0 of composite system (10) is asymptotically
stable in the large if the following conditions are satisfied"

(i) for each isolated subsystem (6) there exist a continuous function
’R" J R 1, two radially unbounded functions qil q2 K, a function q3 K,
a continuous function c(t) >= > 0 for all J, and a positive constant L, such
that the conditions

(a) qi(Izil) <= l/i(zi, t) <=
(b) D 1/6 =< ci(t)qi3(Izil),
(c) V/(zi, t) Vi(zi, t)l _-< Lilzi zi

hold for all zi, z’i, z’i’ R"’ and for all e J"
(ii) for each i,j 1,..., m, i:/: j, there exists a continuous function kij(t)

>= e > 0 for all J, such that the condition

Ig(z, t)[ __< k(t)qa(lZ[)
is satisfied for all zi R" and for all e J" and

(iii) all successive principal minors of the matrix S(t) ((sii(t))) defined by

ci(t if j,
sij(t)

-Likii(t if :/: j,

are bounded from below by some ? > 0 for all J.
Remark 6. It is strongly emphasized that in Theorem 4, V need not be con-

tinuously differentiable.
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Remark 7. If the conditions of Theorem 4 are relaxed to allow 1//to be con-
tinuously differentiable, then subsystem (6) possesses Property A and it is possible
to prove the following version of Theorem 4:(a) delete hypothesis (ic); and (b)
replace L; in hypothesis (iii) by Ci4 where IV I/(zi, t)l -< ci4lzil for all Z . R"’ and
for all e J.

5. Main results: Discrete-time systems. In the next results the following
notation is employed.

DEFINITION 3. Isolated subsystem (13) possesses Property C if there exist a
function :Rn’ x I R 1, two radially unbounded functions qgi1, q9i2 e K, a
function (/9i3 G K, and two positive constants c, L, such that the conditions

(i) o,(Izl)_-< (z, ) __< q)i2(lzi]),
(ii) AV/(13 --ciq)i3([Zi[),

(iii) [(Z’, Z) (Z;’, Z)[ =< L]z’ z’[[
hold for all zi, z, z’i’ Rn’ and for all z . I.

Remark 8. If subsystem (13) possesses Property C, then its equilibrium
zi 0 is asymptotically stable in the large (see, e.g., [3]).

The proofs of the subsequent results are given in 9.
THEOREM 5. The equilibrium x 0 of composite system (16) is asymptotically

stable in the large if the following conditions are satisfied:
(i) each isolated subsystem (13) possesses Property C, with q)i3(lzi[) Izl;

(ii) for each i, j 1,..., m, v j, there exists a positive constant kij such
that

for all z R"J and for all z I;
(iii) the matrix S ((si)) defined by

ci if j,
sij

Likij if # j,

has positive successive principal minors.
Remark 9. Conditions for the asymptotic stability in the large of com-

posite system (14) follow from the last result by replacing kij by IICll, k by
IIfjll, and by deleting hypothesis (ii).

THEOREM 6. The equilibrium x 0 of composite system (15) is asymptotically
stable in the large if the following conditions are satisfied:

(i) each isolated subsystem (13) possesses Property C, with
for all z I (i.e., AI//tl3 < --cilfi(zi, "f)l, Zi Rni, "f 1);

(ii) for every z R"’, z :/: 0, there exists a 6 > 0 such that If/(zi, z)l >_- 6 for
all z I; and

(iii) the matrix S ((si)) defined by

has positive successive principal minors. Here

ifi =j,

if vj,

IAif(z, :)1
sup

s(z,) o I.f(z, *)1
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THEOREM 7. The equilibrium x 0 of composite system (11) is asymptotically
stable in the large if the following conditions are satisfied:

(i) each isolated subsystem (13) possesses Property C’,
(ii) for each i, j 1,..., m, there exists a function ais(x, z) such that the

properties
(a) aO(x, 27) 6 > O, i, j 1,..., m,
(b) c Liau(x, z) > O, 1,..., m,

hold for all x R" and for all z I (ci and L are given in Definition 3);
(iii) for each 1,..., m, an inequality of the form

[gi(Zl, Zm, 27)1 E ais(x, 27)(Ps3(lzs[)
j=l

holds for all x R" and for all 27 I; and
(iv) for every x R", each successive principal minor of S ((sis)) determined

by

ci Liau(x, 27) if j,
Sij

--Liaij(x 27) if :/: j,

is bounded from below by some > O for all 27 I.

6. Main results: Sampled-data systems. Presently, the following convention
is utilized.

DEVINITON 4. Isolated subsystem (6) possesses Property D if there exist a
continuous function V:R"’ 0, oe)--, R and three positive constants Cil, c2
and L, such that the conditions

(i) Izi] <- Vi(zi, t) CixlZil,

lim inf{V[z, + At.f(z,,t),t + At]- V(z,, t)}
(ii) ci 2 i

at-.o+ At
(iii) Vi(zi, t) Vi(zi, t)l <-_ Lilzi zi

hold for all zi, z’i, z’i’ R"’ and for all [0, ).
The next results are proved in 9.
THEOREM 8. The equilibrium x 0 of composite system (17) is asymptotically

stable in the large (f the following conditions are satisfied:
(i) each isolated subsystem (6) possesses Property D;

(ii) for each isolated subsystem (6) there exists a positive constant c3 such
that DI//(6) --Ci3[Zi[ for all zie Rn’ and for all te [0, ):

(iii) the matrix S ((sis)) with components

Ci3 c,2r (f j,
Cil

Sj

-ci3Li [1 e -c;2r] + Li} Cis if i j,
CilCi2

has positive successive principal minors.
THEOREM 9. The equilibrium x 0 of composite system (18) is asymptotically

stable in the large if the following conditions are satisfied:
(i) for each isolated subsystem (6), hypotheses (i) and (ii) of Theorem 8 hold:
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(ii) the matrix S ((sij)) with components

Ci3
Sij

-LillCijl[
has positive successive principal minors.

!f =j,

if :/:j,

7. Main results: Systems described by functional differential equations. It will
be convenient to use the following additional nomenclature.

DEFINITION 5. Isolated subsystem (20) possesses Property E if there exist a
continuous functional V(q9i, t) defined for every q9 s Cn, and for every J, three
functions il, ’e, ’3 K, and two positive constants ci, L, such that the con-
ditions

(i) l(llqgill)__< v(q9i, t)=<
(ii) DV,eo) <= --Cil]li3(llqgill), and
(iii) V/(pi, t) V/(r/i, t)l _-< Lillq9 r/ill

hold for all q9, r/ s CH, and for all s J.
DEFINITION 6. For isolated subsystem (20), let V((pi, t) be a continuous

functional satisfying (i) and (iii) of Definition 5. Let Ui denote the subset of
of all elements yi(t) for which the form V[y(t), t], considered as a function of t,
is monotone decreasing. If there exist qti3 K and a constant c > 0 such that

DV/t2o) =< -cii3(llyill)

for all Yi Ui, then system (20) is said to possess Property F.
DEFINITION 7. Let

f nl
1/2

[o}(o)]
,.j=

Isolated subsystem (20) possesses Property G if the right-hand side of (20) is
bounded and if there exist a continuous functional V(q, t) defined for every
qi Cn and for every J, four functions il, ffi2, ffi3, ff4 K, and two positive
constants c, Li, such that the conditions

(i) q,,(lo’(0)l) _-< v/(p, t) __< i2(Iq9i(0)1)/
(ii) DV,eo) -cqgu(Iqg(0)l), and

(iii) V(qg’, t) V(r/i, t)l _-< Lilqi(0) r/i(0)l
hold for all q9 g, r/i Cni and for all J.

Remark 10. If isolated subsystem (20) possesses any one of the above proper-
ties, then its equilibrium is asymptotically stable (see, e.g., [3]).

THEOrUM 10. The equilibrium x 0 of composite system (19) is asymptotically
stable if the following conditions are satisfied:

(i) each isolated subsystem (20) possesses Property E;
(ii) for each i, j 1,..., m, :/: j, there exists a positive constant kij such

that

.for all q9 Cn and for all J" and
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(iii) the matrix S ((sij)) defined by

ci !( =j,
Sij

-Lkij if :/: j,

has positive successive principal minors.
THEOIM 11. The equilibrium x 0 of composite system (19) is asymptotically

stable if the Jbllowing conditions are satisfied:
(i) each isolated subsystem (20) possesses Property F:
(ii) .(or each i, j 1,..., m, :/: j, there exists a positive constant kij such

that

IIgj(oj, t)ll kjj3(llqJll),

for all o Uj and for all J and
(iii) the matrix S ((sij)) defined by

:/: j,

ci if j,
Sij

Likij if # j,

has positive successive principal minors.
THEOREM 12. The equilibrium x 0 of composite system (19) is asymptotically

stable if the following conditions are satisfied:
(i) each isolated subsystem (20) possesses Property G:
(ii) .for each i,j 1, ..., m, # j, there exists a positive constant kij such that

Igij(qgJ(o), t)l =< kijl[lj4(lqgJ(O)]), # j,

for all q9 CHi, J" and
(iii) the matrix S ((sij)) defined by

ci if j,
Sij

Liki if # j,

has positive successive principal minors.

8. Applications. Several specific examples are now considered to demonstrate
applications of the above results.

Example 1. The controlled longitudinal motion of an aircraft may be repre-
sented by the set of equations [4]

2k --pkXk + if, k 1,2, 3,4,

4(23)
6" flkXk rpza f(a),

k=l

where Pk > 0, r > 0, P2 > 0 are constants and where f(a)is a real, single-valued
function with the following properties: (i)f(a) is continuous for all
(ii) f(a) 0 if and only if a 0, and (iii) af(a) > 0 for all a # 0. Without loss of
generality it is assumed that Pl =< P2 -< P3 -< P4" Let z’ (x1,x2,x3,x4) and
let z2 a. System (23) may be viewed as a linear interconnection of two isolated
subsystems S S2

(24) S :2k PkXk, k 1,2, 3,4,
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(25) S2"y -rpza f(o),

interconnected by means of the matrices C’12 (1, 1, 1, 1) and C21 (1,2,
f13, f14). Composite system (23) is clearly a special case of (7).

Choosing Va(za)= caz’aza and V2(z2)= c2Z2, where ca and cz are positive
constants, one obtains

DVa(24) <= -2capalzll 2, [VVl(Zl)l =< 2czlZl], DV2(25) =< -2rp2c2]zz] z

and IVV2(z2) 2c21z21 for all z e R"’ and z2 e R"2. Also, Ilc12]l 2 and IIC21
+

Choosing a 1/(4ca) and 02 1/(2c2w/fll2 +/322 + f132 + fl2), matrix S of
Theorem 3 (and Remark 4) assumes the form

-pl/2

--rP2

Matrix S is negative definite provided that --/92apzr22 -3
I- 4(i4= fl2) < 0. It now

follows from Theorem 3 that the equilibrium x’ (z’azz) 0 of composite system
(23) is exponentially stable in the large provided that

2fli(26) 2 < 1, i-
i=1 PaP2r

Example 2. Consider the indirect control problem

(27)
2 Ax + b.f((r),

(r -p,a- rf(a) + a’x,

where x R", A is a stable n n matrix, b is an n-vector, r > 0 is a constant, a
is an n-vector, andf(o) is a real, single-valued function with the following proper-
ties: (i)f(o) is continuous for all -oo < o < oo, (ii)f(o) 0 if and only if o 0,
and (iii) 0 < of(o) < ko2 for all a 4= 0, where k > 0 is a constant. System (27)
may be viewed as a nonlinear interconnection of two isolated subsystems S $2,

(28) S "2 Ax,

(29) S2 ""--- --pn0 r.f(o),

interconnected by the equations g12(o)=f(o)b and g21(x)= a’x. Composite
system (27) is clearly a special case of (10).

For S there exist a function Va(xa) x’Px, where P is a symmetric, positive
definite matrix, and four positive constants c a, i- 1, 2, 3, 4, such that C allXl 2

__--< VI(X)_-< lZlXl 2, DVl(28)--< -Cl3lXl2, lVVl(X)l _.< 141x1 for all x e R" (for con-
verse stability theorems see, e.g., [3]). For $2 choose V2(o) o2/2. Then DV2(29
<- -PnlO’] 2 and IVV2(o)l --Iol for all o e R 1.

The constants ka2 and k2a of hypothesis (ii) of Theorem 3 are ka2 klbl
and k21 lal.
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Choosing al 1/(klbl) and a2 c4/[al, matrix S of Theorem 3 assumes the
form

S= [ -c3/(k[b’) C14 IC14. C14On/I al
This matrix is negative definite provided that c13c4p,/(klallbl) ci, > O. Thus,
the equilibrium (x’, a) (0’, 0) of composite system (27) is exponentially stable in
the large provided that

(30) k < p.cx 3/(lal Iblc).

Example 3. Consider again (27). For S choose V(x) Ixl and for S2 choose
V2(o" "---lal.Let W- (A’ + A)/2. ThenOV(28 <= 2max(W)lxl and OV2(29 <- -p,lal.
v is Lipschitzian in x with L and V2 is Lipschitzian in tr with L2 1. Matrix
S(t) S of Theorem 4 assumes the form

S-- 1-2max(W)-klb’-IalPn _1’

where -,max(W)> 0. This matrix has positive successive principal minors
provided that IAmax(W)lp klal Ibl > 0. It now follows from Theorem 4 that the
equilibrium (x’, a)= (0’, 0) of composite system (27) is asymptotically stable in
the large, and hence, absolutely stable, provided that

(31) k < p,lAmax(W)l/(lallbl).

Example 4. Consider the nonlinear, time-invariant system

(32)
Az + bf(a),

O" C1Z2

2 A2z2 -+- b2f2(2),
0"2 C2Z

where zl R"’, z2 R"-, A is a stable n n matrix, A 2 is a stable n2 n 2

matrix, c is an nz-vector, c2 is an n-vector, and f(al), fz(a2) are real, single-
valued and continuous functions with the propertiesf1(0) f2(0) 0, 0 < af(a)
< kl 0"2 for all a : 0, and 0 < 0"2f2(02) < k20"2 for all o2 :: 0.

System (32) can be viewed as a nonlinear interconnection of two linear
isolated subsystems S, $2,

(33) Si :.i Aizi, 1,2,

interconnected by the equations gl2(Zl)--bf(a) and g21(Zl)--b2fz(a2).
System (32) is clearly a special case of (10).

Isolated subsystems S and $2 are exponentially stable in the large and there
exist functions V(zi), i= 1, 2, and positive constants ci, c2, ci3, ci,, i= 1, 2,
such that CillZil 2 <= vi(zi) _< ci2lzil 2, D1//(33 -< -ci3lzil 2, and IVl//(zi)l =< ci4lzil for
all z R"’, 1, 2 (see [3]).

The constants k12 and k2 of hypothesis (ii) of Theorem 3 are k2 klblllCl
and k21 k2lbzllc2l.
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Choosing 1 c24/(kllclllb11)and 2 c./(k21c211b21), matrix S of Theorem
3 assumes the form

S= [ -c3c2/(klb..c’) c’c24 1"c 4c24 c 4c23/(k21b 21
From Theorem 3 it follows that the equilibrium (x’, x) (0’, 0’) is exponentially
stable in the large if S is negative definite, i.e., if

(34) klk2 < c13c23/(c14c2,{blllb211clllc21 ).

Example 5. Reconsider system (32). For $1 choose V(z)= Izl and for S2

choose Vz(zz) Izz[. Let Wi (A’i + Ai)/2, i= 1,2. Then DV/33 =< 2max(W3lzl,
1, 2. V/(z) is globally Lipschitzian in z with L 1. Matrix S(t) S ofTheorem

4 assumes the form

[-2max(W1) -klb,..c,I 1S
-&zlbzllc21 --,’max(W2)

where -.max(W/) > 0, 1, 2. From Theorem 4 it follows that the equilibrium
x’= (x’l, xz)= 0’ of (32) is asymptotically stable in the large if all successive
principal minors of S are positive, i.e., provided that

I/],max( W1 )] ]/],max( W2)I
(35) kk2 < Iballb211callcl

Example 6. Consider the nonlinear, time-invariant discrete system

Zl(’17 + 1)= A1Zl(r + bxf(a(z)), Z2(r + 1)= A2z2(77 + b2f2(o’2(’r)),
(36)

() ClZ(), r() cz(),

where ze R"’, A is an ni x ni matrix such that ]]AII < 1, 1, 2, where c is an
nz-vector, c2 is an n-vector, and fi(a), 1, 2, are real, single-valued functions
with the properties f(0) 0 and 0 < afi(a) < ka for all r 4: 0.

System (36) can be viewed as a nonlinear interconnection of two linear
isolated subsystems $1, S,

(37) S :zi(r + 1) Aizi(v), 1,2,

interconnected by the equations g (z(z)) bf(a (r)) and g2 (z(r)) bzf(az(r)).
System (36) is clearly a special case of (16).

For Si choose V/(zi)= Izil, i= 1, 2. Then A Vi(37) =< ([[AII 1)lz(r)l, and V
is globally Lipschitzian in z with L 1.

The constants h;12 and h;2 of hypothesis (ii)of Theorem 5 are h;2 klbl]cl
and k21 kzlbz] ]c2l-

Matrix S of Theorem 5 assumes the form

S= I1 IIA" -kalbllcx’1-/)_1b211c21 -IIZ211
where ]lAil] w’/2max(A’iAi). From Theorem 5 it now follows that the equilibrium
x’ (z’x, z) 0’ of composite system (36) is asymptotically stable in the large
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if all successive principal minors of S are positive, i.e., if

(38) klk2 <
I1 -tIAII]I1 -IIZ211l

Ibl[bzl Icl[c2l

Example 7. A large class of time-varying capacitor-resistor networks can be
described by [5]-[7]

(39) Yc + {ADl(t)}x b(t),

where x R", A ((aij)) is a constant n n matrix, D(t) is a time-varying diagonal
n n matrix with continuous elements dii(t) which are nonnegative for all J,
and where the forcing function b(t) is an n-vector with bounded, continuous
elements in t. The case where dii(t), 1,..., n, are uniformly bounded from
below by t5 > 0 for all J is of particular interest. Subsequently it is assumed
that b(t) 0 for all J.

System (39) may be viewed as a linear interconnection of n isolated sub-
systems S i,

(40) Si’ -audu(t)x i, 1, n,

interconnected by the equations gij(xj, t)= -aijdjj(t)xj a_ -mj(t)xj, 4: j. Sys-
tem (39) is clearly a special case of (10).

For each Si choose V(xg) 2ilxl, where 2 > 0 is a constant, and note that
V is globally Lipschitzian in xi with Li 2i. If it is assumed that ai > 0, then

D V,4o) )tidu(t)aii]xi] a__ )imii(t)lxi <= .iOaiiixi 6_4. cilxil
Also, for each i, j 1, ..., n, 4: j, and for each e J, one has

kdxl 6lail IxjI _-< ]gij(Xj, t)l <= ]mii(t)l Ixl.
Hence, hypotheses (i) and (ii) of Theorem 4 are satisfied. Matrix IS(t)]’ of this
theorem assumes the form

(41) IS(t)]’

It follows from Theorem 4 that the equilibrium of composite system (39), with
b(t) 0 for all J, is asymptotically stable in the large if there exist positive
scalars 2j, j 1,.-., n, such that all successive principal minors of S(t) are
bounded uniformly from below by some 7 > 0 for all J.

It can be shown [7] that if there exist positive scalars 2j, j 1, ..., n, and
y, such that

(42) m(t)- ..Imi2(t)l _>- Tj > 0
i=1 -j

for all J, then all successive principal minors of (41) are positive. Hence, the
equilibrium x 0 of system (39) is asymptotically stable in the large if (42) is
satisfied.
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Remark 11. Certain classes of nonlinear transistor networks 7], 8] may be
analyzed similarly as in Example 7 by means of Theorem 4.

9. Proof of main results. The results of 4-7 are now proved.
Proof of Theorem 1. Choose

V(x, t) y’, oiVi(zi, t), oq > O, i= 1, m.
i=i

Then

iqgil(lZi]) V(x, t) - oii2(]zil for all x e R", e J.
i=1 i=1

Since each subsystem (6) possesses Property A, it follows that V(x, t) is positive
definite, decrescent, and radially unbounded.

From hypotheses (i) and (iii) it follows that

DV4) i=1 i c3t + V(zi, t)’(zi, t) + i[V(zi, t)’gi(x, t)]

i=1

i -ei3(Izil) + [ei3([zi])] /a 2 aij(x, t)[ej3(lzjl)3 a/z

i= j=l

Letting w’ & ([13(Izl)] l/e, ..., [3(Izl)]/), one obtains from hypothesis (iii)
that

D a.) <= w’Sw <= e.w’w e. ., qgi3(lzil),
i=1

and since (/9i3 K, it follows that DV) < 0 for all x 0, x R", J, and DV4 0
for x 0, J. Thus, DV) is negative definite and the equilibrium x 0 of (4)
is asymptotically stable in the large.

Proof of Corollary 1. The proof is similar to the proof of Theorem 1.
Proof of Theorem 2. Choose

V(x, t) y’, iVi(zi, t), o > O, i= 1, m.
i=1

From hypothesis (i) it follows that V(x, t) is positive definite, decrescent, and
radially unbounded for all x e R" and e J.

Using hypotheses (i)-(iii) one obtains

DI/(9 ziDV/(6) + o VVi(zi, t)’ Z AijfJ(zj’
i= j=l

j- 1 --(ZiCillfi(zi’ 012 / qci2lfi(zi’ t)[
i= j=l

iCj



572 ANTHONY N. MICHEL

Letting w’= ([f,(zl, t)[, .-., fro(z,,,, t)[) and taking hypothesis (iv) into account,
one has

D V(9 w’Sw max(S) Z [Ji(zi ,/))[2.
i=1

Since S is negative definite and f e E, it follows, taking (ii) into account, that
DV(9 < 0 for all x : 0 and e J, and D 1/(9 0 for x 0 and e J. Hence, the
equilibrium x 0 of (9) is asymptotically stable in the large.

Proof of Theorem 3. Choose

V(x, t) aiFi(zi, t), O > O, 1,... m.
i=1

Since each subsystem (6) possesses Property B, one has

mix {aicil}[x[ 2 mix {aic,} [zi] 2 =< V(x,t) <= max {a/ci2} E ]zg[ 2
i=1 i=1

(43)
max {oici2}lxI 2

for all x R" and J. Also., from hypotheses (i) and (ii) one obtains

VV(l) 1 iDV/(6) " ziVVi(zi’ t)’ E giJ(ZJ t)
i= j=l

<= -ici31zil 2 / ici41zil Izl
j

Letting w’= ([z,[, ..., [Zm[) and letting R ((ru)) denote the m x m matrix
determined by

--OiCi3 if j,
rij

ici4ku if :/: j,

one has, in view of hypothesis (iii),

(44) DV o) < w’Rw w’
(R + R’)

2
w w’Sw

_
&max(S)lwl 2 max(S)lxl 2

for all x R" and for all J. Since S is negative definite, it follows from (43) and
(44) that the equilibrium x 0 of (10) is exponentially stable in the large.

Remark. In the remaining proofs the following preliminary result is required.
THEOREM A ([9, p. 305] and [10, p. 71]). If A ((aij)) is a real m x m matrix

such that aii <= O, j, and if all successive principal minors of A are positive, then
A- exists and all elements of A- are nonnegative.

Proof of Theorem 5. Let e’=(e,...,,,), ei>0, i= 1,...,m, be an
arbitrary vector, and choose V(x, r) = @iVi(zi, ). Then

q,(Iz,I) V(x, v)5 , q,z(Iz,I)
i=1 i=1

for allxeR", rel.

Since each subsystem (13) possesses Property C, it follows that V(x, ) is positive
definite and radially unbounded for all x e R", r e I.
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From hypotheses (i) and (ii) it follows that

AV16) 1 a Vi z 27) -- g z "c " + o Vi z "i= j=l i=
j

z, rl + g(z, rl, r + [(z, rl, +
i= j=l

ij

+ E iA(13, ,Li E iJ(ZJ’) + E -iCilZi[}
i= i= j= j=

j

= lzl + Li) kijlzjl

Letting y’= e’S, where S is defined in hypothesis (iii), and letting w’=
", Izl), one has

AV(16) (-o’S)w ---(--y’)w.

Since S has positive successive principal minors and since sj =< 0 for all :/: j, it
follows from Theorem A that S-a exists and that all elements of S- are non-
negative. Thus, (S-)’y. Also, since all elements of S- are nonnegative and
since in each row and column of S- there is at least one nonzero element, one
can choose for any , with strictly positive elements, a vector y in such a fashion
that y > 0, 1, ..., m. In doing so one obtains

AV(16) (-y’)w < O, x#0,

and AVI 6) 0, X 0, for all z I (note that x 0 if and only if w 0). Hence,
AVe16) is negative definite and the equilibrium x 0 of (16) is asymptotically
stable in the large.

Proof of Theorem 6. Let ’=(l,...,am), i>0, i= 1,...,m, be an
arbitrary vector, and choose V(x, )= E?=liVi(zi, T). From hypothesis (i) it
follows that V(x, z)is positive definite and radially unbounded. Also, in view of
hypotheses (i) and (ii) one obtains

AV(15) i:IE i{Av/(13,} ,at._ i=l i vi zi, T)

+ A,.(zj, z), z + Vi[f(z,, "c), "c + 1]
=1

i= j=l

Let y’= ’S, where S is defined in hypothesis (iii), and let w’ (I.fl(z, z)l,
Ifm(Zm, Z)I). Then

AV <_ (-’S)w (- y’)w.
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Noting that x 0 if and only if w 0 (recall that f e E), noting that S satisfies
the condition of Theorem A, and taking hypothesis (ii) into account, the negative
definiteness of AVll is established as in the proof of Theorem 5.

Proof of Theorem 7. Let cz’=(el,...,Zm), eg>0, i-- 1,...,m, be an
arbitrary vector, and choose V(x, r,)= i=1 iVi(zi, r,). From hypothesis (i) it
follows that V(x, r,) is positive definite and radially unbounded for all x e R" and
z e I. Also, in view of hypotheses (i), (ii) and (iii), one obtains

i=1 i=1- i Ciei3(lZil)- Li au(x,r)ej(lzjl)
i= j=l

Letting y’ ’S, where S is defined in hypothesis (iv), and letting

W’= (13(Izl), "’", 3(IZml)),

one has

A V <= ’S)w y’)w.

Noting that (.j9i3 .K, i= 1,..., m, noting that S satisfies the conditions of
Theorem A, and taking hypothesis (ii) into account, the desired result follows as
in the proof of Theorem 5.

Proof of Theorem 10. Let a’=(a,...,,,), ai>0, i= 1,...,m, be an
arbitrary vector, and choose the functional V(p,t)= i1 aiV(qi,t)" From
hypothesis (i)it follows that

i=1 i=1

Thus, V(q,t) is positive definite and decrescent whenever e J and
i= 1,..., m.

Along solutions of (19) one has

Z Oi{ViEZi+At(" "qi, to),t + At] V/Ezi(. "qi, to),t]}
i-1

Y, ,I v,Ei(. o’, to) + t. f,(zi(. o’, to), t) + o(t), + zxt]
i=1

V/[ZI( (pi, to), t]}

ql_ 20i{ V/[ZI( (Di to) - At q)i..h(z,(
i=1

Af_ At. Z gij(z](’" qgJ, -o), -) "]-- o(t), --]-- At]
j=l
i:j

[zi(. q’, to) + At. fi(zi(." q)i, to), t) At- O(t), -[- At]}.
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In view of hypotheses (i) and (ii) one has

01/(19) limsup (xi{V/[ZI+At "(Di,to),t -- At]
ArgO+ i=

Now let w’ (I//13(llq II), "", m3(llqgmll)). Since I//i3 K, 1, m, it follows
that w 0 if and only if xt(" qg, to) 0 for all J. Letting ’S y’, where S is
defined in hypothesis (iii), one obtains

DV(19, <_ (-’S)w --(-y’)w.

Since S satisfies the conditions of Theorem A, the negative definiteness of D VI 9),
for all J and for all q9 CHi 1, ..., m, follows from the identical argument
used in Theorem 5. Hence, the equilibrium x 0 of (19) is asymptotically stable.

Proofs of Theorems 11 and 12. The proofs are similar to the proof of Theorem
10.

Proof of Theorem 4. Let a’= (Z1, am) Z > 0, i= 1,..-, m, be an
arbitrary vector, and choose V(x,t)= im= aiVi(zi, t). From hypothesis (i) it
follows that V is positive definite, decrescent, and radially unbounded for all
x R" and for all J.

Following the same procedure as in Theorem 10, and taking hypotheses (i)
and (ii) into account, one obtains

DV(lo) lim sup oqVi[zi(t + At" Zio to) -[- At] Vi[zi(t" Zio, to), t]
At- O+

1 iDVi’6’ + 1 i Li Igij[zj(t" Zjo, to),
i= i= j=

lOi --Ci(t)Oi3[lzi(t" Zio, to)l] / Li . kij(t)Oj3[lzj(t" Zjo,tO)l]
i= j=l

ij

Now let w’ (ff 3[Iz(t; Zlo, to)l], m3[lZm(t Zmo, t0)l]) and let a’S(t) y(t)’,
where S(t) is defined in hypothesis (iii). Then

D V(, o) <= o’S(t))w y(t)’)w.

Since I]/i3 G K, 1, m, it follows that w 0 if and only if x 0. Noting
that S(t) has successive principal minors bounded uniformly from below and
noting that S(t) satisfies all conditions of Theorem A, the negative definiteness of
DV10) for all J and for all x R" is established using the same argument as in
Theorem 5. Hence, the equilibrium x 0 of (10) is asymptotically stable in the
large.
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Remark. In the proof of Theorem 8, the following preliminary result is
employed.

LEMMA 1. Assume that each subsystem (6) of composite system (17) possesses
Property D. Let zi(t" zi(kT), kT) A zi(t denote the solution of

(45) i(t) fi(zi(t), t) + Ci)z)(kT)
j=l

over the interval [kT, (k + 1)T). Then the solution zi(t of (45) satisfies, for all
[kT, (k + 1)T), the estimate

(46) izi(t)l> [e-Ci2)T]lzi(kr)l_ {1 (El}-(c,)T]{ }}ci--- e IIC,ll Iz(kZ)l
j=l

Proof. Let

ui(t a= Cijzj(kT ui(kT), [kT, (k + 1)T).
j=l

Along solutions of (45) one has, since (6) possesses Property D,

DVt- lim inf (-){ Vi[zi(t + At), + At] V[z,(t), t]}

>= DVI61- L, C,jz)(kT)
j=

>--_ cizlzi(t)l Lilui(kT)l

for all [kT, (k + 1)T). Now let

ki __a Zilui(kZ)l -< Zi IIC,ll Iz(kZ)l,
j=l
j

and let

Then

and

v(t) A V[zi(t) t] for all e [kT, (k + 1)T).

Dv)51 >= -ci2vi(t) ki,, [kT, (k + 1)T),

Vi(t >-- eC,2tt-kT)l)i(kT) kil e-C’2(t-r)d’c
T

Vi(zi(t), t) >- ec’2tk’r) e-C’2’Vi[zi(kT), kT] kil [1 eci2(kT) e -c’:’]
i2

for all [kT, (k + 1)T). Since (6) possesses Property D, one has

CillZi(t)l ec’2tk’r) e-C’2tlzi(kT)l kil [1 e.ci2(kw) e -c’t]
ci2
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or

Izi(t)l B1 [eC,2tk,r3 [e_tC,2,]lzi(kT)
Cil

j=l

>=--[e Izi(kT)l [1 e
Oil j=

i:j

for all [kT, (k + 1)T). This concludes the proof.
Proof of Theorem 8. Let ’= (e,..., ), ei > 0, i= 1,..., m, be an

arbitrary vector, and choose V’R x [0,) R as V(x,t)= i(zi, t).
Since (6) possesses Property D, it follows that V is positive definite, decrescent,
and radially unbounded for all x e R and for all e [0, ).

Let z(t) zi(t: zi(kT),kT) for all e [kT, ( + 1)r). In view of hypotheses
(i) and (ii), one has

D7 lim sup i[Zi(t + At;zi(O),O),t + At] i[zi(t; zi(O), 0), t]
Ate0 i=

io(6) + a,Li C,ll Iz/kT)l
i= i= j=

ij

(-icia)lz(t)l + (g) lClllz(r)l
i=1 i= j=l

ij

for all [kT, (k + 1)T), k 0, 1, 2, Utilzing (46) obtained in Lemma 1, one
has

DVt17) <-- 7i -[e ’ Izi(kT)l
i= Cil

"I }+ 1 (i ’C3L[ e-c’2T] + Li IIC, Iz(kT)l
i= (CilCi2 j=l

ij

for all [kT, (k + 1)T), k 0, 1, 2, ....
Now let w(kT)’ (lZl(kT)l,..., Izm(kT)l), and let ’ y’S, where S is defined

in hypothesis (iii). Then

D V(7) <= (-a’S)w(kT)= (-y’)w(kT)

for all e [kT, (k + 1)T), k 0, 1, 2,
Noting that x 0 if and only if w 0, and noting that S satisfies the con-

ditions of Theorem A, the negative definiteness of DV17) for all x e R" and for
all e [0, c) is established using the argument employed in Theorem 5. Hence,
the equilibrium x 0 of (17) is asymptotically stable in the large.

Proof of Theorem 9. The proof is similar to the proof of Theorem 8.
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10. Concluding remarks. At this point several comments are in order.
1. Most of the results of 4, 5 and 6 (dealing with interconnected systems

described by ordinary differential equations, difference equations, and sampled-
data systems) are clearly special cases of the results of 7 (concerned with systems
described by functional differential equations). Thus, the results of 7 constitute
a unifying setting for a relatively large class of stability problems. The stability
analysis of other specific classes of composite systems described by functional
differential equations (e.g., systems with time lags) is being considered by the
author.

2. In the present approach, converse Lyapunov theorems (see, e.g., [3]) which
guarantee the existence of suitable Lyapunov functions for stable subsystems
play a crucial role.

3. The standard Lyapunov theorems yield actually more information than is
usually stated; they yield uniform stability, uniform asymptotic stability, etc. (see,
e.g., 3]). This is also true in the present case, i.e., the hypotheses of all theorems
in 4 through 7 and of all’examples in 8 are strong enough to insure un!form
asymptotic stability or uniform exponential stability.

4. The role played by Theorem A in the proofs of the present results suggests
that this theorem and related ones may find wide application in the stability
analysis of a variety of other problems. The type of argument presented using
this theorem appears to be new.

5. It should be noted that Theorem 4 allows the use of V-functions which
are not necessarily continuously differentiable.

6. Theorems 8 and 9 can be extended to sampled-data systems with various
types of nonlinear interconnections in an obvious way. Also, the method of 7
can be modified to accommodate systems described by functional differential
equations with interconnecting structures not considered here.

7. A good,survey of the work dealing with stability analysis of large-scale
systems is gi,ven in 2]. Related problems are also considered in 11]. The results
presented in [12] can be obtained using Theorem 6. The present methods differ
significantly from those employed in [12]. Conditions (26), (30) and (34) of
Examples 1, 2 and 4 are less conservative than corresponding results reported in
[4] and are obtained in a manner far more straightforward than was done pre-
viously. Condition (42) of Example 7 was obtained in [-7] by methods significantly
different from the present procedure.

Acknowledgment. The author is indebted to Prof. Dr. Wolfgang Hahn from
the Technical University of Graz, Austria, for numerous suggestions. He also
wishes to thank the reviewer and Dr. D. W. Porter for their comments and dis-
cussions.
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LION AND MAN: THE GENERAL CASE*

JAMES FLYNN

Abstract. A lion L and a man M, confined to a circular arena, move with speeds bounded by
and w > 1, respectively. L tries to get as close as possible to M who wants to maintain the greatest
possible distance between himself and L. Using the approach of Ryll-Nardzewski, Varaiya and Lin,
we formulate this conflict as a differential game. Then we show that there exists a d* > 0 such that
the following holds: For each starting position, L has a strategy which brings him as close as d* to M
in a finite time. Furthermore, there exist starting positions such that for each > 0, M has a strategy
which keeps the distance [LM[ >= d* . We also show how to construct L’s strategy. The fact that
L can always achieve d* in a finite time contrasts our results for the case w > with Besicovitch’s
well-known result for the case w (Rado’s pursuit problem).

Introduction. A lion L and a man M, confined to a circular arena, move with
speeds bounded by and w > 1, respectively. L and M, continually aware of each
other’s positions, have contrary objectives. L wants to get as close as possible to
M while M wants to maintain the greatest possible distance between himself and
L. How close L can get to M depends, of course, on the starting position. We will
show that there exists a d* > 0 such that the following holds: First, for each
starting position, L has a strategy which brings him as close as d* to M in a finite
time. And, second, there exist starting positions such that for each e > 0, M has a
strategy which keeps L as far away as d* e. (This d* is the same as the one
which we define by equation (61) of [4]. Numerical bounds on d* are given in
5 of that paper.)

The fact that L can be sure of achieving d* in a finite time contrasts this case
(w > 1) with the case of equal speeds (w 1). In the latter case, d* is equal to 0,
since L can get arbitrarily close to M by going to the center and then moving out
along the radius OM. However, in that case, L does not have a strategy which
always achieves d* in a finite time. This is a consequence of the following result
which Littlewood [6] attributes to A. S. Besicovitch: By moving along an ap-
propriate polygonal path, M can preventL from ever actually achieving point-
wise capture (see [6, pp. 135-136] for details). More recently, Croft [1] has shown
that L can guarantee pointwise capture if we require that the curvature of M’s
path exist and be uniformly bounded.

This paper is a continuation of [-3], which dealt with the case where M is
restricted to the circumference, and of [4], which developed a characterization of
d*. As in [3] we choose to view the conflict between L and M as a differential
game where the payoff is from L to M and is equal to the "smallest" distance
between the two. In the first section we formulate the appropriate differential
game using the approach developed by Ryll-Nardzewski [7] and Varaiya and
Lin [-9]. Then, in the second, we describe our results and outline our arguments.
The details supporting these arguments are given in the third and fourth sections.

We attack the problem by separating it into a min-max pursuit part and a
max-min evasion part. In [4] we consider the evasion part and show that if the
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starting position is one where M is at a distance wd*/(w 1) from the center O
and the distance ILMI is equal to d*, then for any given e > 0, M can keep
ILMI >= d* e by using a strategy which keeps [LM[ constant whenever L moves
at maximum speed along a polygonal path. When L follows an arbitrary tra-
jectory, M’s strategy prevents the distance [LM[ from deviating from its original
value by more than e (see [4, Remark 2]).

In this paper, we focus on the pursuit part. We will show that given any
starting position, L can get as close as d* to M in a finite time by using a two-
stage strategy. In the first stage, L goes to the center O and then moves out along
the radius OM until he reaches a position where ILMI < d* or one where
lOLl >-d*/(w- 1) and IOMI > wd*/(w- 1). We construct a strategy under
which this happens by time 2/ln (w). Now, given any position where L lies on the
radius OM, lOLl >= d*/(w 1) and IOMI > wd*/(w 1), L can force the distance
ILMI strictly below d* (see Theorem 3). Hence, if the position at the end of the
first stage is one where ]LMI > d*, then L can switch to a second-stage strategy
which brings him strictly closer than d* to M. Hence, L can always achieve d*
in a finite time. We also have as a corollary the result that staying on the boundary
of the arena can be a bad strategy for the man.

We wish to thank L. Dubins and D. Blackwell for introducing us to the prob-
lem of pursuit in the circle. This problem is a generalization of R. Rado’s Lion and
Man problem [6] and Isaac’s game of pursuit in the half-plane 1-5, pp. 261-265.
Apparently Isaacs was the first one to formulate it [5, pp. 265, 270 and Gerald J.
Smith [8] was the first one to make a serious attempt at solving it. We have benefited
greatly from Smith’s unpublished results [83.

1. Formulation. The formulation which we use for this problem is essentially
the same as the one we developed in [3]. Like the latter, it relies heavily on Ryll-
Nardzewski [7] and Varaiya and Lin [9. For detailed references, arguments and
explanations, we refer the reader to Flynn [3, 2].

Assume that the arena has radius 1. Let R represent the real numbers and
let R2 represent the space R x R with the metric determined by the norm II" II,
where [[(rl, r2) (ri + r’) 1/2. Denote the unit circle in Re by C, the closed unit
disc in R2 by D and the time axis [0, 00) by T. Define:

L(/) {III:T D, 1(0)= land IIl(t’)- l(t")ll -< lit’- t"ll
for all t’, t" T} for

M() {1 :T D, (0)= and II(t’)- ,4t")ll =< wilt’- t"ll
for allt’,t"eT} foreD;

L= U L(I), M= U M() and P(I,
lD D tT

for (1,) L x M.

L(I) and M() are sets of trajectories for L and M originating from the respective
positions and z, while P(I, ) is the payoff from L to M when L uses and M
uses z. We consider L and M as compact metric spaces with respect to the topology
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of uniform convergence on compact subsets of T. Clearly, P is a continuous
function on the compact space L x M.

Now we define strategies. Let (l, )e D x D. We call a mapping z’M(m)
--, L(/) a pursuit strategy at (1, ) if it satisfies the injbrmation constraint" for any
,’, "e M(), ’(t) "(t) for 0 __< =< t’ implies that (’)(t) z(")(t) for
0 __< __< t’. We can define an evasion strategy q in a similar manner. Let H(/, m)
and H(l, ), respectively, denote the sets of pursuit and evasion strategies at
(I, ).

We would like to define the outcome which results when L chooses H(/, )
and M chooses r/ H(I, ) as any pair (1, ) L(/) M() satisfying

Unfortunately that system might not have a solution. (See Remark of Flynn 3] .)
The following definition is due to Varaiya and Lin 9].

DEFINITION 1. (1, -) 6 L(/) M() is an outcome of (, rl) H(I, ) H(I, )
if there exist sequences (1,),%1 = L(/) and (,),__ c_z M() such that

lira 1, lim (,) 1, lim , lira q(l,) .
Let O(, q) denote the set of outcomes of (r, r/). One can show that O0z, q) is

a nonempty compact subset of L(I) M(). Also, using the continuity of P, one
can show that

(1) sup P(rc(), ) _>_ P(I, ) >= inf P(I, q(l))
M() iL(/)

holds for every rr H(/, ), r/ H(I, ), and (1, ) O0z, r/). (See relationship (7)
of [31.)

We define the ame F(I, ) as follows. L selects a r FI(I, ) while M in-
dependently selects an r/ H(I, ). The payoff from L to M is P(l, ), where
(1, ) is an arbitrary point in O(r, r/). If

(2) inf sup max P(I, m) sup inf rain P(I, m),
eH(/,) qH(l,) (l.)eO(z,q) qH(/,) el-I(/,) (l.)O0z,r/)

then we say that the game has a value equal to the common value of the RHS
and LHS of (2). We denote that value by V(I, ). If for some e > 0, rc*e H(/, )
and q* e H(l, ) satisfy

(3) sup max P(I, z) e =< V(I, )
rIH(I,) (l,)O(n*,rl)

and

(4) inf min P(I, -) + e >= V(I, ),
rrH(l,) (i. )O(r,q*)

respectively, then we say that * and q* are e-optimal pursuit and evasion
strategies. We call a strategy optimal if it is e-optimal for e 0. We have the
following theorem.

THEOREM l. /j’

(2’) inf sup P(rr(), ) sup inf P(l, r/(l)),
rtH(/,,) M() qeH(l,) IL(I)
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then the game has a value which is equal to the common value of the RHS and LHS
of (2’). Furthermore, ![for some >= O, * H(/, ) and rl* H(l, ) satisfy

(3’) ’(*(), ) __< v(, ), M(),

and

(4’) P(I, q*(l)) + e >__ V(l, ), e L(/),

respectively, then * and ri* are e-optimal pursuit and evasion strategies.

Proof. Because of (1), (2’) implies (2), (3’) implies (3), and (4’) implies (4).
(Compare with [3, Thin. 1].)

2. The results. This section begins with a statement ofour results in Theorems
2, 3 and 4, and Corollaries and 2. It ends with a proof of these theorems based
on Lemmas 2, 3, 5 and 6. We prove the latter three in the next section. Then, in
4, we prove Lemma 2. The arguments which we use to establish that lemma

depend on the results of Flynn [4].
Before proceeding, we introduce a definition. We say that the game is in a

radial position if L lies on the line segment OM. We will. restrict our attention to
starting positions which are radial. Clearly, L can bring the game into such a
position by moving to the center O.

THEOREM 2. There exists a d* > 0 satisfying the jbllowing: First, for each
radial (l, ), there is a strategy H(/, ) satisfying

(5) P((),) <= d* .for all M().

And, second, there exist radial (to, o) such that for every e, > 0 there is a strategy

rl H(lo, o) satisfying

(6) P(I, r/(l)) >__ d* for every leL(lo).

Remark 1. Because of Theorem 1, we can identify d* with the value V(lo, o).
In addition, Theorem implies that any rc e II(lo, o) satisfying (5) is an optimal
pursuit strategy while any r/e H(lo, o) satisfying (6) is an e-optimal evasion
strategy. Finally, we note that any radial (lo, o)satisfying

(7) /ol d*/(w- 1), Io wd*/(w- 1)

also satisfies (6)(see [4, 5]).
THEOREM 3. For every radial (l, ) satisfying

IIlll >= d*/(w- 1), > wd*/(w- 1),(8)

we have

(9) inf sup P(rc(), ) < d*.

Theorem 3 has as a corollary a result which, in view of Flynn [3], is essential
to the justification of this paper. Its proof is left to the reader.

COROLLARY 1. U the man stays on the boundary, then the lion can force the
distance ILMI < d*.

Hence, staying on the boundary can be a bad strategy for the man. This
illustrates a striking difference between pursuit in the half-plane and pursuit in the
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circle. In the former game, both players can ignore trajectories which lead to an
increase in their distance from the boundary (see Flynn [3, 7] for details).

THEOREM 4. For every radial (1, ), there exists a rc H(/, we) such that, for
each M(), either

(lO) min [17()(t)- (t) < d*
0 2/In(w)

or

(11) P(rc(), ) < d*

holds.
The following corollary illustrates an essential difference between the case

w and our case (w > 1) (see paragraph 2 of the Introduction). Its proof is
left to the reader.

COROLLARY 2. The lion can achieve d* in a finite time.
Remark 2. Corollary 2 does not assert that the lion has a strategy under

which the time required to achieve d* is bounded.
We postpone the proof of these theorems until the end of this section. Now

we introduce an important type of radial position. Call (l, )6 D D a stable
position if (1/w). The reason for the term stable is that once such a position
occurs, L can keep the game in a stable position by employing the strategy
described by

(12) rt()(t) (1/w)(t), M().

We group stable positions into equivalent classes. For each p satisfying 0 p
(w 1)/w, we define Z(p) as the set of all stable (l, ) for which 11/- P.
We want to analyze the situation where the game starts in a stable position.

This requires more notation. Let p satisfy 0 p (w 1)/w and let (l, )6 E(p).
Define

S(p) inf sup P((), ),
nH(l,m) M(m)

(13) I(p)= sup
eH(l,m) leL(l)

=sup{plS(p)=p}, d=sup{plI(p)=p).

The following lemma characterizes the above quantities.
LEMMA 1.
(a) U S(po) Po, then S(p) p jbr 0 p Po. Similarly, if I(p) Po, then

I(p) p.&r o p po.
(b) U’ S(p2)= Pl jbr Pl P2, then P2 > P and S(p)= p. Similarly, if

I(p2) P jbr p p, then P2 > Pl and I(p) p.
(c) Both S and I are continuous functions.
(d) S is a nonincreasing jhnction on [, (w 1)/w], while I is a nonincreasing

Jhnction on [4, (w 1)/w].
(e) S l and d.
Proof. For (a), take any position (l, m) E(p), where p < P0. Let M travel

outward at maximum speed along a radial line. Clearly L’s best trajectory follows
M along this line. Observe that the distance ]LM] remains greater than p until a
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position (l,m)eZ(po)is reached. Since by hypothesis I(po)= Po, we have
I(p) p. The proof for S is similar. Parts (b) and (c) follow from analogous argu-
ments while (d) follows directly from (b). Finally, (e) follows from (1).

In 4, we will prove Lemma 2 which strengthens part (e) of Lemma 1.
LEMMA 2. The jollowing applies to stable starting positions" if P satisfies

d < p <= (w 1)/w, then S(p) < d. Hence d d.
According to Lemma 2, L can do better given a stable starting position where

]LM > d than he can at a stable starting position where [LMI d. This seems
surprising in view of the fact that the original separation is greater in the former
case.

DFIno 2. Let d* equal the common value of d and .
Remark 3. We will show that d* satisfies the conditions of Theorems 2, 3

and 4, and Corollary 2. Note that the fact that S(p) is strictly less than d for p > d
is essential to Theorems 3 and 4, and Corollaries and 2.

As we will soon see, L can always force the game into a position which is
approximately stable. To express this formally, we need some additional notation.
Given e >= 0 and 0 <= p < (w 1)/w, define X(p, ) as the set of radial positions
satisfying

(14) =p/(w- 1) and [w 111 Ne.

Certainly, 2(p, 0) 2(p). We leave the proof of the following lemma to the reader.
LMMA 3. Ij" (l, ) 2(p, e), then

S(p) inf sup V((), ) _<_ e,
zel-I(/,m) eM()

(15)
I(p) sup inf P(l,r/(l)) __< e.

rlH(l,) |6L(/)

We think of positions in E(p, e) as being approximately stable. As shown in
Lemma 4, L can force the game into an approximately stable position by staying
on the radius OM. This leads to the notion of radial strategy. Given any radial
(1, ), we call rce H(l, ) a radial strategy if (rc()(t), (t)) is a radial position for
all e T and M(m). The proof of the next lemma appears in 3.

LEMMA 4. Let (l, ) be any radial position satisfying

(16) III r0 < (1/w)[l

where 0 < ro < 1/w. For each e > O, there exists a radial rc H(I, ) such that jbr
every a M(z),

(17) c()(t) >- ro and Iw c()(t) (t)lll

holds jbr some <= 2/ln (1 + e).
In order to prove Theorems 2, 3 and 4 we need two more lemmas. Their

proofs appear in the next section.
LEMMA 5. For any 0 < r <= 1/w and any radial (l, ), there exists a radial

rc H(/, ) such that jbr each M() either

(18) Ilzr()(t)- (t) (w 1)r
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OF

(19) rc()(t) r and (t) > wr

hold Jbr some <= 2r/ln w < .
LEMMA 6. Let 0 < r <= 1/w and 0 < A =< 1/3. If (1, ) is any radial position

satisjying

(20) Illl r and (1/w)ll > r + 3A,

then there exists a radial zt I-I(/, ) satisfying

(21) ;t()(A) r + A2 and (1/w)ll(A) > r + A2

.[’or every M().
Proo.f of Theorem 3. Let (/, ) be any radial position satisfying (8). Let

A (/3)[(/w) */(w )] > 0.

By Lemma 6, there exists a radial rc gl(l, ) such that for each M(),

()(A) (d* / (w 1)A2)/(w 1) < (1/w)ll(A)

Define e by

(22) e (1/3)[d* S(d* + (w 1)A2)].
Lemma 2 and Definition 2 imply that e > 0. Because of Lemma 4 we can choose
our radial rc so that

(23) (rt() (t,), (t 1)) e Z(pl, 8)

for some tl =< A + 2/ln(1 + 8) and some pl => d* + (w 1)A 2.
By (23) and Lemma 3 there exists a policy 7t*e I-l(/, ) such that

(24) P(x*(), )=< S(pl)+ 2e

for every . e M(). But Lemma implies that

(25) S(p,) <= S(d* + (w 1)A2).

Hence, (22), (24) and (25) give us

P(r*(), ) =< d* e < d*.

Theorem 3 follows.
Pro?f of Theorem 4. Let (l, ) be any radial position. Applying Lemma 5

with r d*/(w 1), we find that there exists a radial rc I-I(/, ) such that, for
each M(), either

(10) min rc()(t)- (t)ll =< d*
0 2/In(w)

or

(26)

holds for some to _-< 2/ln (w). The rest follows from Theorem 3.
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Proof of Theorem 2. The first part follows directly from Theorem 4. The
second part follows from Lemma 2 and the definition of I(p).

3. Radial pursuit strategies. The purpose of this section is to establish
Lemmas 4, 5 and 6. Those lemmas deal with a class of strategies which we call
radial pursuit strategies; namely, strategies under which L stays on the line
segment OM (see the paragraph preceding Lemma 4 for a formal definition).
After a few brief remarks, we prove our key result on radial strategies, Lemma 7.
We need the latter to prove Lemmas 4 and 5.

Although radial strategies were used by Littlewood [6] and Croft [1] in their
work on the case w 1, Gerald J. Smith was the first to apply such strategies to
the present problem (w > 1), an idea which he attributed to Lester Dubins. Smith
showed that if L starts at O, then for each e > 0 he has a strategy which takes him
to a point Q on the line segment OM which satisfies IOQI >= (1/w)lOMI .

Lemma 7, which we prove below, is somewhat stronger. To establish it we
make use of the following result which appears in Flynn [3, 5]. If L starts at O
and M is restricted to trajectories , which satisfy

(27) (t) p, T,

for some arbitrary p > 0, then under the strategy rc which satisfies

sin (t/p)(1/w)(t), 0 <= <= pzc/2,
(28) rc()(t)

(1/w)(t), >= prc/2,

we have IOL (1/w)lOMI for >= p/2 (compare with (12)).
LEMMA 7. Let 0 < r <= 1/w and v > 1. Given any radial position (/, ), there

exists a radial strategy rc H(/, ) such that jot each M(), either

r
(29) < v, < rc()(t) < r, (1/w)(t) < r

r (/w)(t)

or

(30) c()(t) r (1/w)(t)l

holds jbr some <= 2r/ln (v).
Remark 4. For each M(), let satisfy

(31) (t) (1/w)(t), T.

Observe that Lemma 7 is really a statement about the ’s which are the tra-
jectories available to M in the case of equal speeds.

Proof of Lemma 7. We assume Illll < r, since the problem is trivial otherwise.
Denote by k the largest integer satisfying

r(1 v-k).

Let

rj r(1 v-tk+J)), j 0, 1,....
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Clearly, if (i/w) __< rl, then (29) holds for 0. Hence we can assume
(1/w)[l > rl. We are going to use induction to construct a sequence

0 < _-< z =< < 2r/ln (v)

and a radial strategy rc such that for each e M(), either (29) holds for some t,
or (30) holds for too -= lim, t, __< 2r/ln (v).

We will construct so that if M plays to avoid condition (29) during the
time interval [0, t,], then lOLl r, and ]O/1 > r,+l at time t.. We do this by
having L play according to the following rule during the time interval [t,_ 1, t,]
whenever lOLl r,_ and IOM] > r, at time t,_ 1" Move out along the radius
OM toward the circle with center O and radius r,. (We use the mapping deter-
mined by relationship (28) to construct the specific trajectory.) Whenever L
follows our strategy and M plays to avoid (29) during [tn- 1, t,], we have ]OL] r,
and ]OM] > r,+ at time t,. Note that ifM always plays to avoid (29), then lOLl r
and ]OM] >= r at time too (hence (30) holds for too). The details follow.

Select an arbitrary e M(). Define

where

and

()(t) (rl(t)/[{(t) )sin [(t + Ul)/rl] 0 -< <- tl,

t min {tl z()(t)l[- rl or (t) rl}

arc sin

Evidently,

(32) tl <_ (zr/2)r u <_ rl arc cos(ro/rl).

Observe that (29) holds for t unless

IIg(,)(tl) r and

Suppose that we have defined rc()(t) on [0, t.] for some t,, where n is a
positive integer. If re, and t, satisfy (29), let t,+ t.. On the other hand, if

zr() (t,) r, and (t,) > rn+
define

rc()(t) (r,+ (t)/ (t) )sin [(t + u,+ 1)/r,+ 1], t, <= <__ tn+

where

and

t,+, min {t >_ t.I Ilrc()(t)[ rn+ or I(t)ll r.+ 1}

u, + r, + arc sin

Evidently,

/n + < (rc/2)r, + r.+ arc cos (r,/r, + l) + t,.
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Hence

(33) tn+ t. =< r.+ arc cos (r./r.+ ).

Observe that (29) holds for t,,+ unless

(34) 11rc()(t+1)11 rn+l and I](t,+x)[[ > G+2.

We want an upper bound on the G’s. From (32) and (33), we have

n+l

(35) t <= rj arc cos (rj_ 1/ri).
j=l

But the RHS of (35) is less than
n+l

r arc cos (1 v-(k / j- 1)) < r arc cos (1 v- x) dx.
j=l

Now one can show that

where

Hence,

We can define

arc cos (1 v-) dx K/ln (v),

K
ysiny

dy<2.
o cos y

t, < 2r/In(v), n 1,2,

=- lim t, =< 2r/ln (v).

A continuity argument implies that rc must satisfy

rc()(t) lim rc()(t,).

To finish the argument, observe that either (29) holds for some t, or (34) holds
for every t,. But in the latter case, (30) holds for to. The result follows.

Lemmas 4 and 5 follow easily from Lemma 7.
Proof of Lemma 4. Applying Lemma 7 with ]1111 r0, v + e and r 1/w,

we see there exists a radial rce H(/, ) such that

(36) ro rc()(t) and 1/w- [[rc()(t) <= (1 + 0(1,/w- (t)

or

(37) 117r()(t) 1/w II(t)]l

holds for some =< 2/ln (1 / e). Evidently (37) implies (17). Suppose (36) holds.
Then

w()(t)- (t) w((t) ()(t)

w[(1/w ()(t) (1/w 4t)11)3

<= w,( !/w (t) <= .
Hence (36) also implies (17).
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Proof of Lemma 5. Applying Lemma 7 with v w, we see that there exists
a radial rc e H(/, ) and a o < 2r/ln (w), where (29) or (30) holds for 0 Sup-
pose (29) holds. Evidently

(,)(to)- ,(to) wll(to)ll -]lr()(to)

(w 1)r w(r II(to)ll) / (r rt()(to)

=<(w- 1)r.

Hence (31) implies (18). Clearly, if(18) does not hold, then (30) implies (19). Hence
(18) or (19) must hold for to.

Proof oj’ Lemma 6. For any 16 L(/) and 6 M(),

(t)ll _-> r + 2A > r + A2 and Ill(t) <- r + A, 0 _< _< A.

Consequently,

l(t) / (t)ll =< (r + A)/(r + 2A)=< A, 0 =< <_ A.

Hence, during the time interval 0, A], L can move out along the radius OM with
speed

A < x//1 -(1 A)2 =< x//1 -(l(t) l/ (t) ).
The strategy which allows him to do this satisfies

()(t) (r / tA)(t)/ll,,(t)ll, 0 <= <__ A.

Observe that r(m)(A) satisfies (21) for every m M().

4. Lemma 2. In this section, we prove Lemma 2. Many of our arguments
depend on results which we obtained in [4, 4]. However, with the exception of
the proofs of Lemmas 10 and 11, the material in this section is self-contained.

We begin with some notation and terminology. As in [4], an object’s time
derivative means its forward or right-hand time derivative. Also, an object’s
speed refers to the norm of that derivative. Whenever that time derivative exists,
we represent it by the usual "dot" notation. Define

L*(/) {16 L(/)II is piecewise linear and IIi(t)ll 1, T}, D,

and

L*= U L*(/).

L* consists of all trajectories under which L travels at maximum speed along a
polygonal path.

We need a definition of convexity for trajectories. If L selects a trajectory
L for which Ill(" )ll is bounded away from 0, then as the vector l(t) rotates about

the center O it sweeps out a directed angle. (Following the usual convention, we
let positive angles correspond to counterclockwise displacements.) We can
represent this angle by a continuous real-valued function 0(.) on T (the value
O(t), of course, represents the directed angle generated between time 0 and time t).
We say that the pursuit trajectory is positively oriented on an interval To c T if
0(.) is a nondecreasing function on To. We say that is convex on To if it is
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positively oriented on To and the set

U {leDl/= Kl(t) for some Ke [0, 1]}
tO<t<tl

is convex whenever 0(t l)- O(to) <= re and [to, x] c To. Similar definitions hold
for evasion trajectories. (We will omit any specific reference to To whenever its
meaning is unambiguous.)

We say that a trajectory e L is radially increasing if !(. is a strictly in-
creasing function on T (see the paragraph preceding Lemma 8 of [4]). Let CL*(/)
denote the set of all radially increasing, convex trajectories in L*(/).

Given any position where M is not at the center O, denote by s (- re < s _< re)
the angle that the directed line segment ML makes away from the direction MO.
s is positive when it is measured in a counterclockwise arc. The following lemma
is the key result of this section.

LEMMA 8. Let (1o, o)6 Z(po), where d_ < Po <= (w 1)/w. For every rio > 0,
there exist an eo > O, a (finite) to T and a pursuit trajectory 6 CL*(/) such that
the set

{ M()I Ill(t) (011 _d o and s(t) >__ O, T}
is empty and

(38) [ll(to)ll -o.
We postpone the proof of Lemma 8 to the end of this section. Our immediate

objective is to use it to prove Lemma 2. Our proof of the latter involves con-
structing a strategy with certain properties. As an aid to that construction, we
introduce the concept of a look-ahead strategy.

Let (1,) D D and e > 0. We call a mapping re’M() L(1) an e-look-
ahead (pursuit) strategy at (l, ) if it satisfies the following for any ’, M(),
’(t) "(t) for 0 =< _<_ t’ + e implies that re(’)(t) re(")(t) for 0 __< t’.

Remark 5. Under an e-look-ahead pursuit strategy, L can look e time units
in the future. Hence look-ahead strategies are not valid strategies since they
violate the information constraint. However, because of the next lemma we can
use them to construct strategies with desired properties.

For each D and e > 0, define a mapping fit on M() by

flt()(t)
(t- e)

forO=< =<e,
fort > e.

LEMMA 9. /f re is an e-look-ahead pursuit strategy at (/,) D D, then the
composition re fit defines a pursuit strategy at (/, ). Furthermore,

(39) sup P(u(),)- sup P(u(flt()),)_-< we.
eM() eM()

Proof. That re fit defines a strategy follows from the fact that it satisfies the
information constraint (see 1, paragraph 3). Relation (39) holds because of the
Lipschitz condition on M’s trajectories.

Proof of Lemma 2. Suppose that (1, )e (Po), where Po satisfies

d <po (w- 1)/w.
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Let 6o > 0, eo > 0, to T and CL*(/) satisfy the conditions of Lemma 8 and

(40) (1 6o)2 + (d eo/2)2>__ 1.

To establish the lemma, it is enough to construct an (eo/3w)-look-ahead strategy
no at (l, o) which satisfies

(41) P(rco(), ) _-< d

for every M(). By Lemma 9, the existence of no implies

S(po) < d.

The rest of Lemma 2 follows from that inequality and from parts (d) and (e) of
Lemma 1. We turn now to the problem of constructing rco.

Lemma 8 implies that if L follows while M selects a trajectory keeping
s(t) >= O, then the distance ILMI <= d eo by time to. There is, of course, no
reason for M to select such a trajectory when L follows , unless L can move so
that M derives no advantage from selecting any other kind of trajectory. Let k
denote the smallest integer greater than 3Wto/eo. We are going to construct an
(eo/3w)-look-ahead strategy no and a tk T satisfying

(42) to -_< tk < k(eo/3W + 2/ln (1 + eo/3W)),

such that for each positively oriented (see 4, paragraph 3) M(),

(43) IIo()(t)- (t)l _-< d o/2

holds for some =< tk. We define 7to only for positively oriented . However,
this involves no loss of generality since by using symmetry arguments one can
extend the domain of rCo to all of M().

We digress to introduce some additional terminology. The fact that satisfies
the conditions of Lemma 8 implies the following. For each l D satisfying

(44) [[/o[[ < [[/11 < 1 -6o,

there is a unique tl T satisfying

i(t/)]l--l
Let It denote the trajectory which one gets by rotating 1o about O so that the
point l(fi) coincides with I. We define the continuation of at as the trajectory
Cl L*(/) which satisfies

(45) C/(t)-= l(t -k- t), t T.

Let (1, on) D D be any position where s _>_ 0 and (44) holds. We say that (1, m)
is an e-inferior position if the set

{ e M()I IIC/(t) (t)ll >= d and s(t) >= O, e T}
is empty.

An important class of radial positions (see paragraph 2 of 2) are eo-inferior.
This class includes any stable position (l, ) which satisfies

(46) II/ll > II/ll.
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To see this, examine the situation where starting at (l, o), L follows the tra-
jectory , while M uses the strategy r/w defined by

(47) qw(l) wl(t), e T, e L(/).
By applying Lemma 8, one can show that any stable position satisfying (46) is

eo-inferior. A similar argument can be used to show that any radial (1, ) satisfying
I111 <= wlllll and (46) is eo-inferior. It follows that any radial (l, ) satisfying

(48) IIlll < II111 IIll wll/ll + o/3W

is (eo/2)-inferior. We will use this fact.
In defining rCo, we assume that M follows a positively oriented trajectory

e M() (see paragraph 3 of this section). We will use induction to define a
sequence (tj)= satisfying

(49) 0 < < < t < j(o/3W + 2/ln (1 + eo/3W)),

and to define rCo()(. successively on the intervals [0, tj], j 1, ..., k, so that if

(50) IIto()(t)- (t)ll >= d eo/2

holds for all e [0, tj], the position (rCo()(t), (tj)) is (eo/2)-inferior and satisfies

(51) IIo()(fi)ll->_ IIl(jo/3w)ll.

The construction of re0 finishes the proof, since we can show that (50) cannot hold
for all e [0, tk] when rCo has the above properties. For suppose (50) does hold for
all e [0, tkl. Then we certainly have

(52) Ilzro()(h,)- (h,)ll d e0/2.

By (51) and (38), we also have

(53) IIco()(h,)ll 1-60.

Using a geometric argument, one can show that (40), (52) and (53) imply that

(54) s(t) _>_ re/2.

But using (52), (54) and the fact that 1o is radially increasing, one can show that
the position (rCo()(t), (t))is not (eo/2)-inferior. The lemma then follows by
contradiction.

We turn now to the construction of rCo. At time 0 let L compare (eo/3W)
(M’s position at time %/3w) with the position that L would occupy at that time if
he followed (see Remark 5). If the value of s corresponding to these positions
is nonnegative, let rCo direct L along the trajectory during the time interval
[O, o/3W]. In this case, let

(55) t e,o/3W.

On the other hand, if the value of s is negative, let ZOo direct L at full speed to a
point on the radius through (e0/3w) whose distance from L is eo/3W (of the two
possible choices he should pick the one farthest from O). Clearly L lies on the
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radius, through M at time eo/3W. The reader should verify that

rc()(o/3W) __> 11(o/3w)ll.
Evidently if (50) holds for all [-0, eo/3W], then the position at time eo/3W is a
radial position which is either (eo/2)-inferior or satisfies

1ll(o/3)ll > wllrc()(o/3) / o/3W

(see (48)). If the position at time eo/3w is (eo/2)-inferior, let tx satisfy (55)" other-
wise, let L switch to the radial strategy of Lemma 4 at time eo/3W. In the latter
case, define as the first time that an (eo/2)-inferior position is reached. By (48),
(55) and Lemma 4, tl satisfies (49). The reader should verify that if (50) holds for
all [0, tl], then (ro()(tl), (tl)) is (e0/2)-inferior and (51) holds for j 1.

Assume that for some tj, j 1, ..., k 1, satisfying (49), we define rCo()(
on the interval [0, tj] so that if (50) holds for all I0, tj], the position (rCo()(tj),
(tj)) is (eo/2)-inferior and satisfies (51). We define tj+ and rCo()(. on Itj, tj+ 1]
as follows. At time tj, let L compare (tj + eo/3W) (M’s position at time tj + eo/3W)
with the position that L would occupy at that time if he followed the continuation
of at rCo()(tj). If the value of s corresponding to these positions is nonnegative,
let rCo direct L along the continuation ofl during the time interval [tj, tj + eo/3W].
In this case, let

(56) t+ t + eo/3W.

If the value of s is negative, let rCo direct L at full speed to the point farthest from
O on the radius through (tj + eo/3W) whose distance from L is eo/3W. As before,
if (50) holds for all Its, tj + eo/3W], then the position at time tj + eo/3W is a
radial position which is either (eo/2)-inferior or satisfies

l(tj / %/3w)11 > w rCo(,)(tj / o/3W)[ / o/3W.

If the position is (eo/2)-inferior, let tj+l satisfy (56)" otherwise, let L switch to the
radial strategy of Lemma 4. In the latter case, let tj+l denote the first time that
an (eo/2)-inferior position is reached. By (48), (56), Lemma 4 and the induction
hypotheses, tj+l satisfies (49). The reader should verify that if (50) holds for all

[0, tj+ 1, then (rCo()(tj+ 1), (t+ 1)) is (eo/2)-inferior and (51) holds. The proof
of Lemma 2 is complete.

Our remaining objective is Lemma 8. Suppose (l, ). Z(p), where 0 <= p
<= (w 1)/w. For each 1 CL*(I), define

(57) A(I) { e M()I [ll(t)-- (t) >= p and s(t) >= O, e T}.
For each e A(I) define r(.,. by

(58) r(l, ) inf {t e Tls(t) =/},

where/ satisfies

(59) / arc sin (l/w).

(See [4, paragraph 4, 4].) The next two lemmas follow from results of [4].
LEMMA 10. Given (/,)eE(p) where 0 <= p (w 1)/w, there exists an

1 CL*(/).[’or which A(I) is empty ![’and only if p > d.



596 JAMES

Proof. The result follows directly from Lemma 10 and Theorem 2 of [4].
LEMMA 11. Let (l,)e E(p), where O <= p <= (w 1)/w. U" P <= d, then for

each e CL*(/) there exists a trajectory , A(I) such that the following conditions
hold on the interval [0, z(i, ,)]"

(i) II(t)- ,(t)ll p,
(ii) I,(t)ll w,

(iii) , is convex.

Proof. Evidently p _< d implies that condition (I) of [4] holds. Hence, by
Theorem 2 of [4], M can keep the distance ILM[ >= [1- by following the
isometric rule (see the paragraph preceding Lemma 7 of [4]). Let , denote the
resulting evasion trajectory. Then conditions (i)and (ii)follow directly from the
definition of isometric rule, while condition (iii) follows from Lemma 11 of [4].

Suppose (1, ) (p), where 0 __< p =< d. Let e CL*(I) and ,A(I) satisfy the
conditions of Lemma 11. (The reader should verify that this implies :(1, ,) < c.)
Define r(. by

(60) r() ,(a, ,))
where r(.,. satisfies (58). Note that whenever L selects a trajectory for which
r(l) 1, he forces , to the boundary at time z(l, ,). We have the following
lemma.

LEMMA 12. There exist sequences <p,),% 1<(l", ")),G and <I">,G such that

and

0 < p, < 0,+1 < d, (l",")e2(p,), PcCL*(I’),

(61) r(P)_>_ 1- l/n, n 1,2,....

Remark 6. In this paper, we assume that the radius of the arena is equal to 1
(see 1, paragraph 2). However, other values cause no problems. Let d(k) and
3(k) denote the respective values of d and 3 corresponding to a radius of k. One
can show that

(62) d(k) kd(1), it(k) kit(l), 0 <= k < .
We will use (62) to prove Lemma 12.

Proof of Lemma 12. Let (l, )e (p), where 0 < p <__ (w 1)/w. Using (62)
and Lemma 10, one can show that

r(l) _<_ l/n, e CL*(l),

implies that d >-_ p/(1 l/n). We leave the remaining details for the reader.
Proof of Lemma 8. Let (Pn>n% 1, ((1", ")>,% and <1"> satisfy the conditions

of Lemma 12. Also let no be any integer which satisfies

r(l")>= 60.
The reader should verify that to establish Lemma 8, it is enough to show that for
some positive integer k => no, the set

{ A(lk)l(t) w. P(t) until play reaches a position in Z(p0)}

is empty.



LION AND MAN" THE GENERAL CASE 597

Suppose that for each positive integer n there exists an "e Aft") for which

(63) "(t) w. l"(t)

holds until play reaches a position in E(p0). Let 7 Aft") satisfy the conditions
of Lemma 11. Let ,(t) denote the region bounded by the arc of a circle of radius
p, and center l"(t), the circumference of D and the radii through l"(t) and 7(t)
(see Fig. 1). Using the convexity of 7, one can establish

(64) "(t) ,(t), 0 __< =< r(l", .).

Let

FIG.

A. sup {11’ l"ll I’, " .((", ))}.
One can use (61) to show that

(65) lim A, 0.

Finally, one can use (63) and the convexity of 7 to show that there exists a
constant K > 0 such that

(66) I1,((. ,)) .((n. 7))11 >-- K, n 1,2, ....
The lemma follows from (64), (65), (66) and the triangle inequality.
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A GENERAL THEORY OF CONVERGENCE FOR
CONSTRAINED OPTIMIZATION ALGORITHMS THAT USE

ANTIZIGZAGGING PROVISIONS*

R. KLESSIG-

Abstract. A general convergence theory for algorithms that use an antizigzagging parameter is
presented. Certain relationships between this new theory and convergence theories of Polak and
Zangwill are established. Applications of the theory are briefly discussed and these applications indicate
that the new theory has a wider range of applicability than either the Polak or Zangwill theories.

1. Introduction. Suppose we wish to solve the problem min {c(x)lx f},
where c is a real-valued function and f is a constraint set in a normed linear space.
Many algorithms for solving such a problem can be analyzed by (1.3.10) of Polak
[23 or the theory of Zangwill [7]. Their basic approach is to view such an algorithm
as implicitly defining a point-to-set map, call it . Thus a sequence {xi}, con-
structed by such an algorithm, satisfies xi + A(xi). In other words, xi + depends
on only xi. These two theories then specify properties to be satisfied by c, f,
and that will guarantee that {xi} converge (in some sense) to a solution (or a
point satisfying an optimality condition) of the problem. Thus, to analyze an
algorithm, c, f, and A must be identified and then it must be shown that these
satisfy the appropriate properties.

Although the Polak and Zangwill theories have been used for analyzing many
algorithms, to the best of the author’s knowledge they cannot be applied to an
important family of algorithms, namely algorithms that use an antizigzagging
parameter. As an example of such an algorithm and to facilitate the discussion,
consider a variation of an algorithm due to Zoutendijk [8]. The problem to be
solved by this particular algorithm is

(1.1) min{f(x)lfJ(x)<_ O, j= 1, m},
where f R" R1, j O, 1,..., m, are continuously differentiable. We now give
the Zoutendijk algorithm modified to use the Armijo [13 step size and applied to
(1.1).

1.2. ALGORITHM.
Step O. Choose any Xo feasible for (1.1). Select parameters cz,/3, (0, 1) and

to > 0. Select S, a compact neighborhood of the origin in R". Set 0.
Step 1. Compute

(1.3) O(,i,xi) min {max {(VfJ(xi),h)lj satisfies f(xi) >= -i orj 0}},
hS

and let hi be any solution to this minimax subproblem.
Step 2. If 0(ei, xi) -ei, go to Step 3; else set xi+l xi, set i+1 czei

and go to Step 4.
Step 3. Compute ki, the smallest nonnegative integer satisfying both

(1.4) f(xi + ilk’hi)- f(xi)- zflk’(vfO(xi), hi) <= O,

Received by the editors July 18, 1972, and in revised form March 29, 1973.
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(1.5) fJ(x + flk’h) <- O, j 1,..., m.

Set xi+x xi +
Step 4. Set + and go to Step 1.
The parameter ei is called the antizigzagging parameter. Its purpose is to

allow for consideration of constraints that are almost active (sometimes called
tight) in the computation of the search direction h. Notice that in order to com-
pute x+x, both x and e must be known. Consequently, a point-to-set map A,
such that x + e fi.(x), does not exist for characterizing this algorithm. This means
that the Polak and Zangwill theories do not apply in a straightforward manner.
In fact, we are not aware of any way of successfully applying these theories.

The theory we present in this paper fills this gap in the existing general con-
vergence theories. In our approach, the antizigzagging parameter is incorporated
into the general convergence theory. Thus we have a "search map" A such that

Xi+le A(ei, xi). In other words, our theory is meant for algorithms where the
computation ofx+ requires knowledge ofboth xi and e (such as in Algorithm 1.2).

The present work is a refinement of a theory developed by the author and
Professor Polak (see (1.3.41) of Polak [2]). The present theory is an improvement
in that it is less restrictive. For example, the present theory does not require a
one-dimensional minimization and it does not require a compactness assump-
tion. We also believe that it should be much less cumbersome to apply in view of its
greater simplicity. Our convergence theory is presented in 2.

Because we are ,considering that algorithms are characterized by a map A
with xi+ A(ei, Xi), it is impossible to directly compare our convergence theory
to the theories of Polak and Zangwill. However, certain relationships do exist
and we discuss them in 3.

Finally, in 4, we consider some algorithms that can be analyzed by our
theory. We find that for some algorithms which use an antizigzagging param-
eter, the antizigzagging parameter need not be included in our convergence
theory. That is, a simplified form of our theory can be used to analyze these
algorithms.

2. Algorithm prototypes and convergence results. In this section, we present
our algorithm prototype for algorithms with an antizigzagging parameter. Our
major convergence result is established in Theorem 2.22.

Consider the problem inf {c(x)lx f}, where c is a real-valued function and f
is a constraint set in a normed linear space. Usually we can represent a necessary
condition of optimality for this problem by a function :R / f --, R-. That is,
if solves the problem, then if(0, ) 0. (For problem (1.1), q/= 0.) In proving
such a condition, we usually assume that (0, )< 0 and then use this fact to
construct a feasible point x* such that c(x*) < c() (a contradiction). Such a proof
is very suggestive of a computational method and this idea is the basis of our
general convergence theory.

2.1. Notation. Throughout the remainder of our presentation, the following
notation will be employed. For z in a normed linear space and p > 0, we define

It is possible to define the map such that (ei, Xi) (’i’ Xi) but cannot be shown to have the
properties required by the two theories.
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B(z, p) a_ {z’ Ilz’ z[[ __< p}, where the particular normed linear space should be
clear from the context.

2.2. ALOORITI-IM PROTOTYPF. Let (c, II" II) be a normed linear space with a
closed set f. Let , A, b, and c be maps; O’R + x f--. R-, A’R + x f--. 2n,
b "(0, oo) ---, (0, oo), and c "f --, R. The algorithm prototype which finds a point 2
satisfying an optimality condition, (0, 2) 0, is as follows.

Step O. Choose any x0 e f and choose parameters e e(0, 1) and eo > 0.
Set/= 0.

Step 1. If k(i, xi) __< -b(), go to Step 2; else set x+l x, set +1 zei
and go to Step 3.

Step 2. Compute any ye A(ei, xi). Set xi+ Y and set e+ ei.
Step 3. Set + and go to Step 1.
2.3. Remark. We have given (2.2) no provision for stopping in order to simplify

the statements of the following lemmas and theorems. Since we are seeking points x
that satisfy (0, x)= 0, an obvious stopping rule is to stop when (0, xi)= 0.
If this stopping rule is added to (2.2), the statements of Lemma 2.8 and Theorem
2.22 must be altered in an obvious way to account for the possibility that (2.2)
generates a finite sequence.

2.4. Assumptions. In order to establish the major results of this section, we
need the following assumptions"

(i) c is either continuous or bounded from below on f, A(e, x) va for all
(e, x) e R + x f, and c(x’) c(x) <__ 0 for all x’ e A(a, x), for all (e, x) e R + x f.

(ii) lim_o b(e) O.
(iii) is upper semicontinuous on {0} x f.
(iv) Given any/ > 0 and any x e f satisfying (0, x) < 0, there exist con-

stants 6(/, x) > 0 and 7(#, x) > 0 (possibly depending on/ and x) with the following
property. If e’ > 0 and x’e B(x, 7(/, x)) f"l f are such that O(e’, x’) N -p, then
c(x") c(x’) <= -6(#, x)[Ix" x’[I for all x" A(e’, x’).

(v) Given any e > 0 and any x e f satisfying (0, x) < 0, there exist constants
a(e, x) > 0 and K(e, x) > 0 (possibly depending on e and x) with the following
property. If x’e B(x, c(e, x)) f is such that O(e, x’) __< -b(e), then [Ix"- x’
>_ a(, x) for all x" A(e, x’).

Assumption 2.4 (iv) says that if xg is in a neighborhood of a point x that does
not satisfy the optimality condition, the decrease in the cost function is at least
proportional to IIx;+ xil. In terms of Algorithm 1.2, this assumption means
that h must be a direction of descent and flki cannot be too large (see (1.4)).
Assumption 2.4 (v) says that [[x+ x will be no smaller than a(e, x). In terms
of Algorithm 1.2, this assumption means that the step size ilk’ cannot be arbitrarily
small so long as e is bounded away from zero.

The following theorem shows that must represent a necessary condition of
optimality for the problem inf {c(x)lx f}.

2.5. TI-IORM. Suppose that Assumptions 2.4 (i) to 2.4 (v) hold. If 2 solves
inf {c(x)[x f}, then q(O, 2) O.

Proof. It will suffice to show that (0, 2) < 0 implies that 2 does not solve the
problem inf {c(x)lx e f]}. If (0, 2) < 0, by (2.4)(ii) and (2.4)(iii) there exists > 0
such that O(g, 2) =< -b(i). Let 6(b(i:), 2) > 0 and a(i, 2) > 0 be as in (2.4)(iv) and
(2.4)(v) respectively. Then applying (2.4)(i), (2.4)(iv), and (2.4)(v) we find that there
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exists 2 e A(/:, 2) c f such that

c(2) c(92) =< -,5(b(i), 2)11)7

(2.6) __< -6(b(i), 92)a(i, 92)

<0.

Inequality (2.6) implies that 92 does not solve the problem inf {c(x)lx e .q} and the
proof is complete.

In the sequel, we make use of the following, easy-to-establish lemma.
2.7. LEMMA. Let (x} be a sequence constructed b,9 Algorithm Prototype 2.2 and

suppose that Assumption 2.4(i) holds. If {xi} has an accumulation point, then there
exists T > -oo such that c(xi) >= Tfor O, 1,....

We establish our major convergence result by making use of the following
lemma.

2.8. LEMMA. Let {x} and {e} be sequences constructed by Algorithm Prototype
2.2. Suppose that Assumptions 2.4(i) to 2.4(iv) hold and suppose that ei- O. Ifx*
is an accumulation point of {xi}, then it satisfies (0, x*) O.

Proof. Let x* be an accumulation point of {xi}. We consider two cases.
Case 1. x - x*. Since e - 0, it is clear from Step of (2.2) that there exists a

subsequence {xi}it where K c {0, 1, ...} is an infinite index set such that
O(ei, xi) > -b(ei) for all 6 K. Thus from (2.4)(ii) we have that

(2.9) 0 lim b(ei) <= lim /(i, xi).
iK iK

Since *i "*, We must have that i - X*" Thus, since (2.4)(iii) holds,

(2.10) 0 =< lim 0(i, Xi) 0(0, X*),

and since 0 is nonpositive-valued, (2.10) implies that O(0, x*) 0.
Case 2. xi - x*. We assume that 0(0, x*) -2/ < 0 and establish a contra-

diction to Lemma 2.7. By (2.4)(ii) and (2.4)(iii) there exist i > 0 and 7 > 0 such
that

(2.11) 0(,’, x’) =< -/ =< b(e’)

for all e’ [0, g], and for all x’ B(x*, 1) f’l f. Let (#, x*) > 0 and 7(#, x*) > 0 be
as in (2.4)(iv). Since xi + x*, there exist a p > 0 and a subsequence indexed by K
such that

(2.12) p <__ 1/2 min {, 7(/, x*)},
(2.13) xiqB(x*,2p) ifandonlyif ieK.
On the other hand, since x* is an accumulation point of {x}, there must exist a
subsequence indexed by K2 such that

(2.14) xi B(x*, p) if and only if e K2.
Now we define two maps; n" K2 - K and m" K2 - K2 by

(2.15) n(i) a__ min {je Kllj >= + 1},
(2.16) m(i) a-A min {j e K21j >= n(i) + 1}.
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Thus if Xq B(x*, p), then Xnq) is the first element following Xq in the sequence
{xi) that is not in B(x*, 2p). Also, if Xq B(x*, p), x,,q) is the first element following
X,q in the sequence {x) that is in B(x*, p). Now since e--+ 0, there exists p K2

such that <= : for j p, p + 1,-.-. Consider the subsequence _a__ {p, re(p),
m(m(p)),... K2. Since x B(x*, 2p) for i= k, k + 1,..-, n(k)- 1, for any
k K, we obtain, from (2.11), (2.12), and the choice of p, that

(2.17) ’(ei, xi) =< -/z =< b(ei), k, k + 1, ..., n(k) 1,

for all k K. Consequently, Step 2 is reached for k, k + 1, ..., n(k) 1, for all
k K. But then, applying (2.12), (2.17), and (2.4)(iv) we have that

(2.18) (Xi4" 1) (Xi) --((].l,X*) ]Xi+ Xi

i=k,k+ 1,...,n(k)- 1,

for all k K. By (2.4)(i), {c(x3} is a nonincreasing sequence and thus (2.18) yields

n(k)-

C(X,.)- C(X) <= 2 (C(X+ )- C(X))
q=k

(2.19) n(k)-

--((].l, X*) 2 Xq+
q=k

for all k K. But by (2.15), x e B(x*, p) and x,() B(x*, 2p) for all k K. Hence
n(k)-

(2.20) P < ]]Xn(k) Xk 2 ]Xq+ Xq
q=k

for all k e K. Thus (2.19) and (2.20) yield

(2.21) C(Xm{)) C(X) <= -a(la,x*)p < 0

for all k e K. Hence c(xk)-- oo which contradicts Lemma 2.7; the proof is
complete.

Lemma 2.8 says the following. If we use an algorithm of the form of(2.2) which
satisfies (2.4)(i)to (2.4)(iv)to generate sequences {x} and {e}, we know that if
gi - 0, then any accumulation point x* satisfies the optimality condition, ,(0, x*)

0. Unfortunately, this knowledge is of dubious value since it does not give us any
a priori guarantee that the algorithm will "work". All that we know is that if we
try to use the algorithm, we need only monitor {e} in order to determine if the
accumulation points of {x} satisfy the optimality condition. The following theorem
indicates how this difficulty may be overcome.

2.22. THF.ORFM. Let {x} be a sequence constructed by Algorithm Prototype 2.2
and suppose that Assumptions 2.4(i) to 2.4(v) hold. Then if x* is an accumulation
point of {xi}, it satisfies ,(0, x*) 0.

Proof. Let x* be an accumulation point of {x}. We consider two cases.
Case 1. e--+ 0. The theorem follows immediately from Lemma 2.8 for this

case.
Case 2. ei -/, 0. We assume that (0, x*) < 0 and establish a contradiction to

Lemma 2.7. By the way {e} is constructed, there must exist e* > 0 and an integer
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N1 >= 0 such that ei e* > 0 for all >_ N But then because of Step of (2.2),

(2.23) d/(ei,xi) d/(e*, xi) <= b(ei)= -b(e*)

for all >= N1. Now let 6(b(*), x*) > 0 and 7(b(e*), x*) > 0 be as in (2.4)(iv) and let
a(e*, x*) > 0 and x(e*, x*) > 0 be as in (2.4)(v). If K indexes a subsequence such
that xi - x*, then from (2.23) there must exist an integer N2 >= N1 such that

(2.24) X B(x*, 7(b(e*), x*)) f) f, O(.i, Xi) b(e*),

(2.25) xi B(x*, (e*, x*)) f, 6/(*, xi) <-_ b(e*),

for all i K and >= N2. But this means that (2.4)(iv) and (2.4)(v) can be applied
to obtain

C(’X’i+ 1)- C(Xi) -((b(*), x*) llxi+
(2.26) -6(b(e*), x*)a(e*, x*) < 0

for all i6 K and _>_ N2. Since {c(xi)} is nonincreasing, (2.26) implies that c(xi)
--, which contradicts Lemma 2.7. The proof is complete.

In many algorithms (for example, (1.2)), the computation of the quantity
corresponding to (ei, xi) is the major part of each iteration. Thus, even though
@(ei, xi) > -b(ei), one may not want to "throw away" the information gained in
computing the optimality condition. Consequently, these algorithms try to compute
a point, Xi+l, of lower cost even when q(i, xi) > -b(i). For example, compare
(1.2) with the e-perturbation algorithm of Zangwill [7]. This idea can be easily
incorporated into Algorithm Prototype 2.2.

2.27. Remark. Algorithm Prototype 2.2 can be slightly generalized by replacing
Step 2 with Step 2’.

Step 2’. If O(g.i, Xi) -b(e,i) go to Step 2; else choose any y f such that
c(y) <= c(xi), set xi+ Y, set el+ aei, and go to Step 3.

Theorem 2.22 and its proof remain unchanged under this modification.

3. Relationships to the Polak and Zangwill theories. As mentioned in l,
our new convergence theory cannot be directly compared to the Polak or Zangwill
theories. However, certain relationships exist and we examine these relationships
in this section.

Polak has modified Algorithm 1.2 by changing the way in which the anti-
zigzagging parameter is manipulated. (See (4.3.26) in Polak 2].) Given xi, his
algorithm tries values no, eo,a2eo,"" for the antizigzagging parameter until
O(akeo, Xi) <= --akeo at which time xi+ is computed. This has the effect of making
the computation of xi + dependent only on x. With this modification, Polak can
apply his convergence theory. If we change the manipulation of e in Algorithm
Prototype 2.2 in the same way, a new prototype results.

3.1. ALGORITHM PROTOTYPE. Let (f, I1" II), f, , A, b, and c be as in (2.2).
Step O. Choose any Xo6 and choose parameters a (0, l) and eo > 0.

Set/= 0.
Step 1. Set , %.
Step 2. If O(e, xi) -b(e), go to Step 4; else go to Step 3.
Step 3. Set e, e and go to Step 2.
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Step 4. Compute any y .A(e, xi). Set xi+ Y.
Step 5. Set/= + and go to Step 1.
We establish a convergence result very similar to Theorem 2.22. To do this we

apply (1.3.10) of Polak I2].
3.2. THEOrtEM. Let {xi} be the sequence constructed by Algorithm Prototype 3.1

and suppose that (2.4)(i) to (2.4)(v) hold. If {xi} is finite with the last element xs,
because (3.1) cycled indefinitely between Step and Step 2, then xs satisfies d/(O, xs)

O. If {xi} is infinite with accumulation point x*, then x* satisfies (0, x*) O.
Proof. In the case of {xg} finite, it is clear that

(3.3) O(e%o, Xs) > b(e%o), k O, 1,

Because of (2.4)(ii) and (2.4)(iii),

(3.4) (0, x) lim (%o, x) lim -b(e%o) O,

and thus (0, Xs) O.
For the case of {x} infinite, we apply (1.3.10) of Polak [2]. Let ’ 2n

denote the point-to-set map defined by Step through Step4 in (3.1). We must show
that given any x e such that (0, x) < 0, there exist p > 0 and > 0 such that

(3.5) c(x") c(x’) for all x" (x’), x’ B(x, ) .
Let x e be such that (0, x) < 0. By (2.4)(ii) and (2.4)(iii) there exist 71 > 0 and

e > 0 such that

(3.6) O(e’,x’) -b(e’) for all e’ [0, ea], x’ B(x, 7) .
Let k be the smallest nonnegative integer such that e%o < e. Let 7(b(eeo), x) and
6(b(e2eo),X), j O, 1, ..., k, be as in (2.4)(iv). Let x(e2eo,X) and a(e2eo,X),
j 0, 1, ..., k, be as in (2.4)(v). Define

min{7(b(eJeo),X), j= 0,1, k;
(3.7) x(2eo,x), j= 0,1,...,k} > 0;

(3.8) 3 & min {6(b(e2eo),X), j 0, 1,..., k} > 0;

(3.9) ff min {a(2eo,X), j 0, 1,..., k} > 0.

Now, let x’ be any point in B(x, ) . Because of (3.6), (x’) A(2’eo, x’) with
j’ e {0, 1, ..., k}. Thus it follows from (2.4)(iv), (3.7), and (3.8) that

c(x")- c(x’) -(b(2’eo), x) x"- x’
(3.10) N -31Ix" x’ll for all x" (x’).
Furthermore, it follows from (2.4)(v), (3.7), and (3.9) that

(3.11) x" x’ a(e2’eo,X) 6 forallx" (x’).

Since x’e B(x, ) was arbitrary, (3.10) and (3.11) combine to yield (3.5) with

fi 6 6. This completes the proof.
Since we can use (1.3.10) of Polak [2] to prove convergence of Algorithm

Prototype 3.1, this prototype, Assumptions 2.4, andTheorem 3.2 form a convergence
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theory that is a special case of Polak’s theory. Furthermore, since (3.5) is sufficient
to establish the hypotheses of Convergence Theorem D in Zangwill [7], the
convergence theory of this section is a special case of Zangwill’s Theorem D.

There is an important consequence of Algorithm Prototype 3.1 and Theorem
3.2. If we have an algorithm that can be analyzed by means of the convergence
theory of 2, then we have identified fL , A, c, and b and we have shown that these
satisfy Assumptions 2.4. If we rearrange this algorithm so that it fits the structure of
Algorithm Prototype 3.1, a new algorithm results with the convergence properties
specified by Theorem 3.2. For example, we can analyze Algorithm 1.2 by use of the
convergence theory of 2 and the rearrangement implied by Algorithm Prototype
3.1 yields (4.3.26) in Polak [2]. In a sense, we get two algorithms for the price of one.

Algorithm Prototype 2.2 is specifically constructed to analyze algorithms that
use an antizigzagging parameter. In other words, it is meant to apply to algorithms
where the computation of xi+l depends on both i and x. However, it will also
apply to algorithms where x+ depends on only x in which case the e in (2.2) is
superfluous. That is, qt "f2 ---, R- and A "f ---, 2a, and it is easy to see that (2.2) and
Assumptions 2.4 reduce to the following.

3.12. ALGORITHM PROTOTYPE. Let (.0, II" [I) be a normed linear space with a
closed set f. Let , A, and c be maps if" f R-, A’E 2, and c’f R.

Step O. Choose any Xo f. Set 0.
Step 1. If (x) 0, set xi+ xi and go to Step 3. 2

Step 2. Compute any y 5.4(xi). Set xi+ y.
Step 3. Set + and go to Step 1.
3.13. ASSUMPTIONS.
(i) c is either continuous or bounded from below on fL A(x) for all

x fL and c(x’) c(x) <= 0 for all x’ A(x) for all x f.
(ii) is upper semicontinuous on f.

(iii) Given any/ > 0 and any x f satisfying (x) < 0, there exist constants
5(/, x) > 0 and 7(/, x) > 0 (possibly depending on/ and x) with the following
property. If x’ B(x, (/, x)) f-’l f is such that ff(x’) __< -/z, then c(x") c(x’)
_<_ -6(/, x)IIx" x’ll for all x" A(x’).

(iv) Given any x f satisfying (0, x) < 0, there exist constants a(x) > 0 and
x(x) > 0 (possibly depending on x)with the following property. Ifx’
is such that ff(x’) < 0, then IIx" x’l > r(x) for all x" A(x’).

The following lemma shows that the convergence properties of (3.12) and
(3.13) can be established using the Polak theory.

3.14. LEMMA. Suppose (3.13)(ii), (3.13)(iii), and (3.13)(iv) hold. Given any
x ) such that (x) < O, there exist constants (x) > 0 and (x) > 0 (possibly
depending on x) such that

(3.15) c(x") c(x’) <__ -fi(x) for all x"

Proof. Let x e f be such that 0(x) -2/z < 0. From (3.13)(ii), there exists

71 > 0 such that

(3.16) 0(x’) =< -/ for all x’

Obviously, if O(x) 0, we should stop. We have put Step in this present form so that we will
not have to consider the trivial finite sequence case in.the sequel.
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Let 6(, x) > 0 and 7(t, x) > 0 be as in (3.13)(iii). Let a(x) > 0 and (x) > 0 be as
in (3.13)(iv). Define

(3.17) 9(x) & min {’1, ’(, X), /(X)} > 0,

(3.8) (x) - 6(,

It follows easily from (3.13)(iii) and (3.13)(iv) that (3.15) holds for 9(x) and 5(x)
as defined in (3.17) and (3.18). This completes the proof.

In view of Lemma 3.14, it is easy to see that @(x) 0 is a necessary condition
of optimality for min {c(x)lx e f}. Also, because of Lemma 3.14, we can apply
(1.3.10) of Polak [2] to obtain the following result.

3.19. TI-IEOREM. Let {xi} be the sequence constructed by Algorithm Prototype
3.12 and suppose that Assumptions 3.13(i) to 3.13(iv) hold. Then ifx* is an accumula-
tion point of {xi}, it satisfies /(x*) O.

Because Theorem 3.19 can be proved using (1.3.10) of Polak [2], the
general convergence theory composed of (3.12), (3.13), and (3.19) is a special
case of the Polak theory. Consequently, it also is a special case of Theorem D
of Zangwill [7].

Although we cannot directly compare the convergence theory of 2 with the
Polak and Zangwill theories, the results of this section indicate that special cases
of the theory in 2 are special cases of the Polak and Zangwill theories.

4. Applications. Even though the convergence theory of 2 was motivated
by the desire to analyze algorithms which use an antizigzagging parameter, this
theory is quite general. At this time we are not aware of any algorithm that can be
analyzed by either the Polak theory or by the Zangwill theory but not by the special
case of our theory composed of (3.12), (3.13), and (3.19). This is not surprising in
view of the similarity of this special case and (1.3.10) of Polak [2]. However, we are
mainly concerned with algorithms that use an antizigzagging parameter and thus
we shall limit our discussion to these algorithms in this section.

First, we consider those algorithms that can be analyzed by our theory but seem
to defy analysis by both the Polak and Zangwill theories. Because of space
considerations, we will not carry out the analyses which are usually straightforward.

Method of feasible directions (Zoutendijk [8]). This algorithm is essentially
Algorithm 1.2. The analysis is carried out by letting (e, x) 0(e, x).

e-Perturbation algorithm (Zangwill [7]). The analysis of this algorithm is
precisely the same as that for Zoutendijk’s algorithm. However, Algorithm
Prototype’2.2 must be modified as in Remark 2.27.

Convex programming algorf,thm ((6.2.2) Zukhovitskiy et al. [9]). By u’se of
our convergence theory, we can show that this algorithm can be applied to (1.1)
which is not necessarily convex. In this case, q(e, x) min (Vf(x), h)l (VfJ(x), h)
___< -e,,j J(e,, x)}, where J(e,x)= {j[fJ(x) >= -e,j v 0}.

Gradient projection algorithms (Rosen [4], [5]). The well-known gradient
projection method of Rosen [5] can easily be modified to use an antizigzagging
parameter. Essentially the algorithm should be modified so that the gradient is
projected onto the orthogonal complement of the space spanned by the gradients
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of the e-active constraints. The process is essentially the same for the related
algorithm of Rosen [4]. (Also see Schultz [10] .)

Strong variation algorithm for optimal control (Polak and Mayne 3]).
Recently Polak and Mayne have used our convergence theory to construct a very
complex algorithm for optimal control problems. In the same paper, other
complex algorithms were constructed based upon (1.3.10) of Polak 2.]. The Polak
and Mayne paper serves as an excellent example of the usefulness of the concept of
general convergence theory.

Finally, it should be noted that there are algorithms that use an antizigzagging
parameter and yet, if the convergence theory of 2 is used to analyze them, the :
in (2.2) is superfluous. In other words, (3.12), (3.13), and (3.19) can be used to prove
convergence for these algorithms. One such algorithm is (4.3.26) of Polak 2] that
we have previously cited. Another example is a modification of an algorithm of
Topkis and Veinott 6]. This algorithm is meant to solve (1.1) and is obtained by
replacing Step and Step 2 of(1.2) by the following.

Step 1’. Compute O(Xi) minhs {max {(Vf(xi), h); fJ(xi) + (vfJ(xi), h),
j J(xi)}}, where J(xi)= {j[fJ(xi) >- -Co, j 4 0}. Let hi be any solution to this
subproblem.

Step 2’. Go to Step 3.
The e0 > 0 in this algorithm is required to guarantee convergence and hence

can be considered an antizigzagging parameter (Topkis and Veinott take e0 + o ).
However, the antizigzagging parameter is fixed for all iterations and the computa-
tion ofxi/ only depends upon xi. As a result, we can use (3.12), (3.13), and (3.19)
with O(x) O(x) to establish convergence for this algorithm.

5. Conclusion. We have presented a general convergence theory that is
applicable to a class of algorithms that cannot be analyzed by either the Polak or
Zangwill convergence theories. Some of the relationships between the three general
convergence theories have also been examined. Although our theory cannot be
directly compared with the Polak or Zangwill theories, our theory seems to be
applicable to any algorithm to which the other two theories are applicable.
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THE EUCLIDEAN SPACE CONTROLLABILITY
OF CONTROL SYSTEMS WITH DELAY*

RONALD B. ZMOOD"

Abstract. Algebraic criteria for complete Euclidean space controllability and for Euclidean
space null controllability are obtained for control systems with delay. This is achieved by the use of
a new form for the fundamental solution of differential-difference equations. In addition, it is shown
that the new results reduce to known results for special classes of differential-difference equations.

1. Introduction. In recent years considerable interest has been shown in time
lag control systems (see [153 for an extensive bibliography). Systems having
transportation delay have been studied extensively, but it is only within the last
two decades that a real interest has been shown in the optimal control of such
systems. McClamroch [13] and Banks [1] have recently given necessary conditions
for the optimality of the solutions of systems with delay. In this work the class of
systems with delay that will be considered will be those that can be described by
linear differential-difference equations.

In this paper we will consider the controllability of linear differential-
difference equations. For these equations it is necessary to differentiate between
the notion of function space controllability and cortrollability in Euclidean space;
the reason being that although their solutions are trajectories in Euclidean space,
the natural "state space" is a function space. It is hoped that the problem of
function space controllability will be treated in a later work, so here we will
restrict our attention to controllability in Euclidean space. For Euclidean space
controllability we also need to distinguish between the notions of complete
controllability and null controllability, in contradistinction with the case for
ordinary differential equations.

Complete Euclidean space controllability was first considered by Chyung
and Lee in [5], where they generalized the integral criterion of Kalman [10] for
the case of differential-difference equations. Kirollova and Curakova [12] in 1967
presented, for the first time, algebraic criteria for Euclidean space null control-
lability of linear autonomous differential-difference equations. More recently,
Gabasov and Curakova [6] have shown that the conditions obtained in 1967 are
both necessary and sufficient for complete controllability. A similar algebraic
condition to that obtained by Kirillova and Curakova has also been obtained by
Johnson [9] in a recent thesis. Weiss [17] has also obtained an algebraic sufficient
condition for controllability of time-varying differential-difference equations
which includes the results of Buckalo [3] as a special case. Finally, Choudhury [4]
has recently published results that are closel3related to some of those presented
by Gabasov and Curakova [6].
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In the next section the basic system to be considered is presented, and an
important result on the representation of the solution of a differential-difference
equation is given. We next present a function space criterion for complete Euclidean
space controllability. Then a new form for the fundamental solution of these
equations is presented. From these results we obtain an algebraic criterion for
complete Euclidean space controllability, and also show that this result reduces
to the known results for some special cases. In 6 the notion of pointwise com-
pleteness is introduced, and we then obtain a criterion for Euclidean space null
controllability.

2. The basic system. In this section we introduce the basic system that will
be considered throughout this paper, including appropriate assumptions.

The system to be considered in this paper is the following differential-
difference equation:

() c(t) A(t)x(t) + B(t)x(t 1) + Cu(t) forte(0, T],

(2) x(t) 4(t) for e [- 1,0].

In what follows we shall use matrix notation, where AT denotes the transpose
of A, and ]IAI] denotes the Euclidean norm of A. In (1) and (2) above, x(t) is an
n-vector, u(t) is an r-vector, and u(. is an admissible control (that is, it is contained
in the space of square integrable functions L2 on every finite interval). A(t) and
B(t) are n n matrix functions, measurable in and satisfying ]]A(t)[I < m(t),
]]B(t)]] < m(t), where m 6 L2(0, T). Also C(t) is an n r matrix, and C(. is con-
tained in L2. We will assume that the initial function b(t) is continuous on the
interval [- 1, 0], that is, q5 C(- 1, 0]; R").

THEOREM 1. With the above assumptions and jbr each admissible control
u(t), 0, T], there exists a unique solution to (1), (2), where the solution is con-
tinuous on the interval 6 [--1,0] and is absolutely continuous on the interval

(0, T]. Further, the solution at time T is

(3) x(T) x(T, ok) + X(Y, s)C(s)u(s) as,

and

(4) x(y, ) x(y, o)6(o) + fo-1 X(T, s + 1)B(s + 1)b(s) ds.

X(t, s) is a unique n n matrix solution, defined on [-1, T] [0, T], of

(5)
c3t
--X(t, s) A(t)X(t, s) + B(t)X(t 1, s),

jbr (t, s) Is, T] [0, T], and

(6) X(t s) I
( 0

(n n identity matrix) for s,
for (t, s) [- 1, s) x 0, T].
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The proof of the existence of the solution is given in [1], while the above variation
of parameters formula may be obtained by appropriate substitutions in the
results of [2] or [13].

The matrix function X(t,s) will be called the fundamental solution of(l).
For the case where (1) is an autonomous differential-difference equation, we may
write the fundamental solution X(t, s) as X(t s) without any loss of generality.

3. A function space criterion for complete Euclidean space controllability. In
this section we define the concept of complete controllability, and derive a neces-
sary and sufficient condition for differential-difference equations to have this
property.

DEFINITION 1. The control system (1), (2) is said to be completely Euclidean
space controllable at time T > 0 if for every b e C([-1, 0]; R") and for every
Xl R", there exists an admissible control u(t), [0, T], such that x(T) x

DEFINITION 2. Consider the control system (1), (2). The reachable set l(T)
is defined as

(T) {x 6 R"lx =x(T),u(.)6L2,b =0}.
It is relatively easy to see that the reachable set (T) is a linear subspace of
From (3),

(7) x(T) x( T, dp) X( T, s)C(s)u(s) ds.

We see that for each admissible control, u, the right-hand side of (7) is an element
of the reachable set N(T). Now suppose that (1), (2) is completely Euclidean space
controllable. Then for each x e R", there exists an admissible control such that

X X( T, )) X(T, s)C(s)ft(s) ds I(T).

Therefore the system (1), (2) is completely Euclidean space controllable at time
T if and only if ’(T) R".

THEOREM 2. The control system (1), (2) is completely Euclidean space con-
trollable at time T if and only if qrX(T, s)C(s) 0 for a.e. s [0, T] implies q O,
where ri R".

Proof. From above, the system (1), (2) is completely Euclidean space con-
trollable at time T if and only if

Now (T) 4: R" if and only if there exists a nonzero q R" such that qTx 0
for every x (T). This in turn is equivalent to

(8) f rl TX( T, s)C(s)u(s) ds 0,

for all controls u(. ) L2.
If there exists a nonzero q R" such that rlrX(T, s)C(s) 0 for a.e. s [0, T],

then (8) is true for all u(. L2. On the other hand, if there exists a nonzero r/ R"
such that (8) is true for all u(. ) L2, then (8) is true for

(9) u(s) [rlX(T, s)C(s)] "
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Substituting (9) into (8), we obtain

(10) f riTX(T, s)C(s)CT(s)XT(T, s)r ds O,

and therefore conclude rl rX(T, s)C(s) 0 for a.e. s e [0, T].
COROLLARY 1. The control system (1), (2) is completely Euclidean space con-

trollable at time T if and only ![

W( T, O) X( T, s)C(s)Cr(s)X( T, s) ds

is positive definite.
Proof. It is apparent that W(T, 0) is positive semidefinite. The rest of the

proof is then quite straightforward.
Corollary was originally obtained by Chyung and Lee [5] and McClamroch

[14].

4. The representation of the fundamental solution of a differential-difference
equation. In this section we present a form of the fundamental solution X(t) which
will prove to be quite useful in later sections.

Let us consider the matrix differential equation (5) and (6), where we assume
the coefficient matrices A(t) and B(t) are constant and equal to A and B, respec-
tively. We introduce the following notation, by defining Xk(Z)= X(z + k) for
z s [0, 1] and k 0, 1, By direct substitution in (5) and assuming s 0, we
obtain

d
--Xo() AXo(), Xo(O)
d

(11)
d
--X,(z)-- BXo(z -[- AXI(Z), X,(O)-- Xo(1),
d:

d
---Xk(Z BXk_1(r + AXk(), Xk(0) Xk_l(1),
dz

so that the solution of (5) and (6) over the interval t [k,k + 1] is given by
x(t) x(t- ).

If Zk(r [Xor(r), Xr(r)] r, (11) becomes

d
(12) dZk(z) AkZk( for "c e [0, 1],

(13) Xk(Z) EkZk(Z),
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where Zk(r is an n(k + 1) x n matrix, and

A

B

Ak= 0

0

0 0 0 0

0 0 B

0 E [0,...,0, I].

A and E are n(k + 1) x n(k + 1) and n x n(k + 1) matrices, respectively
As is well known, the unique solution of(12) is given by

(!4) Z,(’) eAz,(O),
and so

(1 S) X(r) E e’kZk(O).
It is clear from (11) and the definition of Z(r) that

(16) Zo(O I.

Further, by induction,

(17) Z(0) g:; 1(6)
From (15) and the definition of X(), we obtain

(8) x(t) x,(t- k)= E e(’-*)Z(O),
for [k, k + 1]. An important observation is the fact that the fundamental
matrix X(t) may be singular for some values of e [0, ). It is this fact that makes
it necessary to distinguish between complete Euclidean space controllability as
defined above and the notion of Euclidean space null controllability to be defined
in a later section.. An algebraic criterion for complete Euclidean space controllabBity of
autonomous derential-differenee equations. We now develop an algebraic neces-
sary and sufficient condition for complete Euclidean space controllability. From
this result we deduce the well-known Kalman [11] condition for the controllability
of linear ordinary differential equations. In addition, we obtain the condition of
Kirillova and Curakova [12], and also show that the general scalar differential-
difference equation is controllable. To complete this section, we present an
algebraic characterization of the reachable set (T).

THEOREM 3. A necessary and sufficient condition for the system (1), (2), with
A(t), B(t) and C(t) equal to constant matrices A, B and C, respectively, to be com-

pletely Euclidean space controllable at time T6(k,k + 1, k O, 1,...., is that
the matrix

O(T) EEoCo, "", EoAg-Co, "", EC,, ..., E,A(+)-
has rank n, where C Z(O)C jbr O, 1, 2,....
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Proof. From Theorem 2, a necessary and sufficient condition for complete
Euclidean space controllability is that rlrX(T s)C 0 for s[0, T] imply

This statement is equivalent to"

(19)

(20)

(21)

implies r/= 0.

rl
rX(T s)C 0

rl
rX( T s)C 0

rl
rX( T s)C 0

(22)

(23)

for se(T- 1, T],

for s6(T- 2, T- 1,

for s e (0, T- k]

From (18), we obtain by direct substitution that

(24)

implies r/= 0.

riTE eA(T-s)c0 00

tlrE1 eAl(W-s- 1)C1 0

rlWEk eAk(W-s-k)Ck 0

for se(T- 1, T1,

for s e(T- 2, T- 1],

for s e (0, T- k]

We now only need to show that (22), (23), (24) implies r/= 0 if and only if
the rank of Q(T) equals n. Suppose the rank of Q(T) < .n" then there exists a
nonzero n e R" such that

(25) yITEiCi FITEiA,](i+ 1)- Ci O,

for 0, 1,..., k. From the Cayley-Hamilton theorem and (25), we find that

(26) rlrEiAti+ 1)C O,

for 0, l, ..., k. By induction, it can then be shown that

(27) ]TEiAT(i+ 1)+lc O,

for 0, 1, 2,... and 0, 1, ..., k. Using the power series expansion of the
exponential matrix, we find that

qTE0 eA(T-s)CO 0 for s e(T- 1, T],

riTE1 eA’(r-s-1)C1 0 for s6(T- 2, T- 1],

rlTE ea(T-s-)C 0 for s

This is a contradiction of the statement" (22), (23) and (24) imply r/-- 0.
Suppose, on the other hand, there exists a nonzero r/e R" such that (22),

(23) and (24) are true. Then by successive differentiation of (22) and letting s T,
we obtain

(28) rITEoCo rlTEoAno CO O.
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Treating (23) and (24) in a similar fashion, we obtain

rITEiA!Ci O,

for 0, 1, ..., k and j 0, 1, ..., n(i + 1) 1. It is thus obvious that rITQ(T)
0, which implies the rank of Q(T)is less than n.

It will be observed from Theorem 3 that an autonomous differential-
difference equation may become controllable after some nonzero time interval has
elapsed. In the following example we present a system which is not completely
controllable for T < 1, but is completely controllable for all T > 1.

Example 1. Consider the following differential-difference equation"

kXz(t)A

Suppose T z (0, 1]’then we find that

and the rank of Q(T) < 2. Now suppose T > 1" then

[1 e + el"’" ]Q(T) e’e

and we note that the rank of Q(T) 2. Hence the system (29) is not completely
controllable for T (0, 1], but is completely controllable for all time T > 1.

COROLLARY 2. U’ the system (1), (2), with A(t), B(t) and C(t) equal to constant
matrices A, B and C, respectively, is completely Euclidean space controllable at
time T, then it is completely Euclidean space controllable for all time T Ti.

Proof. Suppose T T" then from Theorem 3 we can partition Q(T) as

Q(T) [Q(T,),

It can now be seen that if Q(T) has rank n, then Q(T) has rank n.
The following result is the usual algebraic criterion for complete Euclidean

space controllability of ordinary differential equations first proved by Kalman [11].
COROLLARY 3. Suppose that in (1), (2) the matrices A(t) and C(t) equal the

constant matrices A and C, respectively, and B(t) 0 for all [0, ). Then a
necessary and sucient condition for complete Euclidean space controllability at
time T is that the matrix

Q( T) It, AC A" C]

have rank n.
Prooj Suppose QA(T) has rank n’ then Q(T) has rank n for any T. This

follows from the fact that

(30) EoCo =C, EoA-iCo A"-C,

and hence Q(T) has n linearly independent columns for any T > 0.
Suppose the rank of QA(T) < n" then there exists a nonzero q 6 R" such that

(31) qTc TAC qTAn-IC.
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Applying the Cayley-Hamilton theorem, we can show that

rlTA"C O.

It can then be shown by induction that

(32) rITA"+tC O,

for 0, 1, The general term in rlTQ(T) is given by

qTEiAliCi,

for i= 0, 1,..., k and l= 0, 1,..., n(i + 1)- 1. Upon substitution for Ei, A
and Ci, the general term becomes

A 0 0 I
T T O eA C(33) tl EiAiC rl ,’’’, O, I3 0 A 0

0 0 A e a

yITA eiAc.

Expanding eiA in a power series, and applying (31) and (32) to the general term, we
obtain

T TAI[I + iA + "]C 0tl EiAiC ....
Hence r/Q(T) 0 and the rank of Q(T) < n.

We next prove the result, originally given by Kirillova and Curakova [12],
for the system (1), (2), where A(t) 0 for all [0, ), B(t) B and C(t) C,
where B and C are constant matrices.

COROLLARY 4. Suppose in the system (1), (2) that the matrix A(t) =- O.for all
[0, ), B(t) =- B, and C(t) =- C, where B and C are constant matrices. Then a

necessary and sufficient condition for complete Euclidean space controllability at
time T (k, k + 1] is that the matrix

Qn( T) [C, BkC]

have rank n.

U" T > n 1, then a necessary and sufficient condition jbr complete Euclidean
space controllability at time T is that the matrix

Qc( T) [C, ..., B c]

have rank n.

Proof. Suppose the rank of Qn(T) is less than n: then there exists a nonzero
r/ R" such that

(34) qTQn(T) tiT[c, UkC] O.

The general term in rIrQ(T)is given by

(35) tITEiAliCi,
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for =0,1,...,k and 0,1,...
and Ci, the general term becomes

T [0 0 I]r] EiAiC

(36)

n(i + 1)- 1. Upon substitution for Ei, A

0 0 0 0 0

B 0 0 0 0

0 B 0 0 0

0 0 0 B 0

I

I

I+B

I +(i- 1)B+ +
Bi-

(i- 1)!

Co

For 0, (36) becomes

Bi_l] C(37) r/ I / (i- 1)B / /
(i- 1)--

and from (34) we conclude that this term equals zero. For 1, (36) becomes

Bi_zlBC(38) r/r I +(i- 2)B+ +(i_2)
which is again zero by (34). Similarly, rlrEiAliC 0 for < < i. For i,
expansion of (36) leads to rlrBiC which is zero from (34). For > i, we see that
A;i 0" hence rlrEiAiCi 0 for > i. From the above discussion we may finally

Tconclude that r/ EiAiCi=O for /=0,1,...,n(i+ 1)-1. Hence we have
rlrQ(T) 0, and the rank of Q(T)is less than n.

For sufficiency, suppose QB(T) has rank n. We recognize from the general
term (36) and the discussion following it that EiAC BC. Hence, indicating
only the important terms, the matrix Q(T) has the form

[C, BC, B2C, B’C],

and so it must also have rank n.
Let us suppose T > n 1. If Qc(T) has rank n, then since it constitutes the

first n submatrices of Qn(T), we see that Q(T) has rank n.
Now suppose Qc has rank less than n" then there exists a nonzero r/e R"

such that

(39) rtr[C, B"-’C] O.
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Applying the Cayley-Hamilton theorem and an inductive argument, we find that

rlrB"+tC O,

for 0, 1, Hence the rank of QB(T) is also less than n.
Let us now consider the scalar differential-difference equation

n-1 n-1

(40) x")(t) + aixi)(t) + bixi)(t 1)= cu(t),
i=0 i=0

where x(t) and u(t) are scalar functions of time t, and the parameters ai, bi and c
are constant. We denote the ith derivative of x(t) by x(t). This class of system has
been discussed by Kirillova and Curakova [12] and Halanay [8], where it has
been shown that (40) is null controllable. Here we transform (40) into the form of
(1) and thus show that it is completely controllable.

X(0), X(1)Defining x x2 ,..., x, x"- 1), we can write (40) as

(41)

;l(t)-- x2(t),

.2(t) X3(t),

n-1 n-1

2.(t) aixi+ l(t) 2 bixi+ ,(t 1) + cu(t).
i=0 i=0

(42)

This equation can be written in the matrix form given in (1), where

0 0 0

I0 0 0

-ao --al --a2 an-
-bl

0

COROLLARY 5. The scalar control system (40) is completely Euclidean space
controllable for every time T > O.

Proof. The proof is an immediate consequence of (42) and Theorem 3.
We now present an algebraic characterization of the reachable set (T).
THEORFM 4. The reachable set (T) equals the range of the matrix Q(T)Qr(T),

where Q( T) is the matrix defined in Theorem 3.
Proof. By examining the proof of Theorem 3, we see that the orthogonal

complement, ;(T), of N(T) is given by

(43) I+/-(T) {ri R"ltlTQ(T) 0}.
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It is clear that (43) can be rewritten as

#+/-(T) {rl e RIQT(T)rl 0} {r/e R"IQ(T)QT(T)rl 0}
null (Q(r)r(r))= range(Q(r)Qr(r))+/-.

The last two equalities follow from the basic properties of linear transformations,
where null (Q(T)Qr( T)) denotes the null space of Q(T)Qr(T), and range (Q(T)Qr(T))
denotes the range of Q(T)Qr(T). Hence 9(T) range(Q(T)Qr(T)).

6. Pohtwise completeness. In order to be able to discuss the question of null
controllability of differential-difference equations, it is necessary to introduce the
concept of pointwise completeness. This notion has been explored more fully in
[163 and [18], so we will content ourselves with a definition of the concept and the
presentation of the main result.

Consider the system (1), (2) with the control u(t) O,

(44) c(t) A(t)x(t) + B(t)x(t 1), e (0, T],

(45) x(t) b(t), e [- 1,0].

DEFINITION 3. The system (44), (45) is said to be pointwise complete at time
T if for every x e R", there exists a 4 e C([- 1, 0]; R") such that x(T)

The solution of (44), (45) is given by the variation of parameters formula (4),
which it will be noted is a linear operator mapping from C([-1, 0] R") into R".

DEFINITION 4. Consider the system (44), (45). The pointwise reachable set
(T) is defined as

(T) x e R"I x x(T, 40, 4) e C([ 1,0] R")}.
The term x(T, )is as defined in (4). It can easily be seen that (T) is a linear
subspace of R". We now present the following results without proof.

THEOREM 5. A necessary and sufficient condition for (44) to be pointwise
complete for T is that for every nonzero q R",

(i) there exists a set S [0, 1], of nonzero measure, such that qTX(T, a)B(a)
O for

or
(ii) r/rx(T, 0) ve 0.
Proof. This is presented in [18].
COROLLARY 6. In (44), let us suppose that A(t) and B(t) equal the constant

matrices A and B, respectively. Then a necessary and sufficient condition for (44),
(45) to be pointwise complete at time T6 [k, k + 1), k 0, 1, .-., is that the matrix

"-’ e_ z(0)]M(T) [E_IF_I,..., E-IA- F_I,

have rank n, where F Zk(O)B.
Proof. This is presented in [18].
Finally, we present an algebraic characterization of the pointwise reachable

set (T).
THEOREM 6. In (44), we suppose A(t) and B(t) equal the constant matrices A

and B, respectively. The pointwise reachable set (T) equals the range of the matrix
M(T)MT(T).

Proof. This result is a consequence of Corollary 6.
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7. The null controllability of autonomous differential-difference equations. In
this section we define the notion of Euclidean space null controllability, and
obtain algebraic necessary and sufficient conditions under which differential-
difference equations are null controllable. Gabasov and Kirillova [7, pp. 70-75]
have also considered the problem of null controllability (they term it relative
controllability) of these equations. Upon examination of their proof, however, it
is apparent that they have implicitly assumed the system is pointwise complete.
Hence pointwise completeness is a necessary hypothesis of their result. It will be
subsequently shown that for systems of order n 1, 2 and 3, a necessary and
sufficient condition for null controllability is that the system be completely con-
trollable. It is intended to give a more complete discussion of this question in a
future paper.

DEFINITION 5. The system (1), (2) is said to be Euclidean space null controllable
at time T > 0 if for every b C(- 1, 0]" R"), there exists a control u(t), 0 < T,
such that x(T) 0.

From (3), which we assume is autonomous, we obtain

(46) x( r) x( r, ) X(T s)Cu(s) ds.

For null controllability, x(T)= 0 for any initial function be C([-1, 01" R)"
hence (46) becomes

(47) x( r, 4)) X(T s)Cu(s) ds,

for some admissible control u(t), 0 <= <__ T. From Definitions 2 and 4, it im-
mediately follows that the control system (1), (2) is Euclidean space null con-
trollable if and only if (T) c N(T).

THEOREM 7. Suppose that in the control system (1), (2), the matrices A(t),
B(t) and C(t) are equal to the constant matrices A, B and C, respectively. Then a
necessary and sufficient condition for it to be Euclidean space null controllable at

time T6[k,k + 1),k 0, 1, ..., is that the rank of [M(T)MT(T), Q(T)QT(T)3
equal the rank of Q(T)QT(T), where Q(T) and M(T) are as defined above.

Proof. From the discussion preceding the theorem and the results of
Theorem 4 and Theorem 6, we see that (1), (2) is null controllable if and only if
range (M(T)MT( T)) range (Q( T)QT( T)). The result then follows quite simply
from the elementary properties of matrices.

THEOREM 8. Suppose that in the control system (1), (2), the matrices A(t),
B(t) and C(t) are equal to the constant matrices A, B and C, respectively. For n 1,
2 or 3, a necessary and sufficient condition for it to be Euclidean space null con-
trollable at time T 6 [k, k + 1), k 0, 1, is that it be completely controllable at

time T.
Proof. For n or 2, it has been shown [16] that the system (1), (2) is point-

wise complete. From the discussion preceding Theorem 7, it is clear that the
proof is complete.

For the case where n 3, we note that if the system is completely con-
trollable, then (T) R3, and so (T) (T), that is, it is null controllable.
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We now prove necessity by contradiction. Suppose the system is null con-
trollable; then (T) = (T). We need to consider two cases: the first is where
(T) R3, and the. second is where @(T) R 3. In the first case, we see that
(T) R3, which implies that the system is completely controllable.

Let us now consider the case where (T) R3. Assuming ’(T) g R3, it is
clear from Theorem 2 that N(t) g R 3 for e (0, T]. This implies that the matrices
A and C form an uncontrollable pair. Without loss of generality, we will assume
that these matrices are partitioned as below:

21 A22
and

(49) C
C1

where AI, A21 A22 and C are submatrices of A and C, respectively.
Since (T) R3, there existsa nonzero vector q R3 such that q is orthog-

onal to every element x (T). From (48) and (49), it is clear that q has the
partitioned form

Now Popov [16] has shown that for any system for which n 3, the pointwise
reachable set g(T) % R3 for T > 2 if and only if (44) can be written as

(51) (t) Ax(t) + (AZ- ZA)x(t 1),

where Z rq

(52)

TeA, and q and r are nonzero vectors satisfying

qr rl

qT eA 1"2 0

oqr ea r3

Substituting (48) and (50) into the matrix of (52), we obtain the matrix

(53)

q 0

qW ea
ql eAttA

It is necessary to consider first the case where q is a 1-vector. The term
q eA is nonzero if and only if ql is nonzero. As a consequence, there exists no
vector r such that equation (52) is satisfied. This implies (T) R 3.

For the second case, ql is a 2-vector. It can be seen that for (52) to be satisfied,
it is required that

(54) qrr
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and

(55)
kqT1 eAI1A1

where rr~ [rl rz]. Now (55) holds ifand only ifqr ea andqlr ear’All are linearly
dependent. Letting qv q ea, We see that

(56) qrA
Also q qT e-A,,, and by the use of the Cayley-Hamilton theorem and (56),
we have

(57) q flT, fl O.

Hence if (55) is satisfied, we see that qT 0, which from (57) implies that
qg 0. It is clear that there exists no r such that (52) is satisfied. Consequently
(r) R.

In both cases we have a contradiction, so that (T)= R, and hence the
system is completely controllable.

8. Conelusions. Necessary and sufficient conditions for the controllability of
autonomous differential-difference equations have been presented. It has also
been shown that these results reduce to the known results of Kalman et al. [11],
and those of Kirillova and Curakova [12], for the particular equations they
treated. A general condition for null controllability has also been obtained, and
it has been shown that for first, second and third order systems, null controllability
is equivalent to complete controllability. The crux of the approach presented
here is, of course, the realization of the particularly simple form for the funda-
mental solution X(t), which enabled us to exploit the analyticity properties of
the exponential matrix.

Several extensions are possible, of which the case of multiple delays and the
case of delay in the control are the most obvious.
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THE CLOSED-LOOP TIME-OPTIMAL CONTROL. I: OPTIMALITY*

PAVOL BRUNOVSK?’

Abstract. The problem of optimality of the trajectories of a linear system with a closed-loop time-
optimal control is studied and solved in dimension 2.

1. Introduction. Consider the standard time-optimal control problem for the
system

(1) 2 Ax + u

(x e R", A constant), with control constraints u U, where U is a convex compact
polytope in R" (of possibly lower dimension), containing the origin in its relative
interior1).

Throughout this paper, we shall assume that the problem is normal, i.e., for
any two vertices w w2 of U, if (q, wl w2) 0, then does not belong to any
proper invariant subspace of A’ (A’ standing for the transpose of A, (., .) for the
scalar product), and that U contains the origin in its relative interior.

It is well known from the standard textbooks on optimal control theory (cf.,
e.g., [1 ], [7], [8]) that under our assumptions, for any point x which can be steered
to the origin, there exists a unique optimal control Ux(t), [0, T(x)], which is
piecewise constant with values only at the vertices of U, under the agreement
Ux(t) lim+Ux(S) for t[0, T(x)), and ux(T(x))= lim,rx)Ux(t) (which we shall
obey throughout this paper).

However, it is frequently desii’able to synthesize the optimal control into a
closed-loop optimal control (or, optimal feedback), i.e., to express the value of
the optimal control as a function of the instant state of the system, independently
of the initial state. The possibility of such synthesis follows from the unicity of the
open-loop optimal control; it can be verified immediately that the function
v(x) u,,(0) is such a closed-loop optimal control (cf. [1]).

For the desirability of implementing a closed-loop optimal control the
following reasons are usually given:

1. There is no need to compute the optimal control for every new initial state
separately.

2. The controller is sensitive to instantaneous perturbations: if at any instant
of the process the system is deviated from its optimal trajectory, the rest of the
process will again lead to the desired final state and will be optimal with respect
to this new initial state.

Turning from one instantaneous perturbation to more or less permanently
acting perturbations suggests a certain stability of the performance-of a system

For the relation of this representation of the time-optimal control problem to the more common
2 Ax + Bu, u e U Rm, m <= n, where U contains 0 in its interior, see [1].

624
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with a time-optimal feedback under perturbations, which, without having been
precisely defined, has commonly been intuitively felt.

The attempt to formulate and prove rigorously this stability in some form has
motivated this research; another motivation came from linear differential games,
where any realistic approach cannot avoid the use of closed-loop strategies.

Working with the mathematical model of the system under the closed-loop
optimal control

(2) 2 Ax + v(x),

one has first to answer the question, whether all the solutions of (2) are actually
optimal trajectories. The problem here is that v is in general discontinuous and
thus for (2), neither existence nor unicity of solutions follows from the standard
theory.

The answer to the converse question, whether the optimal trajectories of (1)
are solutions of (2), seems to be trivial and is answered affirmatively in [6]. This is
actually so as far as the solutions in the standard (i.e., Carath6odory) sense are
meant. However, it has been demonstrated by several authors that for differential
equations with discontinuities in the dependent (state) variable, the Carath6odory
concept of solution is inappropriate. Namely, it does not characterize all the
movements that can occur in systems modeled by such equations (the so-called
chattering or sliding regimes, in particular) and, conversely, not all Carath6odory
solutions have a physical significance.

For discontinuous differential equations, apparently the most perfect defini-
tion of solution is that of Filippov [4] One associates with the differential equation
in R"

(3) 2 f(x),

where F(x) I"la>0 f"lum=o co clf(B(x,6) N), where B(x,
set of D, a multivalued differential equation

(4) 2 F(x)

where F(x) Iq6> 0 f’),tu)-o co cl f(B(x, 6) N), where B(x,
is the Euclidean norm in R" and # is the Lebesgue measure in R". A function

q:I -, R", I an interval of R, is called a (Filippov) solution of (3) if it is a solution
of (4) on I in the usual sense (i.e., it is absolutely continuous and q(t) F(tp(t))
for a.e. I). Let us note that it can be proven that F is upper semicontinuous
with convex compact values and therefore satisfies the usual existence conditions
(cf. [2]). For the motivation of the definition, the reader is referred to [41, where
further references to sources leading to this definition can also be found.

This definition of solution is not easy to deal with. However, in this paper, we
shall need it only in special local situations:

(i) f is continuous in some neighborhood B of x0.

Then, F(xo)= {f(x0)} for x B, and the Filippov solutions through x0 locally
coincide with the Carath6odory ones.

(ii) There is a neighborhood B of Xo and a smooth submanifold of codimen-
sion one E {xls(x) O} of B ((c3s/cx)(x) 4:0 for x B) such that B S +
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U S-, where S + {xls(x)> 0}, S- {xls(x)< 0} and

(5) f(x) f f+(x) for x e S +,
f-(x) forxeS-,

f + and f- being continuous on S + U I2 and S- U 12, respectively, and satisfying

(6) xx (x), f + (x) < O, (x), f -(x) 0

for x e Z (note that the definition of f on Z is irrelevant since by the Filippov
theory, directions on any set of measure zero cannot be sensed by a system and
therefore are not counted). Geometrically this means that x0 lies on a surface of
discontinuity of f and the limit direction vectors from both sides of this surface
point to one side of the surface. In this case, the solutions of (4) through x0 coincide
locally with the solutions of 2 f- (x)(see Fig. 1).

(iii) This case is like (ii) with (6) replaced by

xx (x), f + (x < 0, xx (x), f-(x > 0 for x 12.

In this case, a continuous vector field cr on 12 is defined as follows: or(x) is the
intersection of the segment joining f +(x) and f-(x) with the tangent hyperplane
to Z at x; the solution of (4) through xo is locally that of or. This trajectory is called
the sliding or chattering trajectory (see Fig. 2).

The problem we are going to study in this paper can now be formulated as
follows:

Are all the (Filippov) solutions of the discontinuous differential equation

(2) Ax + v(x),

FIG.
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FG. 2

or, in other words, are all the solutions of the multivalued differential equation

2c Ax + V(x),

where V(x)= f-I> o f-lucre= o co cl v(B(x, 6) N), optimal trajectories of (1) and,
conversely, are all the optimal trajectories of (1) solutions of (2)? The problem of
stability of the system (2) under perturbations will be the subject of part II of this
paper.

However basic the question formulated in the last paragraph is, the answer
to it is not easy. This paper presents a complete answer in dimension 2. The
intricacy of the details of the analysis as well as the fact that the results in dimension
2 show that the systems for which the answer is negative are by no means patho-
logical or extraordinary make the results appear rather pessimistic. Moreover,
it seems that in higher dimensions the systems with nonoptimal sliding regimes
are even more common, if not typical.

2. Main results. Let C be a convex subset of R". For x C denote H(x, C)
{OeR"l(O,x) maxyc (O, y) }, Ho(x,C)= {@H(x,C)]I@I-- 1}. For OR",
denote Q(O, C) {x C lO H(x, C)}. We have Ho(x, C) =/= if and only if x
is a boundary point of C: x is called a regular boundary point of C if H0(x, C) is
a one-point set, a singular boundary point otherwise. For a given convex set
C, H, H0 and Q are upper semicontinuous set-valued functions on C, C and
respectively.

The following theorem gives an answer to the question raised in 1 for
two-dimensional systems.

THEOREM. Let n 2. Then every trajectory of (2) is optimal and every optimal
trajectory is a solution of (2)/f and only if there does not exist a vertex w of U such
that H(w, U) contains the eigenvector of -A’ corresponding to its larger eigenvalue
but does not contain the other eigenvector of -A’.

So (2) can have nonoptimal trajectories only if A has two distinct real eigen-
values (since, otherwise, either there is no eigenvector or no larger eigenvalue).
Further, (2) can have no nonoptimal solutions if dim U 1. For, in this case, U
has two vertices wl, and w2, both H(wl, U) and H(w2, U) being half-spaces and
therefore containing both eigenvectors of A’ (provided these exist).
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The rest of this section is devoted to the proof of the theorem. Note that
Lemmas 1-7 are valid in any dimension, while the remaining three are valid only
in dimension 2.

Denote by (t), >__ 0, the set of points which can be steered to the origin in
time t, i.e.(t) {.( e-sau(s)ds u measurable with values in U}. It is well known
that the sets (t) have the following properties.

Property 1. (t) are compact, strictly convex, depend continuously on (in
the Hausdorff set topology) and have a nonempty interior for > 0.

Property 2. x c3 (t)(the boundary of (t)) if and only if T(x), where
T(x) is the minimal time for steering x to 0.

Property 3. Denote E(x) -H(x, (T(x))). The open-loop optimal control
Ux(t satisfies the maximum principle

(if(t), u(t)) max (if(t), u)
uU

for any solution @(t) of the adjoint equation with initial value q(0) E(x).
In other words, if

T(x)

taUx(t dr,(7) x= -.’o e

and Cx(t) is the optimal trajectory from x, then

(e-’A’o, ux(t)) max (e-’A’O, U) for 6 [0, T(x)]
uU

and (e-’A’, Ax(t) + Ux(t)) >__ 0 is constant for all $ E(x), /=/= O.
The proofs of Properties 1-3 can be found, e.g., in [6].
Denote LI >_ 0 (t). is open in R". The following lemma is an immediate

consequence of Property 3.
LEMMA 1. For all x ,E(x) --f-]ttO,Tx)leta’H(ux(t), U).
COROLLARY 1. Going backwards in time along an optimal trajectory, E is

nonincreasing.
We shall call a boundary point of a convex set C a corner if H(x, C) has a non-

empty interior. Note that in dimension 2, every singular boundary point is a

corner. A point x e will be called a corner point if it is a corner of(T(x)).
LEMMA 2. Let C be convex and x, y C, x y. Then H(x, C)fq H(y, C)=

OH(x, C) OH(y, C).
Proof. Assume that there exists a qt 6 int H(x, C) CI H(y, C). Then, for suffi-

ciently small : > 0,

(8) + x(y x) H(x, C).

On the other hand, we have ( + x(y x), y) (, + x(y x), x) x(y x,
y x) > 0, which contradicts (9).

LEMMA 3. X 0 can be a corner point in only if ux(t is constant on [0, T(x)].
Proof. If ux(t is not constant, then there exist 0 <= < t* < t <= T(x) such

that ux(t) Wl on It1, t*) and ux(t) w2 on It*, t2). We have, by Lemma 1,

(9) E(x) c f-I eta’H(wl,U)f-I f-I ea’H(w2, U).
te[t ,t*) te[t*,t2)
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Obviously, e’A’Ho(w, U) depends continuously on t, from which it follows that

(-] era’H(w U) ("1 H(W U)
t[,t) t[,t*]

From this and (9) we obtain E(x) et*A[H(Wl, U)["] H(w2, U)]. By Lemma 2,
H(Wl, U)["] H(w2, U) g3H(Wl, U)["] g3H(w2, U) and, therefore, E(x) cannot con-
tain an interior point.

COROLLARY 2. Every corner point belongs to one of the curves

r(w) e sAw ds 0 <= <

where w is a vertex of U and z(w) max {t] f’]o<<t CA’H(w, U) :A 0}.
LEMMA 4. If t int E(x) or g2 E(x), q --J: 0 and dim U n, then (2, Ax +

v(x)) > O.
Proof. By Property 3, q, Ax + v(x)} >_ 0 for every q e E(x). Assume first

that Ax + v(x) 0. Then, (Z, Ax + v(x)) 0 and, by Property 3, also (e-
u,c(T(x))) 0 for all Z e E(x) or equivalently, (q, u,(T(x))) 0 for all
E(x). Since, by assumption, E(x) has a nonempty interior, so does e-T(x)A’E(x),
which implies u,(T(x)) 0. This, however, contradicts the bang-bang principle.

For Ax + v(x) O, there exists an > 0 such that (Ax + v(x)) E(x).
If (O, Ax + v(x)) =0, then (e(Ax+v(x)), Ax + v(x)) ]Ax + v(x)] 2.
Since Ax + v(x) O, one of these numbers would be negative, which contradicts
Property 3.

If dim U n and @ 0, e E(x), then by Property 3,

(O,Ax + v(x)) max (,Ax + u) max (e-)a’,U) > O.
ueU uU

LEMMA 5. E is upper semicontinuous.

Proof See [6, Lemma 8] for the proof.
Denote Eo(x) { e E(x) ]] 1}, W(x) co ffl q,Eol) Q(, U).
LEMMA 6. W is upper semicontinuous. W(x) is closed and V(x) W(x) for

every x l.

Proof Assume xk x, uk W(xk), uk Uo. Then there exist kl, "’", 0k,,+
EO(Xk), Ykl, Yk,n+ C= Q(I/Iki U) and 2kl ’k,n+ [0, 1] such that U

iRkYk, 2k 1. Extracting a subsequence if necessary, we may assume Ok --’ ,
Yki -- Yi, Age --’ 2i [0, ], ,i2i 1. From Lemma 5, it follows that ki Eo(x) and,
from the upper semicontinuity of Q, yi Q(/i, u). Thus uo i2iYi W(x), which
proves the upper semicontinuity of W.

From the upper semicontinuity and boundedness of Q, it follows that
I.J q,Eo(x)Q(O, U) is compact and, consequently, that W(x) is closed.

To prove the inclusion V(x) W(x), we note that u V(x) means that there
exist sequences Xki "- X, ki [0, ], 1,"-, n + l, such that Eiki and
u limki2kiV(Xki). By Property 3 and the definition of v, V(Xki Q(O, U) for all

E(Xki). Turning to a subsequence if necessary, we can choose from Eo(Xki con-
vergent subsequences {Oki} whose limits Oi, due to Lemma 5, belong to Eo(x).
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Also, we may assume that 2ki---, 2 e [0, 1], i2i and v(xki v By upper
semicontinuity of Q, vi Q(/i, u). Thus, u i2 vi co (U iQ(Oi, U)) W(x).

LFMMA 7. If Eo(xo) {o} (in dimension 2, this means that xo is not a corner
point) and maXuv(e-T(x)a’Oo, u) (= max,v(Oo,Axo + u)) > O, then T is

differentiable at Xo and (c3T/c3x)(xo) -[max,v(Oo, Axo + u)]- 1o.
Proof. This lemma is a consequence of [9, Thm. 3.2].
Thanks to normality, for a given o 4: 0, one obtains a unique trajectory

A(Oo) {6(t) =< 0} by choosing u(t)(t < 0) so as to satisfy the maximum principle
with the solution of the adjoint equation k(t)= e-’’o ((0)= o).

We have ,)(s) 6(t + s), s [0, t], and 6(t) -.[to e"-s)A’u(s) ds, u(s)
Q(e-sa’9o, U).

Denote by U+/-= {ffolmax,v(ffo,U)= 0}, F U{F(w)lw is a vertex of
U} and A LI {A(qo) o U-, o 4 0}. Note that A is empty if dim U n.

In the rest of the paper we shall assume n 2 without further notice.
LFMMA 8. The set of points of at which T is not differentiable is contained in

FUA.
Proof. If Eo(x contains more than a point, then according to Corollary 2,

x e F; max,v(e-T(x)a’0o u) 0 for {Oo} Eo(x) means x e A(e-T(x)A’00 ),
0 U-" Lemma 7 completes the proof.

For the next lemma, let us choose a coordinate system in R, and for a given
point x e R2, denote its coordinates by x l, x2.

LEMMA 9. Let w be a vertex of U, xo F(w) and e (1, 0) int E(xo) H(w, U).
Denote by 1, 2 the unit boundary vectors ofE(xo) in such a way that > 0 >
Then there exist a neighborhood B of Xo and a smooth function ? defined in some
neighborhood ofx such that

(i) B CI F(w*) for any vertex w* ,./= w of U,
(ii) B CI F(w) {(x 1, X2) BIx2 y(xl)},

(iii) F(w)CI B divides B F(w)into disjoint parts

B + {(x 1, x2) Blx > (X1)}, B- {(x 1, x2)lx2 <
(iv) for x e B + (resp. B-), , e Eo(x), 2 < 0 (resp. 2 > 0),
(v) y(xo)= x101 :2’2, where 1 >- O, >- 0 and y(x)= (1, (dy/dxl)(xl))

is the normal to F at x; 1 > 0 if dim U 2.
Proof (i) is obvious. (ii) and (iii) follow from the fact that Axo + w is tangent

to F(w) and by Lemma 4, (Axo + w) (e 1, Axo + w) > O.
If B is chosen to be a sufficiently small ball, then from x e B / it follows that

(x 1, (xl))e t(T(x)). If O e E(x), from this and the strict convexity of YI(T(x)),
we obtain 0 > (O,x- (x 1, ;(xl)))= qt2(x2- 7(xl)), which implies 2 < 0 and
thus proves (iv) for x e B +. The proof of the B- part of (iv) is similar.

Since y(x) is orthogonal to F at x, we have (y(x), Ax + w) 0, which by
Lemma 4 implies that neither y nor -y can belong to int E(x) and, in case
dim U 2, to E(x); this proves (v).

For x e R F, Eo(x) consists of one point, which we denote by qqx).
LEMMA 10. Let x Yl F. Then 0 f Ax + W(x).
Proof Either q(x)e int H(w, U) for some vertex w of U or q(x) Ho(w, U)

f3 Ho(w2, U) for two distinct vertices w1, w2 of U. In the first case, Ax + W(x)
{Ax + w} {Ax + v(x)}, which cannot be zero by Lemma 4. In the second
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case, Ax + W(x)= co {Ax + w 1, Ax + w2} and

(10) (q(x), 14; W25 0.

0eco {Ax + wl, Ax + we} would mean that there exists a 2e [0, 1] such that
Ax nt- ,wl + (1- /],)w2 0, from which and (10) we obtain (Ue(x),Ax + w,)

(q(x), (1 2)(w2 wl)) 0 and, similarly, (Ue(x),Ax + wz} 0. Since v(x)
either w or w2, (q(x), Ax + v(x) 0. From Lemma 4 it follows that in this

case, dim U 1. Choosing proper coordinates, we may assume that

(11)

t; co {w,, w:}, w, e,, w: -/e,, ,/ > 0.

By Property 3 we have

(e-Ttx)A’(X), ux(T(x))) ((x),Ax + v(x))= O.

Since ux(T(x)) is w or W2, from (9) and (10) we obtain that q(x) as well as
e-Ttx)a’(X) are nonzero multiples of e2 (0, 1). From the normality it follows
that both half-lines {q(x)[ > 0} and {:q(x)l < 0} have to be crossed trans-
versally by the solutions of the adjoint equation, each of them in one direction.
Therefore, if t is the first switching time of Ux, i.e., the first zero of
max,v(e-’a’q(x), u) (which is a zero of (e-ta’ue(x), el)) on (0, T(x)],
has to be a negative multiple of q(x). Note that t exists, because (e-Ttx)A’(X), e)
--0.

Going through the phase portraits of linear two-dimensional equations (see,
e.g., [3]) one finds that this is possible only if A has a pair of complex eigenvalues
and, therefore, the switching times are multiples of

Let 0 < t < 2 < < tp < T(x) be the switching times of u(t). Assume
without loss of generality that Ux(t w on [tp, T(x)], u(t)= w2 on [tp_ 1, tp),
etc. On every interval [ti, ti+ 1), ,(t) satisfies the linear differential equation 0 At/.
Therefore, from ux(T(x))= x(T(x))= w, we obtain A,(tp) + v(((p))= A(tp)

=+-+- W (tp) --VpW --ktpV(x(tp)), where Vp > 0,/p > 0 and + stands for
the right derivative of x. Therefore, the left derivative ](tp)= limtrtpx(t)

Ax(tp) -I- w2 -#pW wl -t- w2 trpW, trp > 0. Replacing T(x) by tp and
tp by tp_x, we obtain, as above, Ax(tp_) + V(x(tp_l))=-lp_V(x(tp_)),
/Zp_l > 0. Repeating this argument p times, we finally obtain AX + v(x)

-lay(x),/ > 0. Without loss of generality, assume v(x) wl. We then have by
(10) that for any 0 < 2 < 1, 2(Ax + wa) + (1 2)(Ax + w2)= Ax + w + (1 2)
(w2 Wl)= -#w + (1 2)(w2 w)= [-/ (1 2)(e + fl)]ea < 0, so
0co {Ax + w,Ax +

Proof of the theorem. We prove two statements.. Any solution tp(t) of (2) starting at a point xo e ( kJ A) coincides with
xo(t) for sufficiently small t, and the same is true if xo e A(Oo) F for o U -,
o =P 0 and er(X)Oo O(Xo)is interior to some H(w, U).

2. For xo

_
F(w), w a vertex of U, we show that the trajectory of (2) from Xo

coincides with xo(t) for sufficiently small if and only if w does not satisfy the
condition of the theorem.

’/’he set P of the points xo which are not taken care of in and 2 consists of
the points of F F (which is discrete in R) and of the points xo of A(Oo) F for
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$o -# 0, U+/- with W(Xo) eT(x)A’l[tO U+/- (which, due to the normality, is also
discrete in #.). Therefore, by Lemmas 8 and 10, for any trajectory q(t) of (2),
q- l(p) cannot contain an interval. If no vertex of U satisfies the conditions of the
theorem, it follows from and 2 that T(q(t)) has to be strictly decreasing in the
open intervals separating the points of q-l(p) and, therefore, no trajectory of (2)
can return to one point of P twice. As a consequence, we obtain that q-l(p) is
discrete, from which, in addition to and 2, the theorem follows immediately.
So it remains to prove and 2.

Proof of . Since - ( (.J A) is open, if xo ,-( U A), then some
neighborhood B ofxo is contained in ( U A). By Lemma 8, T is differentiable
in B. For sufficiently small t, we have q)(t) e B and, therefore, dT(q(t))/dt
(p(t))(Ap(t) + w(t)) for almost all sufficiently small t, where w(t) is measurable with
values in W(p(t)). Since (c3T/c3x)(q(t)) E(p(t)) and E(q(t)) is a half-line for q)(t) e B,
we have (cT/cx)(p(t))(Ap(t) + w(t))= max, (cT/c3x)(q(t))(Ap(t) + u)= 1. This
implies T(p(t)) T(Xo) for small t, which means that p(t)is optimal.

If Xo e k(,o) F, g’o =/= 0, and W(x) er)a’o is interior to H(w, U), then
by Lemma 5, W(x) is contained in the interior of H(w, U) for x from some neighbor-
hood B of xo, and therefore v(x) is constant in B and equal to w. Thus, by (i) in 1,
V(x) {w} for x e B, and the solution of (2) is a solution of Ax + w and,
consequently, is optimal.

Proof of 2. Let xo e F(w). Choosing suitable coordinates, we may assume
that the conditions of Lemma 9 are satisfied. Denote by Z l, 72 the unit boundary
vectors of H(w, U) in such a way that Z >= ff > 0 > ff2 > . Since, due to
normality, the vectors Z1, Z2 cannot be eigenvectors of A’, the trajectories of the
adjoint equation cross them transversally. According to whether they are crossed
inwards or outwards with respect to H(w, U), the following three cases have to be
distinguished.

Case 1. Both vectors Z1, Z2 are outside e’A’H(w, U) for all > 0 sufficiently
small.

Case 2. One of the vectors Z1, ;Z2 is contained and the other is not contained
in e’A’H(w, U) for small > 0.

Case 3. Both Z1 and Z2 are contained in etA’H(w, U) for small > 0.
We prove that in Cases and 2, the only trajectory of (2) from xo coincides

locally with the optimal trajectory, while in Case 3, the solution of (2) from xo
(which is unique in this case) always differs from the optimal trajectory.

In Case 1, Eo(x is contained in the interior of H(w, U) for x e F(w) and, by
Lemma 5, also for x from some neighborhood B of xo. Thus, by Lemma 6, V(x)

{w} {v(x)} for x e B. Thus, the trajectory of (2)from xo must coincide with, the
optimal trajectory in B.

To analyze Case 2, we assume that Z1 is outside and Z2 inside E(x) (the other
case is similar). Then, by Lemma 9, for x B-, 2 Eo(x implies ’2 > 0. Using,
in addition, Lemma 5, we obtain that g, e H(w, U), provided B is suitably restricted,
which implies v(x) w for x e B-. For x e B +, e Eo(x), we have according to
Lemma 9, q2< 0. Since (t) are strictly convex, :E(x*) where {x*}
F f-) (T(x)). By choosing B sufficiently small, x* will be arbitrarily close to xo

for x e B, and therefore E(x*) will contain el and also Z2. From this, we obtain
: H(w, U) and therefore e H(w, U), where w is the vertex adjacent to w in
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the clockwise direction. However, e H(wl, U) implies v(x) wl. Consequently,

{w} for x /3-,

V(x) {w for x /3 +

co {w, w for x I’(w) B.

Since I//2 2 is common to H(w, U) and H(Wl, U) and Pl int H(w, U), we
have by Lemma 9

where q is positive.
We prove :1 > 0. Assume 1 0. Then, y(xo)=-/21//2,/2 ::/:: 0, which

implies Ipz, Ax + w)= 0. Property 3 gives e-ta’lpz,Axo(t)+ w)--0. How-
ever, c-ta’12 is interior to E(x(t)) for > 0 sufficiently small, which contradicts
Lemma 4.

We now prove that the local situation at xo is of type (ii) in 1, from which
we obtain that the solution of (2) from xo will be, for small t, identical with the
trajectory of Ax + w, i.e., with the optimal trajectory.

Using (11) and :1 > 0, from y(x),Ax + w) 0, we obtain

(13) (y(x), Ax + w) < 0

for x xo. By continuity of y, (13) will remain true for x e B for B suitably re-
stricted. Since y(x) (cgs/cx)(x), (13) means (cs/cgx)(x), Ax + w) < O.

In Case 3, the situation in B- is analogous to that in B- which is the same as
in Case 2. Therefore, we obtain

{w2} for x /3-,

V(x) {w1} for x c B +

co {w, w2} for x F(w)f-’l B,

where w2 is the vertex adjacent in the counterclockwise direction. As in Case 2,
we obtain (y(x), Ax + w25 > O, (y(x), Ax + wl5 < 0 for x B. Thus, the situa-
tion at x0 is that of (iii) in and the solution of (2) will move along F(w) with a
speed that is obtained as the intersection of co {Ax + w1, Ax + w2} with Ax + w,
which is certainly smaller than Ax + w (otherwise, Ax + wl, Ax + w, Ax + w2

and, consequently, wl, w, w2 would have to lie on a line, which is not true).
To finish the proof of the theorem, we have only to find out when Case 3

happens. Going through the phase pictures of two-dimensional linear differential
equations (see, e.g., [3]) one finds that Case 3 occurs precisely if w satisfies the
conditions of the theorem.

Remark. It follows from the proof of the theorem that if (2) has sliding
trajectories, these are never optimal (these sliding trajectories should not be
confused with the "optimal sliding regimes" of [5], which refer to open-loop
optimal controls).

3. Examples. The following two simple examples illustrate the phenomena
of nonoptimal sliding. Further examples can be found among the examples of [1 ].
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Example 1.

fl X nc hi1,

f2 X2

__
U2,

V---{(ul, uZ)llul + lu2[ <= 1}. Denote w -(1,0), w2-(0,1), ws (-1,0),
w4 (0, 1). One finds that

(14)

w if x < 0, x2 0,

w2 if x2

v(x)
< O,

ws if x > 0, x2 0,

w4 if x2 > O.

The sliding trajectories of (2) appear on the xl-axis we have V(x,0)
co {(-x, 0) + w2, (-x 1, 0) + w4}. Thus, the sliding trajectories are solutions

of 2 -x instead of 2 -x _+ 1. Note that the sliding trajectories in this
case need an infinite time to reach the origin.

Example 2. The system is as in Example with U co {w, w2, w3, w},
where w (1, 0), w2 (1/2, 1), w3 (- 1, 0), w4 (-}, 1). Also in this case, v is
defined by (10). However, in this case the sliding trajectories satisfy the differential
equation 2 5 x which means, that on the interval [0, 1/2] of the xl-axis the
system, instead of moving towards the origin, will slide away from it, towards the
point (1/2, 0).
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METHODES DE DECOMPOSITION POUR LA MINIMISATIO N
D'UNE FONCTION SUR UN ESPACE PRODUIT*

B . MARTINETt ET A . AUSLENDER $

Abstract . Methods are studied for minimizing a convex functional on a closed convex set in a
product space, which can be considered as extensions of the Gauss–Seidel method. In this well-know n
method, a partial optimization problem must be solved at each step . This paper shows that the first
step of an optimization method as gradient method, penalization method, etc ., is in fact sufficient.

Soit H i , i = 1, 2, • • • , n, des espaces de Hilbert réels . On note le produi t
scalaire en H i par (• , • ) i et la norme correspondante par Il •Il i . On considèr e
l 'espace produit H = H7= , Hi sur lequel on définit un produit scalaire (• , •) e t
une norme Il . 11 tels que :

n

	

n

(x, y) = E ( x i, yi)i,

	

Ilxil 2 = E Ilxill ?
i=

	

i =

avec x i , yi e H i et x = (x 1 , X2, • • • , x n ) et y = (y 1, Y2, • . • , y n) . Soit des ensemble s
C i qui sont des convexes fermés de H i et C = Ri= 1 C i . Etant donnée une fonction
f à valeurs réelles définie sur H, on se propose de résoudre le problème d'opti-
misation suivant :

(P)

	

Trouver u* E C tel que f(u*) = inf (f (u), u e C) = f * .

On suppose que :
(i) La fonction f est fortement convexe, c'est-à-dire qu'il existe K > 0 te l

que pour tout X 1 , x 2 E H et pour tout 2 E [0, 1] on ait :

f(2x1 + (1 — 2)x 2 )

	

(x1)+( 1 --2)f(x2)—K2(1 - 2 )(( x 1 —x211 2 .

(ii) La dérivée f ' de f existe et vérifie une condition de Lipschitz sur tou t
borné de H, c'est-à-dire que pour tout borné B de H il existe une constant M > 0
telle que :

Il f'(u) — f '(v) Il

	

M 11 u — vil pour tout u, v e B .

Ces hypothéses permettent de montrer que (P) admet une solution uniqu e
notée u* .

En fait, on peut faire des hypothèses moins sévères, en particulier, suppose r
que la fonction f est fortement convexe séparément par rapport à chaque variabl e
(cf. Martinet et Auslender [11]) .

On emploie très souvent pour résoudre de façon approchée le problèm e
(P) des méthodes de décomposition qui ont été étudiées entre autres par Aus-
lender [1], Cea [2], Martinet [8], Miellou [12], Rheinboldt et Ortega [12] ,

* Received by the editors December 30, 1971, and in revised form December 12, 1972 .
j. U .E .R. de Mathématiques, Université de Provence, 13-Marseille, France .
$ Département de Mathématiques Appliquées, Clermont-Ferrand, Boite Postale n° 45, 63-Aubiere,

France .
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Schechter [14] . Certaines de ces méthodes généralisent le procédé bien connu d e
Gauss-Seidel [4] (méthodes de relaxation) .

Les procédés originaux que nous présentons dans cet article permettent d e
construire à partir d'un élément u° de H une suite {um } d 'éléments de H qui
convergent vers la solution unique u* du problème (P) . On note :

u"t = ( u 11, u2, . . . , un, où ul' e H i ,

et pour tout i = 1, 2, • • • , n :

nt
( v i)

	

f (ul

	

1 ,

	

, u712-11 , voo u i
m
+ ,

	

, m
i

	

—

	

nt +1 , u
2
ni+

	

. . .

	

1
. .

	

un )

((pl m désigne alors la dérivée de (el)
Dans ces procédés, . on associe à la méthode de relaxation une certain e

méthode d ' optimisation M de la façon suivante .
On passe de u m à u"1+ en déterminant successivement pour i = 1, 2, • • • , n

l'élément um+ à partir de um en effectuant une seule itération de la méthode M
appliquée au problème :

(Pim)

	

min ((pt ( u i)l ui e C i )

Ceci présente souvent un grand avantage pratique par rapport à la méthod e
de relaxation habituelle où les problèmes (Pin) sont résolus exactement .

Au lieu de la relaxation, on pourrait de la même façon envisager des méthode s
de décomposition en parallèle (cf . Auslender [1]) . On peut montrer (cf. Martine t
et Auslender [11]) q u 'on peut ainsi associer à la relaxation la plupart des méthode s
classiques d'optimisation . Pour alléger ce texte, nous n'étudions ici que deu x
exemples de tels procédés où on associe à la relaxation respectivement un e
méthode de gradient dans le cas sans contrainte et une méthode de pénalit é
extérieure .

1 . 1 ère méthode : Méthode de gradient associée à la relaxation dans le ca s
sans contrainte . On suppose ici que Ci = Hi , i = 1, • • • , n .

Au cours des itérations, on passe de um à u"t+ 1 en faisant successivemen t
pour i = 1, 2, • • • , n :

let si (pim (um) = 0 ,
uim+1 =

um — p 1 (p tim(uit ) sinon ,

ou si l'on note ll/m(p) = (pm(um — p(pr (um)) le nombre pm est choisi de sorte qu e
p in. ' > 0 et /im(pm) = inf (/im(p) f p > 0) . On peut alors montrer le résultat suivan t
qui justifie l'intérêt du procédé .

THÉORÈME . La suite {f(u')} est décroissante et la suite {u m } converge forte -
ment vers la solution u* de (P) .

Démonstration. On a, par construction, pour tout m et tout i = 1, • • • , n :

f ( u ni + 1) C (p m( ul t + 1) ~
p71(u71)

	

f(
unt ) .

Donc, puisque la suite {f(um)} est bornée inférieurement, on a pour tou t
i= 1,•••,n :

(1 .1)

	

lim (plt(ull+ 1) — (P'i'(utit) = O .
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D'autre part, puisque la fonction f est fortement convexe, l ' ensembl e
So = {u e HI f (u) f (uo)} est borné. Comme u m e So pour tout m, la suite {um }

est bornée . On sait de plus, puisque f fortement convexe, que pour tout i, on a :

(1 .2)

	

(pi1(um) - (pi1(um+ 1)

	

((pim(u
z

1+ 1) , um - u m+ 1) 1 + Kll ul' + 1

Par définition, de u m+ 1, on a pour tout i :

(1 .3)

	

( (p lm( u m+ 1),
u~1 — ur+ 1 )i = 0 .

Les relations (1 .1)-(1 .3) entraînent que :

(1 .4)

	

lim ll u m + 1 —
uti' II i = 0 pour tout i .

m-4 0o

Comme f' vérifie une condition de Lipschitz sur So on tire de (1 .3) et (1 .4) que :

(1 .5)

	

lim p' 119 n1(uT) I l 2 = o .
m-' 00

Or :

II
(pi m( u ') — ( m (ui1 +

1) II < Mpg 1 .

De plus, par définition de um + 1 :

((in1(uin),
(pm(ul1+

1))i = O ,

il vient alors :

Il Ço tim(um)il

	

Mp m .

D'où on tire de (1 .5) que pour tout i :

(1 .6)

	

lim (e(ui') = 0 .
ni -, o0

Et grâce à (1 .4) :

(1 .7)

	

lim II .f '(u
m)

II
= 0

n1 —► 00

on a, grâce à la convexité de f :

f (u*) > f (u
n1

) + ( .f'(um), um
— u*) .

D'où on tire de (1 .7) et du fait que la suite {un1 } est bornée que :

lim f (u m ) = f (u*) .
n1-+ o0

Comme f est fortement convexe, on a :

*
f (u*) f

u + um)
- -(f (u* ) + f (uni)) - - Il um

	

u* I1 2 ,2

	

2

	

4

donc :

1.~m —1.1* II 2

	

?(f (II

	

un') — f(u* )) ._ K

D'où il vient de (1 .8) que :
lim llu nl _ u *II =O .

ni -~ ao

u in Il 2 .

(1 .8)
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Remarque . D'autres choix de directions et de longueur de déplacement pou r
le passage de um à ui'+

1 peuvent être choisis . En particulier de formalisme généra l
des méthodes de descente adopté par Cea en [2] peut être associé à la méthod e
de relaxation (cf. [11]) . Signalons par exemple le cas où H i = ER et où on détermine
la longueur de déplacement par un procédé de tabulation par pas (voir Cea [2 ,
pp . 83-90]) . On montre alors que la méthode de relaxation converge encore si o n
remplace la minimisation sur chaque composante par un processus très grossie r
d ' approximation de ce minimum .

2 . 2ème méthode : Méthode de pénalisation extérieure associée à la relaxation .
Les ensembles C i sont définis par :

C i = { uED 1 Ig(u) < 01,

	

i = 1, 2, . . . , n ,

où D i est une partie convexe fermée bornée de H i , g i une fonctionnellé défini e
sur H i convexe et continue, l'ensemble C i est "défini correctement " c ' est-à-dir e
que pour toute suite { u r} dans D i telle que

lim sup g i (u i l) < 0 ,

alors on a, si d(ui', C i ) désigne la distance de

	

à C i :

lim d(ui', C i ) = 0 .

C'est le cas, si compte-tenu des hypothèses précédentes, on suppose de plus qu e
D i est compact ou bien qu'il existe z i e D i tel que :

gi(zi) < O . '

On suppose de plus que a = sup (f (x)Ix e D) est fini.
On se donne n suites de réels positifs Ki', i = 1, • • • , n, tels que lim n,, Kl '

= + oo et des applications l i de l dans R + décroissantes convexes dérivables e t
telles que :

li(Z' ) = lz(2) = 0 si i < 0 ,

li(2) > 0

	

si i > 0

(exemple : li( T) _ ('c +
)2) .

Posons Cm( v i) = q, '(v i) + K i 'li( g i(v i) )

Algorithme . On construit la suite {u n' } de la façon suivante : à l ' itération m ,
on obtient successivement pour i = 1, 2, • • • , n l'élément 41+1 tel que :

m+1 E D . .
► n m+1 = min (4' i

m
Ui

	

Y' i ( u i

	

)

	

( u i)I ui e D i)

On a alors le théorème suivant .
THÉORÈME : La suite {u n'} converge fortement vers la solution u* de (P) .
Démonstration .
1 . Montrons d'abord que la suite {un '} ainsi construite vérifie les deux con-

ditions suivantes :
(i)

(2 .1)

	

lim d(ur, C i) = 0 ,

1 Dans le cas où D . n'est pas compact (pratiquement si H i n ' est pas de dimension finie), on re -
trouve la condition standard de qualification .
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(ii) Pour toute suite {v'}, vi' e C i on a :

lim inf ((p i (~

n1u

i
m +1

), vin1

	

uin1
+1

) i > 0 .
n1-+ 00

(a) Par construction, on a :

`/ l 1(ui
i + 1)

	

(p l1 ( vi) pour tout v i e C i

li( g i ( v i)) = 0 si v i e C i .
Donc :

0

	

K"i 'li(gi( i
1 + 1

))

	

n1(v1) — dp im( i
u m + 1) pour tout v i e C i ,un

	

~ e
et si on pose : fi = inf (f (x)Ix e D) > — oo, D = H7= i D i , il vient :

05_
Ki1li(gi(ui1+

1)) < a — (3 .

Les propriétés de Ki' et de l i entraînent que :

lira sup gi(ui1+ 1 ) c 0
111 --~ ap

et comme C i est défini correctement :

lim d(ui' , C i ) = 0
n1- 00

et la relation (2 .1) est démontrée .
(b) D'après la proposition 2 (Lescarret [6]) l ' application v i --* l i (g(v i )) es t

convexe et sous dérivable et si ôg i (ui) désigne le sous différentiel de g i au poin t
u i , on a, d 'après cette proposition, la formule :

0 ( l i( g i( v i)) = l t(g i( v i))U( g i( v i) )

Par définition de ui' + 1 , on a alors :

((pin'(ui1+ 1) , vil - u jn+ 1)i +
Ki1l i(gi( u i'+ 1))(di',

	

- uit+
1)i

	

0
(2 .3)

pour tout vi' E D i ,

où

	

e agi(ul'+ 1) (sous différentiel de g i au point ui1+ 1 non vide puisque g i es t
continue) .

Or,

	

Lpour tout v "' e C 1 , pour tout d'in e Ogl (v"1

	

i ')et pour tout dn' e Ogl(u "'+ 1 ), on
a, grâce à la convexité de la fonction l i( g i(• )) :

0 = li( g i( vin )) (dm, vm -
u m +

1 )i

	

li(gi(um + 'Me vm - um +1 ) i .

Ce qui, compte-tenu de (2.3) montre (2 .2) .
2 . Montrons alors le lemme suivant qui a son intérêt propre et qui perme t

de conclure .
LEMME . Si C est borné, toute suite {u"'} vérifiant les relations (2 .1) et (2 .2) es t

minimisante .
Démonstration . Remarquons d'abord que grâce à (2 .2) et à la convexité d e

spi' on a si l'on note Pc i (ui) la projection sur C i de u i :

(2 .1')

	

lim sup ( 1(ui 1 + 1
) — (pi'(pc (ul')) _< 0 pour tout i .

car :

nt - 00
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De la relation (2.1) il vient que la suite {um } est bornée . On déduit de (2 .1) ,
de (2.1') et de l'uniforme continuité de (pi' que :

"Il existe une suite {ri m } de réels positifs tels que lim a,, n n, = 0 et que :

gpl1(u'i'+
1) <

(p 1 u ") +

	

pour tout m,

	

l = 1, . . . , n .

Posons :

Y'
11 =

`l' l '( up
1) — `i' 'i 1(ul 1 ) ,

(2 .2')
A n, = {ilt~ill > 0}, B,, = {il i'

	

0} .

Par construction et d'après (2 .2') on a :

(2 .3')

	

f (um
+ 1 ) - f(um) = E 1077 1 - E I /ti 1 I

1 EEim

	

iEBm

(2 .4 ' )

	

ll~J "I <_ ri n , pour tout i e A n, ,

(2 .5 ' )

	

l'/' 'l Ç (n

	

1)n n, + f (un') — f(uni + 1) pour tout i e B n, .

Soit S = {mi f (u m ) f (um+ 1)} . Nous distinguerons successivement le cas où le
cardinal de S est infini et celui où il est fini .

Le cardinal de S est infini.

(a) Pour tout m e S, on a d'après (2 .5') et (2 .4) :

(2 .6')

	

I~' I ç ( n — 1 )rlm

Dans ce cas, l'ensemble A n , ne peut être vide alors que B n, peut l'être . De (2 .6' )
on tire que :

(2 .7')

	

lim iii' = 0 pour tout 1 .
m —► 00
ni ES

Comme f est fortement convexe, on a :

`l'1 1(u 1 1) > `i'l i(u i 1+ 1) + ( `i'i m( u l1+ 1) , u i1 — ui1+ 1
)i + K(II ui'+ 1 —

ui'll)2,

	

K > 0 ,

donc, si on pose : Cr = ( m(um + 1), um — Pc i (um)) i , on a, compte-tenu de (2.1) "e t
de (2.2) :

—mE
m+ C m +K(Il um +l —umll) ,

la suite {E m } vérifiant lim inf E n,

	

O . D'où il vient, grâce à (2.1) et (2 .7') que :

lim II ui1 +
i —

uit ll = 0 .
ni — «,me s

On en déduit, grâce à (2 .2) et au fait la fonctionnelle rpti"' est uniformément con-
tinue que :

lim inf (f'(um ), u — u m ) > 0 pour tout u e C .
m— .
me s

Par convexité de f, cela entraîne que :

(2 .8 ' )

	

f (u*) > lim sup f(uni )
m —► oo
mes
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Soit û une valeur d 'adhérence faible de la suite {u m }, m e S, il en existe au moins
une. D'après (2 .1) û e C et comme f est faiblement semi-continue inférieurement ,
on a :

f (u*) < f (û) <_ lim inff(un

)ni-i 00

ni E S

D'où on tire, grâce à (2 .8') que :

(2 .9')

	

lim f (uni) = f (u*) .
111 ~ 00
nie s

(b) Si le complémentaire de S est vide ou de cardinal fini le théorème es t
démontré . Dans le cas contraire, à tout m S, on fait correspondre les nombre s
k(m) et j(m) comme suit :

k(m) E S, k(m) = min (lll > m, l e S) ,

j(m) E S, j(m) = max (ll l < m, l E S) .

Par définition, on aura :

f(uni) > f(uk(m))
,

tf(un) ~ f(u.%( ni )) + n

Comme, grâce à (2 .9') on a :

lim f (uk(ni))
= lim f (u'(ni)) = f*

nl -~ 00

	

m--+ o p

on en déduit que :

lim f (uni) = f*
ni –► 00

Le cardinal de S est fini . Dans ce cas, il existe mo tel que pour tout m > mo ,
on ait :

f (uni
+ 1) < f(un) .

Cela entraîne, puisque la suite f (u ni ) est bornée inférieurement (grâce à (2 .1)) que :

lim (f
(uni + 1) — f(u m )) = 0 .

m-400

Les relations (2 .4') et (2 .5') entraînent que :

lim te = 0 .
m –► 00

La fin de la démonstration se fait comme dans la partie (a) de le cas où le cardina l
de S est infini .

Remarque. Le cas où les ensembles C i sont définis par plusieurs contraintes
est analogue . Nous ne l'avons pas introduit ici car il n'apporte rien de plus à
l'idée de ces procédés . Dans ce cas, il est possible aussi de ne faire qu'une pénal-
isation partielle des contraintes (cf. Martinet [9]) .

Remarque. Comme nous l'avons signalé dans l ' introduction, on peut justifie r
sous des hypothèses convenables des procédés où on associe à la relaxation la
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plupart des méthodes d 'optimisation courantes :
(a) Méthodes de descente :
	 de type Frank et Wolfe (cf. Cea [2]) ,
	 de type gradient projeté (cf. Levitin et Polyak [7]) ,
	 de type linéarisation (cf. Cea [2] et Zoutendijk [17]) .

(b) Autres méthodes :
	 méthodes de coupe ("cut-off methods ") (cf. Levitin et Polyak [7]) ,
	 méthodes de régularisation (cf. Tikhonov [15a, b], Martinet [10]) .
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AN INTERIOR PENALTY METHOD FOR MINIMAX
PROBLEMS WITH CONSTRAINTS*

HITOSHI SASAI

Abstract. In this paper the interior penalty function method is applied to the minimax problems.
Fiacco and McCormick’s penalty technique is used in order to solve the minimax problems with

side constraints.
As a result, the constrained minimax problem is reduced to the one solving a sequence of un-

constrained approximation problems and a new computational algorithm is established.

1. Introduction. The application of penalty methods to mathematical pro-
gramming problems subject to side constraints is currently of much interest.

Carroll [1] proposed an interior penalty method which transforms a con-
strained minimization problem into a sequence of unconstrained minimization
problems.

Further development of this study has been made by A. V. Fiacco and G. P.
McCormick [2], [3], and their results are called Sequential Unconstrained
Minimization Technique (SUMT).

These are all concerned with minimization problems and do not deal with
minimax problems with side constraints.

A. Auslender [4] treated an exterior penalty method for minimax problems
in Hilbert space.

In this paper we apply Fiacco and McCormick’s interior penalty technique
to minimax problems in Banach space. As a result, a minimax problem with
constraints is replaced by a sequence of unconstrained minimax problems and a
new computational algorithm is established.

2. Preliminaries. Let f and q/be real reflexive Banach spaces, and f’ and
q/’ be their dual spaces. We denote the canonical bilinear forms on f f’ and

’ by (x, x’) and (u, u’), respectively, i.e., the values of the linear functionals
x’ f’ and u’ q/" on the elements x f and u 6 //, respectively.

We denote by X and U arbitrary nonempty sets of Y" and /, respectively.
Now let f(x, u) be a function from X U to R 1,3 {-} 1,3 {+ }, where R
denotes the real line.

DEFINITION 1. If supv infx f(x, u) infx supv f(x, u), is called the saddle
value off(x, u) with respect to maximizing over U and minimizing over X.

DEFINITION 2. If (, ) X U and

f(2, u) <= f(2, fi) <= f(x, f) V x e X and V u e U,

(, ) is called the saddle point.
DEFINITION 3. If f(x, U) is a convex function of x X for each u U and a

concave function of u 6 U for each x 6 X, we say that f(x, u) is a convex-concave
function.

Remark. If (:, fi)is a saddle point, f(:, fi)is the saddle value.
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DEFINITION 4. For f(x, u) defined on Y" ’ and taking values in R U )
U {+ ), we write

domf {x, u’[f(x, u) < oo}.
dom fis called the effective domain off(x, u) [5]. We denote the projections

of dom f on f and q/by domer fand domou f, respectively.
DEFINITION 5. Let f(x) be a function from f to R U {-oo} U {+ c}. If

f(x) is weakly (strongly) lower semicontinuous, we say that f(x) is weakly
(strongly) closed.

3. Statement of problem. , and ’ are real reflexive Banach spaces. Let
X1 and U be convex subsets of f and /, which are strongly closed and contain
interior points.

The following conditions are imposed in our discussions.
(C1):f(x,u), X X U --+ R 1, is a convex-concave function and strongly

continuous in each variable.
(C2):gi(x), X --+ R and hi(u), U1 R are concave functions and strongly

continuous, where 1, 2, m and j 1, 2 ..., n.
(C3)’X and U are bounded sets, and X U b, where

X {x X "gi(x) > O, 1,..., m},
X {xXx’gi(x) > O,i 1,...,m},
U {uUl"hi(u)>= O,j= 1,...,n},
U {u6Ul"hi(u) > O,j= 1,...,n}.

Remark. If (C1) and (C2) are satisfied, it follows that X X and U U,
where X and U denote the strong closures of X and U, respectively.

Remark. The following fact should be noted" if a real-valued convex function
on a Banach space is weakly lower semicontinuous, then it is strongly continuous

E6.
The minimax problem under consideration is the followin one.
Original problem (0). Find a saddle point of f(x, u) with respect to X x U,

i.e., a point (2, fi) such that"

f(Pc, u) <= f(Pc, ) <__ f(x, ),

for any x X and u e U.
An attempt to solve Problem (O) by applying a penalty method results in

the following sequence of problems.
Approximation problem (A). Find a saddle point of p(x, u, rk) with respect to

X x U for each r > 0, i.e., a point (xk, uk) X x U such that

(2) p(xk, u, rk) <= p(xk, uk, rk) <- p(x, uk, rk)

for every x X and u e U, where

rk rkp(x, u, rk) f(x, u) +
g(x) hi(u)’

and r is a strictly monotonic decreasing sequence and rk --* 0 as k --, oe.



AN INTERIOR PENALTY METHOD 645

Problem (A) is an unconstrained minimax problem for each rk. By generating
a sequence of solutions of Problem (A), consisting of interior points of the con-
strained set, which converges to a solution of Problem (O), we can obtain a new
computational algorithm for solving a minimax problem subject to side con-
straints.

In the following we discuss the properties of Problem (A) and the con-
vergency conditions of Problem (A) relative to Problem (O).

4. Existence of solutions of Problem (A). We modify p(x, u, rk) as follows:

p(x,u, rk) forxXanduU,
(3) p*(x,u, rk)= +or forxqXandueU,

-oe for uq U.
This modification is called a convex-concave extension 7]. We should note

that domp* X U, domrp* X and domoup* U.
We first prove the following lemmas.
LEMMA 1. Let the conditions (C1) and (C2) be satisfied. Then p*(x, u,rk) is

convex-concave. Moreover p*(x, u, rk) is weakly closed.for every fixed u dom u P*
and -p*(x, u, rk) is weakly closed for every fixed x domr p*.

Proof. By the definition (3), it is clear that p* is convex-concave.
Now let us show the second part of the lemma. We may demonstrate that

the sets M {x f:p*(x, Uo, rk) _--< } and N {u’:-p*(xo, u, rk) =< } are
weakly closed for any fixed Xo domr p*, Uo domou p* and R 1.

M
_
X and N

___
U, because domr p* X and dom0u p* U. On the

other hand, p*(x, uo, rk) and -p*(xo, u, rk) are strongly continuous on X and U
by (C1) and (C2). Hence, M and N are strongly closed, because X1 and U1 are
strongly closed.

Since M and N are convex sets by (C1) and (C2), we can conclude that M
and N are weakly closed.

LEMMA 2. Let the conditions (C1), (C2) and (C3) be satisfied. If ()2, fi) is a
saddle point of p*(x, u, rk) with respect to Y" ’, it is also a saddle point of
p(x, u, rk) with respect to X U.

Proof. By the definition of p* and (C3),

(4) inf p*(x, u, rk) ixnof p*(x, u, rk) < + o for any u ’,

(5) sup p*(x, u, rk) sup p*(x, U, rk) > oe for any x Y’.
q/ u

The assumption means that

(6) sup p*(2, u, rk) <= p*(2, , rk) <= inf p*(x, f, rk).

(7)
By (4), (5) and (6), we have

oe < sup p*(2, u, rk) <= p*(2, , rk) <= infp*(x, , rk) < + oe.
U X

Now we can prove (2, fi) X x U. If )2 q X, supvo p*(2, u, rk) + oC and
hence infxo p*(x, , rk) >__ + oe. If fi U, infxo p*(x, , rk) oC and hence
supvo p*(2, u, rk) <= . These contradict (7) and hence ()2, fi) X x U.
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Since p*(x, u, rk) p(x, U, rk) on X x U, we have

su p(2c, u, rk) <__ p(2, ft, rk) <= inf p(x, f, rk).
u x

This completes the proof.
We use Moreau’s theorem [5] to prove the existence of solutions of Problem

(A). Concerning other theorems on the existence of saddle points, see [7], [8].
THEOREM (Moreau). Suppose that the following conditions are satisfied:

(i) f(x, u) is a convex-concavefunctionfromf x toR U {-o} U {+o}
and f(x, u)is weakly closed for every fixed u e domouf and f(x, u)is weakly
closed for every fixed x domr f;

(ii) there exist xo domrf and a number ao < supouf(xo,u) such that
{u f(xo, u) ao} is weakly compact;

(iii) there exist uodomouf and a number bo > infrf(x, uo) such that
{x:f(x, Uo) __< bo} is weakly compact. Then f(x, u) has a saddle point with respect
tof x.

If we apply Moreau’s theorem to p*(x, u, rk), we have the following theorem.
THEOREM 1. Let the conditions (C1), (C2) and (C3) be satisfied. Then there

exists a saddle point of p(x, u, rk) with respect to X x U for every rk.
Proof. By Lemma 2, we may show that there exists a saddle point ofp*(x, u, rk)

with respect to Y" x k’.
Now we apply Moreau’s theorem to p*(x, U, rk). By Lemma 1, condition (i)

is satisfied.
Let us show that conditions (ii) and (iii) are satisfied. By (C3), there exists

(Xo, Uo) X x U. We put

ao f(xo, Uo) rk bo f(xo, Uo) +h(uo)’ g(xo)

Then we have

ao f(xo, Uo)
hj(uo)

< p*(xo, uo, rk) <= supe P*(Xo, U, rk),

rkbo f(xo, Uo) + > p*(xo, Uo, rk) > infp*(x, Uo, rk).g(xo) erT

We define M and N as follows:

M {u:p*(xo, U, rk) >= ao}, N {x p*(x, Uo, rk) <= bo}.

Since M c_ U, N _
X and X, U are bounded by (C3), M and N are bounded.

On the other hand we can conclude that M and N are convex and strongly closed
by the same technique as that used in the proof of Lemma 1. Thus it follows
that M and N are weakly compact, and hence (ii) and (iii) are satisfied.

Consequently there exists a saddle point of p(x, u, rk) with respect to X x U
for each rk.

In the following we denote the saddle point of Problem (A) for each r by
(x, u).
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COROLLARY. Iff(x, u), gi(x) and hj(u) are Frfchet differentiable in each variable,
respectively, then

Vp(x, Uk, rk)l,=, 0, V.p(Xk, U, rk)l,=, 0,

where V and V are the gradients of p(x, u, rk) in x and u, respectively.
Proof. This corollary is clear because (Xk, Uk) X U and X, U are in-

terior sets of X, U, respectively.
5. Condition of convergence. Since X and U are weakly compact, there

exists a saddle point (and hence the saddle value) for Problem (O) from Moreau’s
theorem by extending f as in (3), but with X and U instead of X and U.

Now we put as follows:

(8) inf sup f(x, u) sup inff(x, u) 6".
X U U X

THEOREM 2. Let the conditions (C1), (C2) and (C3) be satisfied, and (xk, Uk) be
a saddle point of Problem (A)for each rk. Then,

P(Xk, Uk, rk) 6" and f(Xk, Uk) 6".

Proof. By (8), X X and U U, there exist XoX and Uo e U such
that for any e > 0,

(9) 6" + e >= sup f(xo, u), 6" <= inff(x, Uo).
u x

(10)

Since (xk, uk) is a saddle point,

rk rkf(xk, u) + gi(Xk hi(u)
rk<= p(xk, uk, rk) f(xk, uk) +

gi(Xk)

for any x X and u e U. Hence,

inff(x, Uo)
r

x h(Uo)

rk< f(x, uk) +
-i-" gi(x)

rk
hj(Uk)
r

(11)

<- f(Xk, UO) Z hj(uo)

rk< f(xk, Uo) +
g(x)

<= p(x, u, r)

rk<= f(xo, uk) +
gi(xo)

rk<= f(xo, uk) +
gi(Xo)5-

rk
hi(

rk< sup f(xo, u) +
V -" gi(Xo)
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Thus by (9) and (Xo, Uo) X U, for sufficiently large k,

6" <= p(x,u,r) <__ 6" + e + e.

Consequently we have

p(xk, uk, rk) - 6".

Again by (10) the following inequalities are clear"

(12) f(Xk, Uo) rk < f(Xk, Uk) (Uk) f(xk, Uk),
hj(uo)=

rk rk

The left-hand side of (12) is greater than 3" 2e and the left-hand side of (13)
is smaller than 6" + 2e by the inequality (11). Therefore we have

f(x, u) *.

Remark. It should be easy to see the following results using (12) and (13)’

(14) " r i r0 and 0.
g(x) h(u)

THEOREM 3. Let the conditions (C), (C2) and (C) be satisfied and (x, u) be
a saddle point of Problem (A)jbr each r. Then the sequence {(x, u)} contains at
least one cluster point (in the sequence of weak topology)and every cluster point
(, ) of {(x, u)} is a saddle point of Problem (0).

Proof. X and U are bounded sets of reflexive Banach space by (Ca) and
since (x, u)e Xo, there exist subsequences {x} and {%} converging weakly to
some 2 X and fie U. We write k for kj.

We first prove that

( 5) f(x, u’) 6" f(x’, u)

for any u’ e U and x’ e X.
We have the following inequalities because -f(x, u) is weakly lower semi-

continuous in u, r/gi(x’) 0 and r/hj(u) 0 (by (14))"

3" lim p(x, u, r) lim p(x’, u, r)

limf(x’, u)+ lim + lim -f(x’, .
On the other hand, by a similar technique,

* lim p(x, u, r) f(2, u’),

because f(x, u) is weakly lower semicontinuous in x.
We prove secondly that

f(, a ,.
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Since X= X and U U, there exist sequences {x,}
___
X and {u,} _c_ U

which converge strongly to )2 and a, respectively. Hence by (15) we have

f(2, u,) <= b* <= f(xn, ft).

Since f(x, u) is strongly continuous in each variable, it follows that

(16) c5" f(2, fi).

Last we prove (2, fi) is a saddle point of Problem (O). By (15) and (16) we have

.f(2, u’) <= f(2c, fi) <__ f(x’, fi)

for any x’ X and u’e U. But again by strong continuity off(x, u), X= X
and U U, we can conclude that

.f(2, u) <= f(c, f) <_ f(x, fi)

for any x X and u U.
COROLLARY. Let the conditions stated in Theorem 3 be satisfied. If a saddle

point of Problem (0)denoted by (2, ) is unique, {Xk} and {uk} converge weakly to

2 and ft, respectively.
Proof. This corollary is clear because any subsequence of {(xk, uk) has also

its subsequence converging weakly to (2, ).
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AN EXTENSION OF AN OPTIMAL CONTROL
SUFFICIENCY THEORY*

GERALD M. ARMSTRONG,

Abstract. An extension is given for a general sufficiency theory in time-optimal control which
was developed by L. C. Young. The extension enables sufficient conditions to be applied to a wider
class of trajectories than in the original theory, including a class of trajectories with initial Lagrange
multiplier unity.

L. C. Young has developed a very general sufficiency theory for time-optimal
control problems [1], I2]. The purpose of this paper is to extend this theory to
include a wider class of trajectories than in his original work.

1. We consider an autonomous, time-optimal control problem with a given
set as target. The letter will denote time, x will be a point in n-dimensional space,
and u will be the control value. Here u may be a point in some elementary figure,
a chattering control, or even some sort of label distinguishing one function of
(t, x) from another.

The function x(t) will be assumed absolutely continuous, and u(t) will be
arbitrary, with points or labels as values. We .suppose that g(x, u) is a smooth
function of x, with values in n-space. We call the pair x(t), u(t), which are defined
for 0, an admissible trajectory if they satisfy almost everywhere in the
differential equation

.(t) g(x(t), u(t)),

where we suppose that the terminal value x(0) lies on the target. If is the initial
time on a trajectory, < 0, our problem is to determine for a given value of
X(tl) the smallest value of -tl in the class of admissible trajectories.

2. We restrict the class of admissible trajectories by requiring them to satisfy
a strengthened form of Pontryagin’s maximum principle;namely, that along a
trajectory x(t) with control u(t), there exists a conjugate vector function y(t),
absolutely continuous in t, which never vanishes, and satisfies

A. (t) -y(t)gx(X(t), u(t)) for almost all t,
B. y(t)g(x(t), u) =< for all u, with equality when u u(t),
C. y(0) is normal to the target at the point x(0).

This differs from the maximum principle in that for inequality B, the right-hand
side is unity instead of some nonnegative quantity which is constant in t. This is
equivalent to requiring that the initial Lagrange multiplier be unity, and is an
unpleasant restriction. Our main result is to show how the theory can be ex-
tended to include a class of trajectories not satisfying this restriction.

Trajectories satisfying A, B and C are called lines of flight. The corresponding
trios x(t), y(t), u(t) will be called canonical lines of flight. Arcs of these will be
called arcs, or canonical arcs, of flight. We also assume the synchronization con-
dition for lines of flight if two lines, or arcs of flight meet at a point x, they do so
at the same time t.

* Received by the editors April 12, 1973.

" Department of Mathematics, Brigham Young University, Provo, Utah 84601. This paper
contains results from the author’s thesis, University of Wisconsin, 1971.
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3. We next suppose that the arcs of flights are grouped into families de-
pending on some Euclidean parameter a. Similarly, the conjugate variable y(t)
depends on an additional parameter p. The hypotheses concerning the sets of a
and p are given elsewhere (see [1, p. 267]).

The families of arcs using these parameters are defined by functions

x(t, a), y(t, a, p), u(t, a), t-(a)<= <= +(a),
where : -. The functions t-, + satisfy - < t-(a) < +(a) =< 0 as well as
other hypotheses (see [1, p. 2673).

We denote by S-, S, S + and by S*-, S*, S* + the sets of (t, a) and (t, a, p) for
which is subject to the corresponding conditions - < t-(a)= t, or t-(a)
< < t+(a), or t+(a). The images under the function x(t, a) of S-, S, S +

will be written E-, E, E + and the images under the pair x(t, a), y(t, a, p) of S*-,
S*, S* + will be written E*-, E*, E* +.

Subject to certain assumptions, [1, p. 2683, the family E of functions of
given by x(t, a), u(t, a), t-(a) =< =< t+(a), will be termed a spray of flights. With
the inclusion of y(t, a, p), we obtain a canonical spray of flights. The sets E-, E,
E +, or E*-, E*, E*+ will be termed its source, its flight corridor, its destination.
The arcs themselves will be taken to be open arcs in E or E*, but possessing end-
points situated in the source or destination. In the following we omit further
references to canonical sprays.

4. A finite or countable sequence E, E2,.." of sprays of flight will be
called a chain of flights if, for k 1, 2, ..., they fit together in inverse order so
that the source of E contains the destination of E+I. When the destination of

E is the target, we speak of a chain of flights to the target. The sources and flight
corridors of the individual sprays are called the constituent sets of the chain. We
call any collection of chains of flight to the target a concourse of flights if the col-
lection satisfies conditions given below.

The concept of unimpaired union allows us to pass from sprays of flight, the
local theory, to a concourse of flights, the global results. A set R, with a class of
subsets P, is the unimpaired union of the P if it is their union, and if further, there
exists a repairable decomposition of R into at most countably many sets R,
such that each P is the union of those R which contain it. A set R which is
covered by the lines of flight is termed a concourse of flights, if R is the unimpaired
union of the constituent sets of the chains.

The decomposition of R into the R is called repairable if every rectifiable
curve in R can be obtained from the rectifiable curves in the R by finite fusion
and cutting, and countable embellishment and trimming. Fusion means adding
two curves having a common endpoint; cutting is the reverse operation. Em-
bellishment means adding to a curve a closed curve which intersects it, and
trimming is the reverse operation (see [1, p. 2773).

5. Suppose that R is a concourse of flights. The function T(x), for x in R,
called the flight-time from x to the target, is defined to be the length of the time-
interval for a line of flight issuing from the point x. A set or curve will be termed
"of bounded flight-time" if T(x) is bounded on it.

The basic existence theorem of Young under these hypotheses is as follows
(see [1, p 281).



652 GERALD M. ARMSTRONG

THEOREM. Let x R. Then theflight-time T(x) is the least time for transferring
the point x to the target along an admissible trajectory in R.

The fact that the admissible trajectories considered must all be in R restricts
applications of the theorem in some problems. For example, a problem seen in
many books is the "controlled slowing of an oscillator" [1, p. 233]. (Optimal
trajectories are determined for this problem in [3, p. 568], [4, pp. 52, 80], [5,
p. 11], and [6, pp. 27, 53].) In this problem, each spray of flights in the plane is
bounded by a source, a destination, and two trajectories which do not satisfy
property B of the maximum principle, and therefore are not in R. We call these
trajectories not in R weak lines of flight. (Illustrations in [1, p. 240] and [3, p. 579]
show the sprays of flight as well as the weak lines of flight bounding the sprays.)

To complete the proof of optimality for the oscillator problem, it is necessary
to deal with the weak lines of flight. A proof is given by Young [1, p. 239 by
showing that a trajectory can only cross a weak line of flight outwardly, away
from the origin. Thus the weak lines of flight constitute one way barriers, and so
a trajectory crossing a weak line of flight cannot be optimal.

The extension of this theory which we give below allows us to consider
trajectories in a set R* which includes both R and a certain class of weak lines of
flight. Our extension, in particular, provides an easy sufficiency verification for
the controlled slowing of an oscillator problem.

6. We first give two lemmas which enable us to define a set R* of lines of
flight. The proofs of these lemmas may be given by sequential continuity argu-
ments, and are omitted here.

LEMMA 1. Let X, Y, Z be Euclidean spaces, and suppose X is bounded. Let
f :X Y, g Y Z, and h :X Z be the composition g(f) off and g. If h and f
are continuous, so is g.

LEMMA 2. Let X and Y be Euclidean spaces. Let f X Y be a function which
is continuous on each rectifiable curve in X. Then f is continuous on X.

We now prove a theorem based on these lemmas.
THEOREM 1. Assume R, the set covered by lines of flight, is the unimpaired

union of the constituent sets. Let T(x) be the flight-time from x R. Then T is con-
tinuous on R.

Proof. We first show Tis continuous on each rectifiable curve x(t) ofbounded
flight-time in R. Let X {x:x x(t)}. Let I denote a time interval. Consider
the commutative diagram in Fig. where s(t) represents the arc length along x(t).

x(t) X T(x) I

s(t) / T(s)

FG.

T(s) is continuous [1, p. 280], x(s) is x(t) represented in terms of its arc length,
and so is continuous. Therefore T(x) is continuous by Lemma 1.

If we know that the curve x(t) is of bounded flight-time, the theorem follows
by Lemma 2. By [1, p. 272], x(t) is of bounded flight-time if it lies in E or E-, a
constituent set of R. Since R is the unimpaired union of the constituent sets, x(t)
is of bounded flight-time in R.



OPTIMAL CONTROL SUFFICIENCY THEORY 653

THEOREM 2. Assume x(t) is a trajectory with corresponding control u(t) which

satisfies the maximum principle and has no self-intersections. Then T is continuous
along x(t).

Proof. If T were not continuous at Xo X(to), then T(x) < T(x), where
the right- and left-hand limits are taken along the trajectory x(t). Let T(x),
2 T(x). Then either x([tl, tEl) XO, or x(t) has a self-intersection at Xo. The
equation x([tl, t2]) Xo implies x(t) 0for each tin(t1, t2), and so g(x(t), u(t))= 0
and gx(x(t), u(t)) 0 for in (tl, t2). By equation A of the strengthened maximum
principle, y(t) must be constant over (t, t2), so y(t)g(x(t), u(t)) 0 on this interval.
But y(t)g(x, u) is constant on trajectories, and so 0 over the entire t-interval. Since
y(t) =/: 0, g(x, u) O, so x(t) 0 and x(t)is a constant for all t. But then x(t) is a
degenerate trajectory. This completes the proof of Theorem 2.

We now specify the additional trajectories which we include with R to form
the larger set R*. First, the additional trajectories must be synchronized with
those in R:if two trajectories from R* meet at a point x, they must do so in the
same time t. Thus T(x), which is continuous in R by Theorem 1, is well-defined
in R*. Note that the synchronization condition implies that no trajectory in R*
can have self-intersections.

We also require our trajectories in R* to satisfy the maximum principle. We
call the additional trajectories in R* weak lines of flight. We shall see that because
the function T is continuous on R, and continuous on each weak line of flight by
Theorem 2, that it is continuous in all of R*.

Our method of proof requires three additional hypotheses. We assume that
each point on a weak line of flight has a neighborhood intersecting at most finitely
many other weak lines of flight. We assume each point on a weak line of flight is
contained in the closure of R. Finally, we assume that each point on a weak line
of flight is contained in a neighborhood on which T is bounded. This completes
the description of the set R*.

THEOREM 3. Let R* be as above. Then T is continuous on R*.
Proof. Let Xo be a point on Xo(t), a weak line of flight in R*. Suppose Xo is

not in R. Let {x} be a sequence in R* such that x Xo. We must show that
T(xi) T(xo).

We assume without loss of generality that {x) is contained in R. In fact, if
infinitely many of the x lie on weak lines of flight, our finiteness condition implies
infinitely many lie on a particular line of flight, which must intersect Xo(t) at Xo.
But T is continuous along any line of flight, so T(x) T(xo).

For 0, 1,2,..., let -t be selected so that there is a line of flight x(t)
with xi(t) xi, 1, 2, ..., and Xo(to) Xo. By the synchronization condition,
T(x) -t for all i. Since {t} contains a bounded subsequence, there exists a
subsequence of {t} which we denote {tk}, and a point t’ such that k t’. But then
xi(tk) - xi(t’ for each i. Since also Xi(t’ -’ Xo(t’ as -- , we obtain Xk(tk) --- Xo(t’
as k - o. But {Xk(tk) is a subsequence of {xi}, so Xo(t’) Xo. But then, by syn-
chronization, t’ to, and the proof is complete.

Our basic sufficiency theorem will now be given.
THEOREM 4. Let R* be as in Theorem 3. Let Xo be a point on the weak line of

flight Xo(t), where Xo is not in R. Then T(xo) is the least time to transfer Xo to the
target along a trajectory in R*.
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Proof. Let x l(t) be any trajectory in R* from x0 to the target. If X l(t) is a
weak line of flight, the proof follows by synchronization. Otherwise, let
S {t:x(t) R* R}. Then S contains at most countably many nondegenerate
closed intervals It’, t"]. Let x’ x(t’),x" x(t"). Then T(x’) T(x") < -(t’ t").
In fact, let {t’i} and {t’i’} be sequences such that t’i t’ and t’i’ t" as - , and
x (t’i) and xl(ti’) are points of R for all i. Since these points lie in R,

T(xa (t’)) T(x (t’[)) <= -(t’

Since T(x) is continuous in R*, T(x’)- T(x") <_ -(t’- t").
Now let a be the greatest lower bound of the set of in S for which > t"

and let there exist a, b with [a, b] contained in S. If there is no such point, let a 0.
Then in the same way as above, we see that

T(x") T(x(a)) <= -(t" a),

where T(x) 0 if x is on the target. Then by addition the time T(xo) is not greater
than the time along x l(t) from Xo to the target. This completes the proof.
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ACCELERATED FRANK-WOLFE ALGORITHMS*

GERARD G. L. MEYERt

Abstract. This paper presents a class of iterative procedures, called accelerated Frank-Wolfe
algorithms, It shows that a subclass, namely the nontrivial proper algorithms, is of special interest.
An algorithm parametrized by an integer q is exhibited and it is then seen that for every q > O, the

algorithm is a nontrivial proper accelerated Frank-Wolfe algorithm.

Introduction. Since its presentation in 1956 (see [9]), the Frank-Wolfe
algorithm, also referred to as the conditional gradient method (see [6], [12]),
has been used to solve many types of optimization problems [1], [2], [5], [8],
[10], [11], [15]. However, there is a drawback to the method, namely its slow
convergence [4], [9]. This paper presents an acceleration procedure which
differs from existing ones [2], [3] in that it does not require that new types of
subproblems be solved at each iteration. The approach consists of "weakening"
the inherent memory of the Frank-Wolfe algorithm.

The paper’s first section is devoted to a rapid review of the Frank-Wolfe
algorithm and its properties in finite-dimensional spaces. Section 2 defines a
class of algorithms which are called accelerated Frank-Wolfe algorithms. It is
shown that the class is far from being empty and four algorithms in it are given.
This leads to a discussion of the various families of accelerated Frank-Wolfe
algorithms, from which one concludes that it would be of interest to exhibit
nontrivial proper accelerated Frank-Wolfe algorithms. Section 3 contains a
scalar parametrized algorithm, i.e., an algorithm depending on a scalar parameter
q. One sees that for q 0, the algorithm is equivalent to the Frank-Wolfe algo-
rithm and that for every q > 0, the algorithm is a nontrivial, proper accelerated
Frank-Wolfe algorithm. Finally, 4 gives some indications of the computational
behavior of the scalar parametrized algorithm.

1. The Frank-Wolfe algorithm. This paper is restricted to the application of
the Frank-Wolfe algorithm to finite-dimensional problems. For a discussion of
the infinite-dimensional case, one may consult [63 or [123.

Problem 1. Given a convex, continuously differentiable map f(. from R"
into R and a convex, compact subset T of R", find a point z* in T such that
f(z*) <_ f(z), for all z in T.

DEFINITION 1. An algorithm is convergent for Problem if every sequence of
points {zi}, generated by it, satisfies one of the following conditions:

(i) If the sequence {zi} is finite, i.e., {z} {Zl,Z2, Zk+ 1}, then z is a
solution of Problem 1.

(ii) If the sequence {z} is infinite, then each of its cluster points is a solution
of Problem 1.
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The Frank-Wolfe algorithm requires that an initial point y in the set T be
given and it is characterized by the type of subproblems which must be solved
at each iteration. These subproblems consist of the minimization of a linear map
on the set T and the minimization of the map f(. on a segment.

ALGORITHM (Frank-Wolfe). Let y be a point in T.
Step O. Set z y and set 1.
Step 1. Compute a point vi in T such that (Vf(zi), vi) <= (Vf(zi), v), for all

vin T.
Step2. Computeascalariin[O, 1] such thatf((1 i)zi + ivi) f((1 )z

+ Ui) for all in [0, 1].
Step 3. Set zi+ (1 i)zi + ivi.
Step 4. If.f(z+ 1) < .f(z), set + and go to Step 1" else, stop.
For proof of the following theorem, see Theorem 3 and Remark 1 in 2.
THEOREM 1. Algorithm is convergent for Problem 1.
Theorem shows that Algorithm may be used to obtain the solution of

Problem but does not give any indications on the computational efficiency of
the algorithm. Experiments with the Frank-Wolfe algorithm point to the fact
that the behavior of the algorithm may be rather poor. This observation co-
incides with the analytical result obtained by Canon and Cullum [-4]. These
authors have studied the behavior of Algorithm when applied to a special case
of Problem 1. Let f(. be defined by f(z) (z, Qz) + (d, z), let T be the set
{zlBz <= c} and assume that T is bounded. Here Q is a positive definite symmetric
n n matrix, and B, d and c are s n, n and s matrices respectively.
For this special problem the following result holds.

THEOREM 2. Let z* be the solution of the special problem and let {zi} be an
infinite sequence generated by Algorithm when applied to the special problem.
Suppose that"

(i) z* cT (the boundary of T)"
(ii) z 41" (the interior of T) for infinitely many 1, 2, ...}.

Then, for every constant > .0 and for every > O,f(zi)- f(z*) >= o(i +, for
infinitely many 1, 2, ...}.

Theorem 2 does not imply that Algorithm behaves inefficiently for all
problems of the form of Problem 1. In fact, Levitin and Polyak in [12] have shown
that Algorithm is convergent at the rate of a geometric progression for Problem

if T is strictly convex and IIVf(z)]] >= e on T, for some strictly positive scalar .
It must be noted that the results obtained in I12] are given in general reflexive
Banach spaces.

2. Accelerated Frank-Wolfe algorithms. The Frank-Wolfe algorithm is
applied to a wide variety of practical problems, as witnessed by the considerable
amount of literature existing on the subject [2], 5], 8], [10], [11], [!2]. In view
of 1, it is desirable to find improved versions of the Frank-Wolfe algorithm,
i.e., algorithms which retain the desirable features of the Frank-Wolfe algorithm,
without having its slow convergence.

Algorithms of the following form will be considered.
ALGORITHM 2. Let y be a point in T.
Step O. Set z y, set v0 y and set 1.
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Step 1. Compute a point v in T, such that

(Vf(zi), vi) =< (Vf(zi), v) for all v in T.

Step 2. Compute a scalar in [0, 11, such that

f((1 i)zi + ivi) <= f((1 )z + for all in [0, 1].

Step 3. Set Y0 (1 i)z + v.
Step 4. Compute a point z+ in T, such that

f(zi+ 1) <- f(Yio).

Step 5. Iff(z+ 1) < f(z), set + and go to Step 1" else, stop.
Before attempting to prove the convergence of Algorithm 2, two simple

lemmas are given.
LEMMA 1. A point z in T is a solution of Problem if and only if (Vf(z), v z)

>= O, for all v in T.
LFMMA 2. Let z and v be such that f((1 )z + v) > f(z), for all in 0, 1.

Then (Vf(z), v- z) >= O.
THFORFM 3. Algorithm 2 is convergent for Problem 1.
Proof. Suppose that Algorithm 2 generates only a finite sequence {z 1, z2,

"", zk, zk+ 1}. Then f(zk+ 1) f(z)" otherwise the algorithm would have gener-
ated the point z+ 2, and f(zk+ 1) f(z) f(Yo) <-_ f((1 )z + Cv), for all
in [0, 1]. Lemma 2 implies that (Vf(z), v- zk)=> 0, and by construction
(Vf(z), v v) >= 0, for all v in T. It follows that (Vf(zk), v z) => 0, for all v
in T, and therefore in view of Lemma 1, z is a solution of Problem 1.

Suppose now that Algorithm 2 generates an infinite sequence {zi} and let
z* be a cluster point of this sequence. Then there exists K1, an infinite subset of
the integers, such that the subsequence {z}Kl converges to z*. The set Tis compact
by assumption and therefore there exists K, an infinite subset of K1, such that
the subsequences {}, {v,}K, {Y,0}t and {z+ 1}: converge to some points *,
v*, y and z** respectively. The property of convergent sequences ensures that
the sequence {z} converges to z*. The continuity of the map Vf(. and the con-
tinuity of the scalar product with respect to its arguments imply the following
relations"

(1) (Vf(z*),v*) <= (Vf(z*),v) forallvin T,

(2) f((1 *)z* + *v*) =< f((1 )z* + v*) for all in [0, 1],

(3) y ( *)z* + *v*,

(4) f(z**) <__ f(y).

Now, assume that f(z**) <= f(z*) , for some 6 > 0. Then there exists k,
such that f(z+ 1) =< f(zi) 6/2, for all >__ k, in K, i.e., the monotonically decreas-
ing sequence {f(z)} is unbounded from below. But this is impossible because
f(. is a continuous map and the set T is compact. It follows that there does not
exist any 6 > 0, such that f(z**) <= f(z*) 6, i.e.,

(5) f(z**) > f(z*).
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Equations (2), (3), (4) and (5) imply that f(z**) f(z*) f(y) < f((1 )z*
+ v*), for all in [0, 1], and Lemma 2 implies that (Vf(z*), v* z*) >= O. It
follows from equation (1) that (Vf(z*), v z*) __> 0, for all v in T, and therefore
z* is a solution of Problem 1.

DEFINITION 2. An algorithm is an accelerated Frank-Wolfe algorithm if it is
of the form of Algorithm 2.

There exist many algorithms of the form of Algorithm 2. To illustrate this
point some of them are given now.

ALGORITHM 3. Algorithm 2 with Step 4 being defined as follows"
Step 4. Set zi+ Yio.
ALGORITHM 4. Algorithm 2 with Step 4 being defined as follows"
Step 4. Compute a point z+ in T, such that

f(zi+ 1) < f(z) for all z in T.

ALGORITHM 5. Algorithm 2 with Step 4 being defined as follows"
Step 4. Compute a point z+l in the convex hull of v0, vl, "", v, such that

f(zi+ 1) <= f(z) for all z in the convex hull of Vo, vl "", vi.

ALGORITHM 6. Algorithm 2 with Step 4 being defined as follows"
Step 4. Compute a point w in T, such that

(Vf(Yio), wi) <- (Vf(Yio), w) for all w in T,

and compute a point zi+ in [Yio, wi], such that f(zi+ 1) <= f(z), for all z in [Yio, wi].
Remarks.
1. Algorithm 3 is equivalent to Algorithm 1, and therefore Theorem 3 implies

Theorem 1.
2. In Algorithm 4 and Algorithm 5, the computation of z+ does not de-

pend on Yo. This implies that Step 2 and Step 3 can be deleted in these algorithms.
3. Algorithm 4 generates at most three points, namely {z z2, z3}, where zl

is a given point in T and z2 is the solution of Problem 1.
Remark 1 shows that an accelerated Frank-Wolfe algorithm does not

necessarily behave in a better way than Algorithm 1. The important question,
which has not yet been raised, is the following: "How does one choose Step 4
in Algorithm 2, so that Algorithm 2 is preferable, computationally speaking, to
Algorithm 1?" An easy and rather trivial answer is obtained by looking at
Algorithm 4. Here is an algorithm which gives a solution of Problem in one
iteration. But it is obvious that this is not the type of algorithm one is looking
for, because Step 4 in this case is as complicated as the original problem. There-
fore, one is led to define a class of algorithms which does not contain Algorithm 4.

DEFINITION 3. A proper accelerated Frank-Wolfe algorithm is an algorithm of
the form of Algorithm 2, in which the computation of zi+ in Step-4 does not
involve the resolution of subproblems other than:

(i) minimization of a linear functional on T;
(ii) minimization of f(. on a given segment in T.
Immediately, it is apparent that Algorithm 4 and Algorithm 5 are not proper

accelerated Frank-Wolfe algorithms. Now, an examination of Algorithm 3 and
Algorithm 6 reveals that not much has been achieved by exhibiting these algorithms.
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DEFINITION 4. An algorithm of the form of Algorithm 2 is trivial if every
sequence {zi}, generated by it, is a subsequence of some sequence generated by
Algorithm 1.

Using Definitions 3 and 4, one can define with precision the class of algo-
rithms one is interested in here, namely, the class of nontrivial, proper accelerated
Frank-Wolfe algorithms. It can be remarked that all the algorithms given so far,
i.e., Algorithms 3, 4, 5 and 6, are either nonproper or trivial.

3. Scalar parametrized algorithm. An accelerated Frank-Wolfe algorithm
depending on a nonnegative integer q is now presented.

AL6ORITrIM 7. Let y be a point in T and let q be a scalar.
Step O. Set z y, set Vo y, set/o and set 1.
Step 1. Compute a point vi in T, such that

(Vf(zi), vi) <= (Vf(zi), v) for all v in T.

Step 2. Compute a scalar i in [0, 1], such that

f((1 i)zi + iv) <_ f((1 )z + vi) for all in [0, 1].

Step 3. Set j 0, set 2kj (1 )/k for k 0, 1, ..., 1, set 21j.= and
set Yij (1 i)Zi -at- iVi

Step 4a. Ifj => q, go to Step 4e; else, go to Step 4b.
Step4b. Set 1,= {ke{O, 1,...,i}l(Vf(yj),vk--y,j)=<0}, set ff

1/(2kl,jj), and set xj I[lij Zki,/ilVk
Step 4e. Compute a scalar Z in [0, 1], such that

f((1 Zii)Yj + Zijxj) <= f((1 Z)Y + Zxi) for all Z in 0, 1].

Step 4d. Set 2,j+ 1) (1 Zij @ ijZij)2i, for k lij set 2i(jk + 1) (1 Zij)2ij,k
for k lij; set Yitj+ 1) (1 Zj)Yj + Zjxj; set j j + and go to Step 4a.

Step 4e. Set zi+ Yiq and set + 2ikq, k O, 1, ..., i.

Step 5. Iff(z+ ) < f(z), set + and go to Step else, stop.
It is clear, in view of Definition 3, that for any scalar q, Algorithm 7 is a

proper accelerated Frank-Wolfe algorithm. This immediately implies that, for
any scalar q, Algorithm 7 is convergent for Problem 1.

One may characterize an algorithm by the class of problems on which it is
finitely convergent. Consider the following special case of Problem 1.

Problem 1’. Given a convex, continuously differentiable map f(. from R2

intoR andafinitenumberofpointsxx,x2,..., xpinRZ, let T [xa,x2,... xp]
and suppose that Vf(z) 0 for every z in % Find a point z* in T such that
f(z*) f(z) for every z in T.

THEOREM 4. When applied to Problem 1’, Algorithm 7 with q > 0 gives the
solution of the problem in a finite number of steps, i.e., Algorithm 7 is finitely
convergent.

The proof of the theorem is somewhat lengthy but not very complicated and
has been deleted. A simple example proposed by one of the reviewers illuminates
the difference in behavior between Algorithm and Algorithm 7 with q > 0.

Example 1. Let x (- 1, 0.5), x2 (1, 0.5), x3 (0, 20), y (-0.5, 1) and
f(x) llx]12. In this case Algorithm will generate an infinite sequence of points



660 GERARD G. L. MEYER

{zi} converging to z* (0, 0.5). If Algorithm 7 with q is used, then a finite
sequence of points is generated, namely"

z (-0.5, ).

Z2 (0.25,0.75)"

Z3 (0.06, 0.5)"

z (0, 0.5) z*"

zs (0, 0.5) z*.

Example shows that Algorithm may not converge in a finite number of
steps on Problem 1. This remark coupled with Theorem 4 shows that Algorithm 7
is a nontrivial proper accelerated Frank-Wolfe algorithm.

Now a short heuristic argument is given to justify the form of Algorithm 7.
It is well known that Algorithm 7, with q 0, is not a very efficient algorithm
when the coefficients do not die off fast enough. In other words, the algorithm
shows its limitations when, at iteration i, the coefficients/z are different from 0,
for k much smaller than i. The idea behind the form of Algorithm 7 is to use a
procedure which has a tendency to decrease the dependence of the point zi on
the points vk for k much smaller than i. This effect is obtained by constructing
the auxiliary points Xij which have the property that (xj Yij, Vf(yi)) =< 0. The
procedure adopted to construct the points x does not require that any new
subproblem be solved.

It does not seem possible to show analytically that, for some value of q > 0,
Algorithm 7 behaves in a better way than Algorithm 1. The only recourse is to
experiment with the algorithm and try to determine if there exists a value of
q > 0, for which the algorithm does not have the slow convergence of Algorithm 1.

4. Computational results. In order to obtain an idea of the computational
behavior of Algorithm 7, the following problem was considered.

Problem 2. Let T be the subset of R defined by

T {xlxl v-+-(xZ)Z/2f12 + (x3)2/2f13, X1 10}.
Find a point z* in T, such that Ilz*ll2 _-< ]]zl12, for all z in T.

Remark 4. This type of problem was used by Barr in [23. The notation II" 2

is used to denote the Euclidean norm, i.e., Ilzll2 ((zl)2 + (z2)2 + (z3)2) 1/2. For
any/32 > 0 and any/3 > 0, the set T is convex and the solution of Problem 2 is
z* (v, 0, 0).

Problem 2 was solved for various values of/32,/3 and v. Algorithm 7 was used
with y (6, 2, 2) and two values of q, namely q 0 and q 2. The results of the
experiments are contained in Tables 1, 2, 3 and 4. These tables indicate the number
of iterations No and N2 necessary to obtain a point z in T satisfying [[zl[2 _-< [[Z*I[ 2

+ (]lyll2 Ilz*ll2)/c when Algorithm 7 is used with q 0 and q 2 respectively.
The reader may note that it is preferable to use q 2. However in cases in which
the Frank-Wolfe method is efficient, i.e., NO small, there is no marked advantage
in using q 2. This tends to indicate that the acceleration procedure takes effect
only when really needed.
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TABLE

5
10
5O

100
5OO

1,000
5,000

10,000
50,000

100,000

v=l

[32 1o

[33 1o

No

3
6
9
10
20
21
27
29
31
31

3
3
3
3
7
7
9

11
15
17

No

6
6
7

11
27
28
51
57
71
90

v=l

/2 100

[33 100

N2

6
10
12
12
22
22
23
23
23
23

[32 500

[33 500

15
15
16
16
76
76
76
84
92
100

N2

8
12
12
14
16
38
43
43
52
52

5
10
5O

100
5OO

1,000
5.000

10,000
50,O0O

100,000

No

3
7

10
14
15
15
20
22
25
25

v=l

[32 10

[33

3
3
4
5
9
9

11
13
16
18

TABLE 2

/2 100

l3

No

2
2
6

24
24
24
37
37
45
66

TABLE 3

N2

2
2
6

11
19
19
27
31
40
40

23
34
42
42
42
50
98
98
106
107

v=l

[32 500

[33

N2

11
15
15
16
20
21
35
54
55
55

5
10
5O
100
5OO

1,000
5,000
10,000
50,000

100,000

3
6
8
8

12
12
16
16
20
20

0.5

10

10

N2

3
3
7
9
14
14
18
18
23
23

0.5

//2 100

//3 100

No

6
6
6

11
31
51
79
98
98
98

N2

6
7
7

15
28
35
36
38
38
39

0.5

[32 500

[33 500

N

28
61
62
62
117
150
181
183
185
233

16
22
23
23
35
40
51
52
69
69
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5
10
5O
100
5OO

1,000
5,000

10,000
50,000

100,000

No

4
5

13
13
13
13
13
14
17
18

TABLE 4

0.5

10

N2

3
4
8

11
13
15
21
21
24
26

N

3
3

17
25
84
104
160
162
178
191

0.5

//2 100

N2 No

2 30
2 41
14 83
14 124
20 177
26 177
28 193
32 226
36 251
41 251

0.5

f12 500

f13

11
16
40
5O
95
95
99
107
132
143

Remark 5. The stop rule used in the numerical experiments is unconventional.
It involves the initial guess y, the optimal point z* and the cost function I1" I1. If
by chance, the initial guess y satisfies Ilyll IIz*l12 1, then one gets the usual
stop rule Ilzll2 _-< IIz*l12 / l/c, In the case at hand, Ilyl12 x/ and therefore the
quantity IlYlI2 IIz*l12 can be interpreted as a scaling factor.

One iteration of Algorithm 7 with q 0 requires one Definition 3(i) mini-
mization and one Definition 3(ii) minimization; one iteration of Algorithm 7
with q 2 requires one Definition 3(i) minimization and three Definition 3(ii)
minimizations. Since Definition 3(i) minimizations are the more difficult in appli-
cations [2], [8], [11], it is meaningful to use No and N2 as indicators of efficiency.

One drawback of Algorithm 7 as written is the ever growing data base. It is
possible to limit this growth by specifying the maximum length of the string of
vi and restarting the algorithm when the allowable length has been reached. To
be more specific one may add a Step 4f in Algorithm 7 between Step 4e and Step 5
defined as follows.

Step 4f. If the allowable length ofthe string ofvi has been reached, set y zi+
and go to Step 0.

It is clear that Algorithm 7 with q > 0 and Step 4f included is still a non-
trivial proper accelerated Frank-Wolfe algorithm. In fact this modified algorithm
converges in a finite number of steps on Problem 1’ if the allowable length of the
string of v is at least two.

5. Conclusion. It has been shown that many accelerated Frank-Wolfe
algorithms exist. The discussion of the different types of such algorithms has
indicated that it is not possible to give a realistic answer to the question:find
the best accelerated algorithm? This is due to the existence of a nonproper algo-
rithm which solves Problem 1 in one iteration. This has lead to the definition of
a restricted class of algorithms, namely the class of nontrivial proper accelerated
Frank-Wolfe algorithms. The main purpose of this paper has been to show that
such algorithms exist and are efficient. At this point, one would like to emphasize
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that nonproper, nontrivial algorithms may be of great interest, as witnessed by
the results obtained by Barr (see [2] and [3]), but this paper has been restricted to
proper accelerated algorithms.
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INSTABILITY OF NONLINEAR INFINITE-DIMENSIONAL
FEEDBACK SYSTEMS USING LYAPUNOV FUNCTIONALS*

THOMAS L. STEDING AND ARTHUR R. BERGEN,"

Abstract. Sufficient conditions are given for the L instability of a broad class of nonlinear, time-
varying feedback systems. The system under consideration is assumed to be decomposed into two
subsystems: one passive and nonlinear, not necessarily memoryless, and the other unstable and linear,
not necessarily finite-dimensional. The main results essentially state that the feedback system is
unstable if the linear subsystem is strictly passive and bounded on a proper subset of L2. The results
apply both to instability in the input-output sense and to instability of unforced systems.

The principal conceptual tools of the analysis are a Lyapunov function and a state, both of which
are defined on the linear subsystem in a manner not depending on the dimensionality of the system.
As an application of these results, an instability counterpart to the circle criterion is presented which
applies to a class of systems more general than those of previous results. The conditions of this
counterpart imply, in addition to L instability, global state space instability. Conditions are also
given under which the Lyapunov function defined in the analysis may be used to establish asymptotic
stability in the large.

1. Introduction. We present herein certain theorems on the L2 instability of
a broad class of nonlinear, time-varying feedback systems. The system under
investigation is illustrated in Fig. 1, where the linear time-invariant operator G is
assumed to be the sum of an infinite-dimensional, stable component, G1, and a
finite-dimensional, unstable component, G2; the nonlinear time-varying operator
N is assumed to be passive on L2. The key results of the paper, given in 3,
essentially state that the feedback system is unstable if G is strictly passive and
bounded on a certain proper subset of L2. The analysis involves a state and a
Lyapunov function, both of which are defined on the linear subsystem G using only
its impulse response, and not requiring a finite-dimensional vector differential
representation. In contrast with recent efforts in instability theory, our results
apply both to instability in the input-output sense and to instability of unforced
systems (where the zero-input response of G is constrained to arise from previous
inputs).

In 1967 Brockett and Lee [3 published an instability counterpart to the
circle criterion where the linear subsystem was required to have a rational transfer
function. Instability results in a functional analysis setting were derived by J. C.
Willems [9. Departing from the state instability formulation of [3, these results
deal with input-output unboundedness in the L2 sense. Conditions derived in [9
are similar to those in [-3, but admit infinite-dimensional linear subsystems.

We give, as an application of the results of 3, an instability counterpart
to the circle criterion which is of greater generality than the above results. In
particular, we extend the results of [91 to nonlinear systems while simultaneously
reformulating the analysis of L2 instability using such concepts as passivity,
energy, and state. In fact, the pattern of our analysis is closer to that used in [3,
and includes their state space instability result as a special case.
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Recently, in a separate effort, Bergen and Takeda [2] also generalized the
results in [3], and paralleled some of the work of this paper. Their analysis,
however, depending on notions of causality, is based on a different approach than
the one used here.

The outline of the paper is as follows. After preliminaries in 2, we give the
main results of the paper in 3. The analysis begins in 4 with a definition of a
function which will serve as a state for the infinite-dimensional, linear subsystem:
at each instant of time, this state is a real-valued function defined on the interval
[0, ). The Lz-boundedness of the system solutions is then related to the be-
havior of the state for large values of time. Following this, a Lyapunov function is
defined on the linear subsystem G by considering certain energy-like quantities
associated with G and the state. After establishing the existence and certain further
properties of this Lyapunov function, the proof of the results follows directly.
The instability counterpart of 5 is established from these results by trans-
forming the system under consideration to one satisfying the hypotheses of 3.
Finally, we make some concluding remarks in 6.

The Lyapunov function and state used in the analysis are analogous to the
concepts developed by Baker and Bergen in 1]. Contrary to their results, however,
our Lyapunov function is not shown to possess all of the usual properties (e.g.,
radial unboundedness) of Lyapunov functions, but only those necessary for the
proof of the main result. Thus, "quasi-Lyapunov function" may be a formally
more appropriate name for this function; for brevity, however, we have carried
over the terminology of [1].

2. Preliminary notations and definitions. The framework used here is an
adaptation of the functional analytic approach to stability analyses (see, e.g., Ill]).
Let R denote the real number and let f be the set of all measurable functions
mapping R into R. For real and for f belonging to f the truncation operator,
Pt, is defined by

(1) Pf() { f() for z _< t,

0 for > t;

and the shift operator, S,, is defined by

(2) S,f(z) f(t + )

for all real r. For simplicity of notation, we write P in place of Po.
We use the notation ft,,,,2j to mean the function which coincides with f over

the interval tl, t2] and is zero elsewhere. We write j+ for Jio.), and f- for
f(- ,0]"

The analysis is carried out on the Hilbert spaces

(3) g2(R .f n] [fl If(t)[ 2 dt <

and

(4) L2(R) f 6f2111fll 2 ]f(t)[2e -t dt < .,

Since we never explicitly consider the case a 2, the notation is unambiguous.
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for some real a, where the inner products on L2(R and L2(R are given by,
respectively,

(5) (fl, f2) 2 L(t)[:(t) dt

and

(6) (f, f2). f(t)f2(t)e-’ dt.

We write L and L:= in place of, respectively, L2(R) and Lz.(R). If F is an operator
on L2 (L2.), its operator norm is denoted by F 2 (IIFIIo)

The extended space of L2, denoted by L2, is defined by

(7) L2e {f e [P,f e L2 for all in R}.
We let L- denote that subspace of L2 given by

(8) L {f e Lzlf(t) 0 for almost all < 0},
with analogous definitions for L t2 L and L+

3. Problem formulation and principal results. We consider the feedback system
equations (Fig. 1)"

Y2

Fig. 1. The system S

(9) (I + GN)e u- z,

(10) Yl Ne,

(11) Y2 Gyl + z,

where u is the input; z is the zero-input response of the subsystem G arising from
initial conditions; and e, Y l, or Y2 can be viewed as outputs. We make the
following asSumptions.

A1. There exist linear, time-invariant, nonanticipative operators G and G2

such that on the intersection of their domains,

(12) G G1 + G2,
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where
(i) G1 maps L/ into L / and L2 into L2 and is a bounded operator on L2"2e 2e

(ii) for all => 0, and Y L2e,

(13) G2Yl(t) g2(t Z)Yl(Z) dz,

where g2(t)= 0 for all < 0 and g2 is not the zero function. The Laplace
transform of g2, G2(s), exists and satisfies

(14) G2(s) l(s)/m(s),

where l(s) and re(s) are real polynomials, the degree of m(s) exceeds that of l(s),
and for some real tr > 0 the zeros of re(s) lie in the open strip 0 < Re s < a/2 in
the complex plane. Zeros on the ira-axis are excluded.

A2. Let Ds be a set in L. The nonanticipative relation N is a subset of
Ds x L2 and its restriction to L is a subset of (Ds L) x L.

A3. u, e, y, Y2, and z are real-valued functions defined on the real line and
equal to zero over the interval (-, 0)" furthermore,

(i) u and zeL2;
(ii) e, Yl, and Y2 e L2;
(iii) when e solves (9), then e Du.
Standard arguments show that assumption A1 (ii) implies that G2 maps

L2 into L2 and is a bounded operator on L2. This together with A1 (i) ensures that
the operator G G + G2 is defined on the domains L and L+ Note that from
A1 (ii), G2 is not the zero operator.

The instability problem is to find conditions on G and N under which there is
an input u and/or a zero-input response z such that e belongs to2 L+ L2e

We shall be investigating two separate cases" (i) the system S is unforced
(u 0)" (ii) u is an (arbitrary) unspecified element of L2 and the initial conditions
are considered to be fixed. In the unforced case, to avoid physically meaningless
results, we restrict our consideration to those initial conditions belonging to the set

(15) Z {Z LzZ G+( for some

where G + (I P)G. We thus require that z arise from inputs to the subsystem
G occurring previous to time 0, a condition which we accept as guaranteeing
that the initial condition z corresponds to those occurring in the physical system.

Since, as shown in 4, G+ is a bounded map from L into L2 Z is indeed
a subset of L2. Also when G has a rational transfer function the class Z coincides
with the usual set of zero-input responses generated by choosing all possible
initial states in the corresponding finite-dimensional space.

Finally, we define the subspa M c L by

(16) M V’(G-)71 LL,
where V’(G-) is the null space of the operator G-( (I- P)G2) defined on

L. We may now state the main result of this paper.

The symbol denotes set complement.
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(17)

and

(18)

and

I9
then"

THEOREM 1. Under the assumptions A1, A2 and A3, if
(a) for all e Dv f-) L-,

(Ne, e)2 0,

(b) there are constants 6 > 0 and 2 > 0 such that for all rl M,

(i) if u O, there is a z Z such that if e solves (9), then e L2+ L;
(ii) otherwise, for any z Z there is a u L+ such that if e solves (9) then2,r

e L2+ L-.
Comments. Although G represents an unstable subsystem, M is one class of

inputs over which G produces L2-bounded outputs; in fact, M is precisely that
class of inputs in L for which the exponentially growing terms of the output
(due to G) do not appear over the interval [0, oo). Theorem states, then, that if
G has a nontriial unstable component, but is well-behaved over M, the feedback
system is unstable in the sense described.

4. Analysis. For purposes of the analysis, we assume a solution e to (9) exists
in L + in DN Since part (ii) of Theorem follows directly from part (i), we assume2e
hereafter that u 0, and hence restrict z to belong to Z.

Before proceeding to the definition of the state, we note that G + is a bounded
map from L into L+ since if " belongs to L,

IIG+ llo IllIG / G2) ) +

(20) Z  I(G,C) + Jl= + }I(G2 ) +

4.1. Definition and properties of the state of the subsystem G. Consider the
system S. For each > 0 the state of the subsystem G, xt(.), is a real-valued
function defined on 0, oe) given by

(21) xt
a__ (I P)StEGyx[o,t] + z], 0.

Therefore xt is simply the backward shift of units of the zero-input response of
the subsystem G over It, oe) with input Yxto,t. Hence xt completely summarizes
the effect of past inputs to G. The shift ensures that a state is independent of the time
it is reached. Note that Xo z.

It is interesting to compare this state with the usual state of a finite-
dimensional system. Thus, suppose G has a rational transfer function, and let
{A, b, c,d} be a minimal representation of the linear subsystem G with state
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x e R". Then it is easily shown that for each (fixed) >__ 0,

(22) x,(z) ceax(t), Z _>_ 0.

In addition, since the above representation is completely observable, there is a
one-to-one correspondence between the states x(t) and xt.

As defined, the state xt does not necessarily correspond to the internal state
of the subsystem G, but is only determined by its input-output structure. Indeed,
in the above example, if the representation {A, b, c, d) is not minimal, then xt
contains no information about the unobservable portion of x(t).

The trajectory of the subsystem G is the set {x, lt >= 0}. A particular state xt
will often be referred to as a point on the trajectory.

The following relationships are easily established: between two points on a
trajectory,

(23) xt (I- P)S,Gylttl,o + S_,Ix,], 0 < < t;

between the output over It, ), the input over t, ), and the state at time t,

(24) Y2tt.) GYttt,) + S-txt, 0 < t.

These relationships can be used to show that the subsystem G along with the
state xt and the appropriate spaces from 3 form a dynamical system [4, p. 49].

The following lemma establishes some additional properties of xt.
LEMMA 1. For all xt on a trajectory of the system S,

(i) x 6 L + for all > O"2c
(ii) when Xo Z, x can be written for all >__ 0 as

(25) x, Xlt-JC" X2t

where x lt L and x2t is either the zero function or belongs to L2+ L-
(iii) whe. e II  .ll . o. I1 .11o 0
Proof Part (i) follows immediately from the definition of xt. To show (ii),

define

(26) Xlt

(27) x2,

GStyl[o,,] + (I P)StG(,

G- StYltO,t] -k- (I P)StG (,

where G- (I P)Gi, or 2, and ( is an etement of L- such that G+( xo.
Then x x l, + x2, and x L;. Also, x2, is the sum of exponentially growing
terms whose coefficients are possibly all zero, and whose exponents 2.i satisfy
0 < Re 2 < /2. Thus either X2t 0 or x2t L2

To show (iii), assume eL. Then from (21) and (11),

(28)

X (I P)SGyl + (I P)S,xo (I P)S,Gy,)

(I P)S,y2 -(I

(I- P)S,y2 SGyx.).
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Using the triangle inequality, the properties of the L2- and Lz-norms, and A1
give

(29) Y2[t,)2 + GS,yt,,)l[2 + G2Stytt,)l

z y=[,,, 2 +( a 2 +IG21I)IIS,yt,,)II2
0 ast,

since y and Y2 are in L2.
Using an analogous argument, x, 12 0 as . Finally,

(30) Z IIx, I1 + x1,112
0 ast.

4.2. Definition and properties of the Lyapunov function. Having defined a
state appropriate for infinite-dimensional systems, we are in a position to construct
a Lyapunov function related to the system S. Let D be a domain in L + We define2a"
the map L’D R by

(31) L(x,) inf {(G, )1 e LL and G+
Now for e L=, G e L2, and hence PG e L2. Also, since L= L2, e L2
and thus the quantity (G, )2 (PG, )2 is well-defined. We will need the
following inequality"

N PG( 2 + [IPG2

z a 1121 112 + a

Suppose for the moment that the indicated infimum is finite. If G is the
input impedance of a 1-port network, L has the following physical interpretation
(see Fig. 2). Let be an input current source and G be the corresponding terminal
voltage. Then L(x) is the infimum of the energy pumped into the terminals 1-1’
using L inputs which drive from the zero state at time z - to the state x
at time r 0. Equivalently, L(x,) is the negative of the supremum of the energy
extracted from 1-1’ in driving to x. Thus if L(x) is negative, at least one
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function exists in Lf that in driving to xt generates a net outward flow of energy
over the interval (-, 0].

FIG. 2. Network interpretation of L(x,)

For the function L to be meaningful in our analysis, we first must establish
that L(xt)> - along trajectories of interest. It is not immediately evident,
however, that this property holds for a given state xt. Indeed, the restriction of the
map G+ to L is in general not onto L2+, and the set

(33) C(xO

over which the infimum is taken, will therefore be void for certain states. Further-
more, the unconstrained minimization inf (G, ) is not finite, since (Lemma 5)
there exists at least one
as K--, . This minimization thus provides no useful lower bound for L(xt).

LEMMA 2. Assume Xo Z. Then L(x) > - for all x, on the resulting system
trajectory.

Proof Since Xo e Z, there exists an element/ in L satisfying G+# Xo.
Then, for all _>_ 0, the function r/= S,(# + Ylto,,j) belongs to C(x,). Hence
C(xo) 4: implies C(x,) 4: for all _> 0.

Since the restriction G-’LL --, L2+ is bounded, (G) is a closed subspace
of L2 and M is a closed subspace of the Hilbert space L. Thus [5, p. 257],

(34) LL M @ Mx

where M+/- denotes the orthogonal complement of M in L.. Hence, C(xt)
implies " ’x + 2 uniquely, where M, ’2 e M-" and

(35) x,, G(, + ),

(36) x, G’2.
Now if ’ is any other element of C(x,), then ’2 since G]’ G-2,

implying (’- 2)M VI M-= {0}. Denoting this unique (over C(x,)) second
component by , we have from (31),

L(x,) inf ( G(O + ), (0 + ))2
OeM(37)

-> inf (G(O + ), (0 + ))2.
OeM

Note that the term on the right-hand side is not the unconstrained minimization
mentioned above. Now it follows from the Schwarz inequality and condition (b)
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of Theorem 1, that for all 0 in M,

(G(O + ),(0 + ))2 (GO, 0)2 + (GO, )2 + (G, 0)2 + (G, )2

(38) ->  ll01N k=1o1= / k3
k k/2(,

where using (32),

(39)

and

k2

k3 ___a (G, )2

(40) <-- PGII kxll ll ,
Thus L(x) >

We now prove that the Lyapunov function has the following important
property.

LEMMA 3. Let Xo e Z. Then L(x) is monotonically nonincreasing along the
ensuing trajectory.

Proof Let 0 < < and t > 0. Define the set

(41) D(x)

Functions in D(x,) drive the subsystem G to x,, at time r -?, and then along the
system trajectory to x, at time r 0 (Fig. 3). Clearly, D(x) c C(x,). Hence

L(x,) inf
;eC(xt)

(42)
eD(xt)

inf
rleC xt

Xo

System trajectory

"c-- -0o

X,

FG. 3. Path (heavy line) in state space in proofq[Lemma 4
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Now for =< "c <- t, using equation (23),

G(Stq + yl[tl,t])(’c)-- -e(z).(43)

Thus, from (42),

(44) L(xt) <- L(xtl) e(z)yl(’C d’r.

Since N is passive, the second term on the right-hand side is nonpositive, and the
lemma is proved.

LEMMA 4. Let xo Z and e solve (9). lf e L, then L(xt) >= Ofor all >= O.
Proof Consider the function

(45) Lr(x2t) inf (G, )2,
eCr(X2t)

where Cr(x2t) { e LIG x2}. Since C(x2) = C(x), L(x2,) =< L(x) for all
>__ 0. Now clearly

(46) Cr(x2,) {0 /

where, recalling the proof of Lemma 2, is the unique element in M+/- satisfying
+ ThusG2 x2,.

(47) L(x2,) inf (G(O + ), (0 + ))2,
OM

and from (38), Lr(x2t exists for all x2 along the system trajectory.
Now if x2t 0, we have, since G is strictly passive on M,

L(0) inf ( GO, O) 2
OeM

(48) => inf
OeM

The infimum is reached with 0 0, and hence L(0)= 0. We now show L is
continuous at the origin in its domain.

First consider the restriction of the map G- to M+/-. This is a one-to-one map
onto its finite-dimensional range. Since M+/- is thus also finite-dimensional, the
inverse map is bounded and there exists a constant k, > 0 such that

(49)

We now show e belonging to L- implies Lr(x2t 0 as oe. Recalling
from Lemma (iii)that e L- implies x2,]] ---, 0 as 0, it is only necessary to
show that L(x2,) --. 0 when x2,1] --’ 0.

Consider the case where for a given x2, the infimum in (47) is reached for
some 0, say 0", i.e.,

(50) /(x,) (6(0. + ), 0* + ).
By the definition (45) and using (40),

(51) Z,.(X2t (a, )2 - kl/lll,
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where kl

(52)

On the other hand, using (38), (39) and (40),

Lr(x2,) > k3
k2 > -k, ll l 2 + k’)2 I11I 2

26 26

which bounds Lr(x2, from below. Hence

(53) Iz(,)l <- k611ll,

where k6 max {kl, ks}. Then (49) establishes the continuity of L.(x2t in the
special case where the infimum in (48) is reached. The extension to the case where
the infimum is not reached is treated by conventional techniques and may be
found in [8]. Thus we conclude that e L- implies L(x2t) 0 as .

Suppose now e L and L(xt,)= p < 0 for some tl > 0. Since L(x2t) 0
as o, for t2 > tl large enough,

(54) p < L(x22);

and since L(x)is nonincreasing,

(55) L(xt2) <= L(xt,)= #.

Combining (54) and (55) gives

(56) L(x,) < Lr(x2,),

which contradicts the fact that L(x,) >= Lr(x2t for all >= 0. Hence, e L- implies

L(x,) >__ 0 for all >__ 0, and the lemma is proved.

4.3. Proof of Theorem 1. The presence of the right-half-plane poles of Ga(s)
can be shown to imply G is not passive over L.. We make use of this fact in

proving the next lemma.
LEMMA 5. There exists at least one initial state Xo belonging to Z for which

L(xo) < O.
Proof. Consider the functions v(t) for [0, 2T] and zero elsewhere; and

V2(t --1 for tel0, T], v2(t ---1 for e[T, 2T], and zero elsewhere. Direct

calculations show that there always exists a T > 0 and a choice of u--v or
u v2 such that (Gu, u)2 < 0. Then, setting Xo G + Szru, Xo belongs to Z, and

(57)

L(xo) inf (G, )2
C(xt)

< ( GS2TU, S2TU) 2

(Gu, u)2

By selecting Xo Z as in Lemma 5, we have from the contraposition of
Lemma 4 that e qL. Since it was assumed eL2+, it is concluded that
e L2 L-. The proof of Theorem is complete.
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5. Application" an instability counterpart to the circle criterion. We now use
the results obtained above to develop an instability counterpart to the circle
criterion.

5.1. System description. Consider now the nonlinear, time-varying feedback
system governed by the equations

(58) (I + d) ,
(59) 332 (Y + 5,

(60) .
We make the following assumptions on .
fi,1. ( is given by

(61) (.,(t) r(t T)I(T dr,

where L]. Standard theory shows that ( is a bounded nonanticipative, time-
invariant operator on Le a,nd Le., and, additionally, maps Le+ into

/2. /’ is a memoryless, (possibly) time-varying nonlinearity given by

(62) ,(t) h(O.(t), t) for all => 0,

where h" R x [0, oc) R satisfies
(i) h(0, t) 0 for all => 0;
(ii) there exist real constants e and fl such that for some arbitrarily small

e>O,

(63) 0 < __< h(r, t)/r <= fl
for all real r - 0 and all _> 0; and

(iii) n((-), .) is a measurable function whenever e(.) is measurable.
A3. fi, , .1, 2, and are real-valued functions defined on the real line and

equal to zero over (-o, 0)" furthermore,
+ and(i) fi and L2,

(ii) g,, , and 2 L2+
By analogy with 3, we define the map 0 + (I P)0 which, by 1, is a

bounded map from L into L-. Also, the set of permissible zero-input responses,
2, is given by

(64) 2 { L-[ ( + ’. for some L }.

D[, fl] denotes the closed disc in the complex plane with center at (-(a + fl)/2afl, O)
and radius (fl a)/2afl, and F denotes the Nyquist locus (the set {(jo9)1o9 R}
u {o}).

THEOREM 2. Under the above hypotheses if does not intersect D[a, fl] and en-
circles it p > 0 times in the clockwise direction, then

(i) /f fi 0, there exists a 2 such that if solves (59), then L2. Lf
(ii) otherwise, for any ( , there exists a fi L] such that if solves (59),

then L2+ L-.
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5.2. Definition of the transformed system $1. We may assume throughout
the analysis that fi _= 0.

Since the point (-1/0, 0) belongs to the disc D[0, fl], we conclude from the
principle of the argument [7, p. 252] that (1 + ((s)) has p zeros in the open
right-half-plane. Choose a > Re sr, where sr is the right-most zero of (1 / 0((s)).
Then (I + G) has a time-invariant, nonanticipative, bounded inverse on L2
[8, p. 533. Let (fl z)/2. The transformed system S is defined in the form of
Fig. with

(65)

(66)

(67)

(68)

G (2/)(I + fl)(I + (x) -1

e (1/)(f flI),

Y 1/2(]Q
z 2(1 + ()-1.

It can be verified that (I + GN)e -z if and only if (I + (f/)O -L
and the systems $1 and , are therefore equivalent.

By analogy with the state xt, we define the state of the subsystem , by

(69) 2, (I- P)S,(Yl[O,q / ].

Since G maps L2 into L2, :t belongs to L2 for all >= 0.
We now show that $1 satisfies assumptions A1 through A3 of 3. Let

((I + a()-1 Gt + G, where G,. is the map associated with the right-half-plane
zeros of (1 + a((s)), and GI’L2+ L+2e and is a bounded map on L2. Defining
G (2/y)I + 4G, and G2 4G,, G G1 + G2 and G1, G2 satisfy A1. Also, N
satisfies A2, where N is the relation defined by Ne Yl. By equations (66)
through (68), A3 is satisfied.

We now show that conditions (a) and (b) of Theorem are satisfied. Con-
dition (a) follows from the definition of N, assumption A2 (ii), and equations (66)
and (67). To establish condition (b), we observe that by definition (M implies
G2 (ff L2, and hence the limit-in-the-mean Fourier transform of G2 (, denoted
by -(G2 ), exists. It is claimed that

(70) ff(G2)(flo) G2(flo)Z(flo)

for all o R. To show this we define the map G by

(71) G2(t) 1.i.m. f G2(j(.o)Z(j(.o) exp (jcot) dco
Ao -A

for all real and for all ( L2 Since max,oR IG2(jco)l < , G’2 is a bounded map
on L2. We now show that G2 G 0 on M, and the conclusion then follows
from Theorem 13J of [6].

We first define the subset Mo of M consisting of those functions in M whose
Laplace transforms are rational with simple poles; then M, is dense in M
[10, p. 467]. For functions in M,, it can be verified by direct computation that
(G2 -G)( 0 [8, p. 61]. If ( is an arbitrary element of M, there exists a
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sequence {n}n=l C Mo such that lim,_, ,. Then using the continuity of
G2 and G2,

(72)

(G2

and the claim is established.

G) (G G)lim .
lim (G2 G

=0,

(73)

Well-known manipulations I3, p. 607] show that there exists a 6 > 0 such
that Re G(jog) _>_ 6 for all real o9. Similarly there exists a 2 > 0 such that IG(jog)l <= 2
for all real o9. Hence, using Parseval’s theorem we now have that for all M,

(G(,

2re
(G(jog) + GzOog))[ZOog)l 2 do9

Re 0)lZ(o9)l do9
2n

(74) < IZOog) do9

Hence condition (b) of Theorem is satisfied.

Now suppose xo e Z and let e L solve G+ xo There exists an element
2 eL such that Xo 2(I + ed)-2o, and a simple calculation [8, p. 64 shows
that

(75)

where
Now let a solve (1 + GN)a -fro. From Theorem 1 there exists an initial

state Xo s Z (and, therefore, an initial state o s 2) such that e s L2 L. Since

eL if and only if geLS, we have that there exists an floe2 such that
g sL L, and the proof of Theorem 2 is complete.

6. Concluding remarks.
1. An examination of the proof of Theorem 2 shows that this result also holds

for the case < < 0. Instability results were obtained in [3] for the case
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< 0 < by requiring that the open-loop system be unstable; without using
loop-shifting transformations, this is precluded here by the assumption that
belongs to L.

2. It appears possible to construct other instability criteria using the methods
developed here. An example is the instability counterpart to Popov’s theorem [3]
generalized to the infinite-dimensional case. A plausible procedure would be to
transform the original system to one having the form considered in Theorem 1,
and then conclude instability by using arguments analogous to those of 5.

3. Under the conditions of Theorem 2, in addition to L2 instability, it can
also be concluded that I1 ,12 as oe [8, p. 67]. In the finite-dimensional
case, this reduces to the state space instability of [3].

4. The Lyapunov function defined in 4 may be used, at least in some
restricted cases, to establish asymptotic stability in the large. Specifically, it is
shown in [8] that for the case gz(t) 0 for all real (and hence a 0) and u =- 0,
the origin of the system S is asymptotically stable in the large whenever
(G+IL), the range of G+ restricted to L, is a closed subspace of L. This
includes, for example, the case where the subsystem of G of the system S has a
rational transfer function. It is noted that, in view of the relationship
xt 2(1 + 0G)-12t, the stability of the origin of S implies the stability of the
origin of S.
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A CLASS OF EXPONENTIAL PENALTY FUNCTIONS*

FREDERIC H. MURPHY,"

Abstract. A class of penalty functions where the trial solutions may be interior or exterior to the
feasible region of a nonlinear program is developed. Conditions under which the trial solutions be-
come feasible are presented and a convergence rate is established. Also, trial values for the Lagrange
multipliers where convergent subsequences of the trial multipliers converge to optimal Lagrange
multipliers can be constructed from the trial solutions to the nonlinear program.

1. Consider the nonlinear programming problem (NLP)

(1) maximize f(x)
xeE

subject to

(2) gi(x)=<0 for/= 1,...,m,

where f and gi for 1, 2, ..., m are real-valued functions defined on E".
Penalty function algorithms for solving NLP translate this difficult con-

strained problem into a sequence of easier maximizations, where with each
iteration the penalty for infeasibility increases in the exterior algorithms [3], or
the penalty for being near the boundary while feasible decreases in the interior
algorithms [3]. The penalty functions are constructed so that all convergent
subsequences of solutions to the easier problems converge to optimal solutions
of NLP, either finitely or in the limit" and the value of the objective function either
increases or decreases to the value of an optimal solution depending on the
choice of penalty function.

We propose below a class of differentiable penalty functions in which with
each iteration the advantage of being interior to the feasible region improves and
the penalty for being exterior increases. The trial solutions, unlike with other
penalty function algorithms, can be interior or exterior to the feasible region, and
the value of the objective function is not necessarily monotonically increasing
or decreasing at each iteration.

Separately and independently similar approaches were developed by Evans
and Gould [2] and Allran and Johnsen [1]. Evans and Gould have made the
most general statement of this new class of algorithms and therefore have the
least detailed results.

Allran and Johnsen develop the most restrictive form of the penalty function,
and their conditions for convergence must be clarified. The more general results
herein reduce to statements of their results under appropriate restrictions.

Our class of functions is

(r(k)gi(x)(3) Fk(X) f(x) -)
where r(k) >_ s(k) _> and r(k)- .

* Received by the editors March 29, 1972, and in revised form November 6, 1973.
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Members of this class of penalty functions are

(4) f(x)- eg’(x),
i=1

eakgi(x)(S) f(x) , - ebkgi(x)(6) f(x) Z

where a > 1,

wherel <a< b.

The class of functions treated by Allran and Johnsen [1] is (3) with s(k) 1, and
(3) is a specific example of the class developed by Evans and Gould [2].

A disadvantage with interior penalty functions is that it can take as long to
find an interior starting solution as it takes to solve the nonlinear program [4,
p. 213]. Because the trial solution to an exponential penalty function can be
feasible or infeasible in NLP, we need not look for an initial feasible solution. Also,
by an appropriate choice of parameters, in the convex case we can guarantee that
all trial solutions are feasible in NLP.

Exponential penalty functions have the property that they are uniformly
bounded over any compact feasible region, and again by an appropriate choice
of parameters the gradient remains uniformly bounded over the feasible region.
In the limit as r(k) , the penalty function (3) has the valuef(x)ifx well satisfies
all the constraints. If s(k) o, this is true even for the points at the boundary of
the feasible region. As with other penalty functions, it can be shown that if f(x)
is concave and the constraints are convex, (3) forms a concave function, ensuring
that a local maximum is a global maximum. A convergence rate, trial values for
the Lagrange multipliers and upper and lower bounds on the value of an optimal
solution are provided.

2. Convergence results. Let

7)

(8)

S {x[g,(x) -< 0 for 1,... m},
T {xlgi(x) < 0 for 1, m},

(9) xke X maximize Fk(X)over X for k 1,2, ...,
where X is a compact set in E" containing the feasible region S and x* is an
optimal solution to NLP. We use lYl to represent the Euclidean norm of y for y
of any dimension, and to represent the closure of the set T.

THEOREM 1. Assume that
(a) S is a nonempty compact set,
(b) T=S,
(c) the functions f(x), g,(x), g,(x) are continuous.
(d) r(k) >__ s(k) >_ 1.

Then any convergent subsequence of x converges to an optimal solution of NLP.
Instead of restricting x to be in X, Evans and Gould [2 provide a growth

rate condition on the objective function and constraints to guarantee the existence
of x and ensure that xk is in some compact set after a finite number of iterations.
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This restriction of x is motivated by the fact that nonlinear programming algo-
rithms are designed to be used on a digital computer, which automatically re-
stricts x to a compact set. Condition (c) along with (9) guarantees the existence
of x since we are maximizing a continuous function (3) over a compact set. In
the convex case, x is automatically contained in a compact set without any formal
restriction.

Note that condition (b) implies T 4: . Allran and Johnsen [13 use the
weaker assumption that the interior of S is nonempty. This assumption is not
sufficient for Theorem to be valid in the nonconvex case. To see the need for
condition (b), consider the example:

(1 0) maximize 1/2x
xE

subject to

(11) g(x) __< 0,

where

(12) g(x)

4lxl- forlxl=<1/4,
0 for < Ixl 1,

Ixl- elsewhere.

Letting s(k) and r(k) k, we can determine Fk(x):

Hence,

(14)

1/2x ekt41xl 1) for Ixl-<- 1/4,

1/2x- for1/4<lxl=< 1,

1/2x ekl‘l 1) elsewhere.

1/2x for Ixl < 1/4,

F(x)= -x- for1/4 Ixl 1,

elsewhere.

In this case with F(x) the discontinuous limit of a sequence of continuous
functions, the maximum of F(x) does not exist. The supremum is , the limit of
any sequence Xh, h 1, 2, -’., with Xh 1/4, whereas the maximum of the original
problem (10) and (11) is 1/2 at x 1. If s(k) k, then

(15)

ek(41 xl

ekqX 1)

for Ixl-<_ 1/4,

for1/4<lxl< 1,

elsewhere,
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with the result that

1/2x for-1 =<x=< 1,
(1 6) F(x)

elsewhere.

From this we may infer that condition (b) is unnecessary if s(k) ’ , which
will be stated in Theorem 2 below.

LEMMA 1. Under conditions (a), (c) and (d), there exists a convergent sub-
sequence of xk; and for any such subsequence indexed, say, by ku, we have
xku S.

Proof. Assume q S. This means that for some constraint gh(X) and for
some/% sufficiently large, we have

(17) gh(x’’) >= 6 > O.

This implies F.(x)- as k, since (1/s(k,))er") + when r(k)
>= s(k) (use L’Hospital’s rule on x- leX as x to see this). However,

(18) Fk,(x) >= f(x) m

for x feasible in NLP since e raised to a negative number is less than one and
s(k) > 1. That is, we have a uniform lower bound on the maximum of Fu(x) and
a contradiction. Therefore, ff S.

Proof of Theorem 1. For any x0 T we have

(19) f(x) >= Fk,(x) >= Fk,(Xo).
Because F,(Xo) - f(xo), and f(x") --* f(ff) by the continuity of f(x), taking
limits in (19)we have

(20) f() >= f(xo).
Since T S, we can choose x0 arbitrarily close to x*, and

(21) f(ff) > f(x*).

By Lemma 1, ff is feasible; therefore, ff is optimal in NLP.
If we require s(k)T , we may drop assumption (b) in Theorem that is,

we no longer require that S.
TI-IEOREM 2. If conditions (a), (c) and (d) hold, and if s(k) T v, then any con-

vergent subsequence of x converges to an optimal solution of NLP.
Proof. Let xu ft. Then by Lemma 1, ff is feasible. Since s(k) , Fk(x*)- f(x*) as k --, . Now

(22) f(x’) >= F(x) >= F,.(x*).

By taking limits as k, and noting that f(x) is continuous we have

(23) f() > f(x*).

That is, (23) is an equality and is optimal in NLP.
By noting (19) and (22) we have the following.
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COROLLARY 1. If the conditions of either Theorem or Theorem 2 are satisfied,
then
(24) Fk(Xk)

All exterior algorithms have the disadvantage of producing trial solutions
that are infeasible at each iteration and are feasible only in the limit. Algorithms
like the cutting-plane methods of Kelley [5] and Veinott [8] have this difficulty
as well as does the differentiable exterior penalty function discussed in [9].

Allran and Johnsen [1] show that with their penalty function, after a finite
number of iterations there exists an x e T that is a local maximum of Fk(X). This
is not true for the more general function (3). For example, let f(x)- x, gl(x)

(X 1)3 and gZ(X) --X in NLP, x e E 1. Using (5),

(25) VFk(X e"tx-1)33(x 1)2 + e -akx

For k large, VFk(X . 1, or greater than one, for x e S [0, 1], which means any
local maximum of Fk(X) is infeasible. Also, it is not true that any convergent sub-
sequence of local maxima of Fk(X converges to a feasible point of NLP for all
possible choices of the gi(x), even with the penalty function of Allran and Johnsen
[1]. However, under certain conditions all of the trial solutions will be feasible
after a finite number of iterations. It is not necessarily true, however, that once a
trial point is feasible, all the subsequent x are feasible. The trial solutions may
be feasible and then infeasible a finite number of times.

THEOREM 3. If f(x) is concave, g(x), g,,(x) are convex on E", T is non-
empty, S is compact, r(k)/s(k) --+ oo, and Vf(x), Vgl(x), Vg,,(x) are continuous,
then there exists an integer K’ such that every penalty function maximizer over E"
is feasible for all k > K’.

Proof. We show that for a fixed point x0 T and any xB on the boundary
of the feasible region, the directional derivative of Fk(X at xB in the direction
(xn Xo) is negative for k sufficiently large. Although the value of k is dependent
on the choice of xn, the continuity of gradients allows us to find a K when the
directional derivative is negative for all xn for k > K. Hence Fk(X is decreasing
as x is translated from xn out of the feasible region in the direction (xB Xo).
Now, for any x S, there is an xn on the line connecting Xo and x. Because the
directional derivative at xa in the direction (xn- Xo), which is the same as
(x xn), is negative, Fk(XB) > Fk(X for k sufficiently large by the concavity of
Fk(X). Thus, there is a boundary point xn with Fk(Xn) > Fk(X corresponding to
each infeasible x for k sufficiently large, which means xk is feasible for k sufficiently
large.

Note that

(26) VFk(X) Vf(x) y’. ertk)g’t’)r(k)’-"
i=1 )VgiiX)"

Let Xo be a point in T and x be a boundary point of S, that is, for at least
one h 1, m}, gh(X) 0. Let

(27) 26 max {gi(xo)’i 1, ..., m}.
Since each gi(x) is convex,

(28) 0 > 26 _>_ gi(xo) => gi(x) + Vgi(x)(xo x).
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If gi(x) > 6, we have

(29) 0 > a > Vg(x)(xo x).

At iteration k,

(30)
VF(x.) V/(x.)-

VV(x.). (Xo x) V/(x). (Xo x)

(31)

E
{i:gi(XB) <-- t}}

Observe that for h such that gh(X) <= (, X S,

(32) er(k)gh’)r(k) er(k)b r(k)s(k---;IVgh(X) (Xo x)l s- IVg(x)" (Xo x)l --, 0

as k m, since e’(k)ar(k) 0 as k oe and s(k) > 1. Note that (32) is uniform
for x e S with gh(X) =< 6 since Vgh(X). (Xo x) is uniformly bounded for x e S by
our assumption on the continuity of the gradients of gl(X), ".., gin(X).

Therefore, there is a K such that, for k >= K and x e S with gi(x) < 6,

(33) letk)g,O,) r(k)s(k--Vgi(x)" (Xo x)l < e.

For x e S with 0 > gh(x) > fi for some h e 1, m} by (29),

r(k) e(k)g.(x)ar(k)
etk)tx)V&(x). (Xo X) <= < 0(34)

s(k)

For x e S with gh(X) 0 for some h e 1,... m} by (29),

(35) r(k)
s(k)

r(k)
Vgh(X)" (Xo X) __< -,,6 , --O.

Note that (35) like (33) is uniform for x S.
By our assumptions that Vf(x) is continuous and S is compact, we know that

there is an M > 0 with

(36) ]Vf(x). (Xo x)l-< M.

Using (29), (33) and (34) for k > K with
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VV(x.). (x0 x.) _>_ -M

>-M(37)

Consequently, by (35) there is a
on the boundary of S for k _>_ K’.

rlk) Z Vg,tx,). Xo x,) Z

r(k)
s(k)

gi(Xo)- me,
{i:gi(xB) O}

r(k)

K’ such that VFk(Xn). (Xo xn) > 0 for all xn

Since the directional derivative of Fk(x) at xn in the direction (Xo- xn)
(towards Xo) is positive, it is negative in the direction (xn Xo) (from xn away
from the feasible region). Therefore, Fk(x < Fk(xn) for all x xn + q(Xo xn),
q < 0, because Fk(x is concave. We know that for each x q S, there is a cor-
responding boundary point xn such that

(38) x=xn+q(xo-xn) withq<0.

Therefore, for each x q S, there is an associated point xn S, where

(39) Fk(X) < Fk(Xn) for k >_ K’.

Since Fk(x is continuous and S is compact, the maximum of Fk(x) over S exists
and by (39) is the global maximum of Fk(x over E". That is, x exists and is in S
for k > K’.

We next establish convergence rates for our class of penalty functions Fk(x).
Since we have shown that the trial solutions are feasible after a finite number of
iterations, we need only establish rates of convergence for feasible trial solutions.

THEOREM 4. If X S, then

m
(40)

s(k) >= f(x*) f(xk) >_ O.

and

(41)

Proof. Since x S, f(x*) f(xk) >= O. Also, gi(x*) =< O’ that is, er(k)g’(x*) <= 1,

m
f(x*)

s(k) <= Fk(x*)

<= F(x)
<= f(xk),

or

m
(42) 0 < f(x*) f(xk) <= -s(k)"
We see that from the same set of inequalities (41), we can express the convergence
rate in terms of the value of the penalty function at the trial solution. That is,
from (41),

m
(43)

s(k) >= f(x*) Fk(Xk) >_ O.
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Note that the upper bound of (42) and (43) does not depend on x being feasible.
Under the assumption of uniform concavity of f(x), we may establish the

rate of convergence of x to an optimal solution.
DEFINITION 1. A real-valued function f(x)is uniformly concave [6] on a

convex set T if there exists a nondecreasing function 6(v) > 0 on (0, De) such that
for x, y T,

(44) f(1/2(x + y)) >= 1/2f(x) + 1/2f(y) + 6(Ix Yl),

where Ix Yl is the Euclidean norm.
An example of a uniformly concave function is any strictly concave function

over T with T compact [6]. Since uniformly concave is stronger than strictly
concave, x* is the unique solution to NLP and x -0 x*.

THEOREM 5. Iff(X)is uniformly concave on S and 6(v) is strictly increasing in
v, then for x S,

(45) Ix-x*l<--’-(2)"
Proof. Since x is feasible, by Theorem 4,

rn
(46) If(x*) f(xk)l <= s(k)"
And since x* is optimal and 1/2(x* / x) is feasible,

(47)
f(x*) >= f(1/2(x* + x))

>= 1/2f(x*)+ 1/2f(xk) + a(lx* xkl)

by uniform concavity. Thus using (47),

1/2f(x*) 1/2f(x’) >= 6(Ix* xl).(48)

Using (46),

m
(49)

2 s(k) >= 6(Ix* xk]),

which means

(50)

(51)

6-1(2(k) lx*--xkl.

As an example, if 6(r) r2, then

2s(k) ->- Ix* x[.

As with the penalty functions, we can generate trial Lagrange multipliers
where the limit of any convergent subsequence is an optimal set of Lagrange
multipliers. Here setting

r(k) erk)g,x for m(52) u
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we have trial Lagrange multipliers. With s(k) 1, these are the trial multipliers
of Allran and Johnsen Ill. The proof that convergent subsequences of u converge
to the Lagrange multipliers of NLP is omitted as it is routine. It can be found
in [7].
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GENERIC SOLVABILITY OF
THE DECOUPLING PROBLEM*

E. FABIAN AND W. M. WONHAM’t"

Abstract. For the linear multivariable system 5 Ax + Bu, z Dix (is k), decoupled (non-
interacting) control is shown to be achievable for "almost all" sets of real matrices {A (n n),
B (n m);Di (qi n), is k}, having the dimensions shown, if and only if

qi<= min(n,m- + min qi).
i= <_i<_k

With (n, m, qx, "’", qk) subject to the inequality, the exceptional matrix sets for which decoupling is
impossible belong to a proper algebraic variety in N, N n +nm + (q, + + qk)n.

1. Introduction. Given any formally stated problem of control law synthesis,
it is important to know whether the problem is solvable for "most" or "typical"
sets of parameter values which are likely to be met in practice, or solvable only for
special or highly restricted parameter sets, the occurrence of which is rare. In the
former case the problem may be called "generically solvable", or simply "generic".
In this paper we formalize the property of genericity for a wide class of synthesis
problems of linear multivariable control, and obtain necessary and sufficient
conditions for genericity of the extended decoupling problem in the version studied
in [13, [2]. The main result is stated in 3.

2. Genericity and well-posedness. Let A, B,... be matrices with elements in
[ and suppose 1-I(A, B, ...) is some property which may be asserted about them.
Most properties of interest to us will turn out to hold true for all points (parameter
sets) except some which lie on an algebraic hypersurface, and which are thus, in
an intuitive sense, atypical. For the sake of precision we borrow some terminology
from algebraic geometry (cf. [3]). Let p (Pl, "’", Pu)e [ and consider poly-
nomials e N[2, ..., 2v], where the /i are indeterminates. A variety V [ is
the set of common zeros of a finite number of polynomials p, ..., Pk:

V {p :i(Pl,’", Pu) O, iek}.
V is proper if V 4: [N and nontrivial if V 4: . A point p 6 [N is generic relative
to V if p V. A property 17 is a function from [ to {0, 1}, where H(p) 0 (or 1)
means H fails (or holds) at p. Let V be a proper variety. H is generic relative to V if

ker 1-I {p" 1-I(p)= O} V;

and H is generic if such a V exists.
Assign to the usual topology. If V is a variety, it is clear from the continuity

of its defining polynomials that V is closed. Thus if FI is generic relative to V and
if p Vc, 17 holds throughout a sufficiently small neighborhood of p: in this sense
17 is well-posed at points p Vc.
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Let Po V, with V nontrivial and proper. It is clear that every (open) neigh-
borhood of Po contains points p q V: otherwise, each defining polynomial of V
vanishes identically in some neighborhood of Po, hence vanishes on Nu, in contra-
diction to the assumption that V is proper. Thus if H is generic relative to V and if
H fails at Po, H can be made to hold if Po is subject to a suitable perturbation,
arbitrarily small. We conclude that the set of points p where a generic property is
well-posed is both open and dense in Nu. However, from a practical viewpoint
not too much can be made of this fact alone, as there exist in Nu open dense
subsets with (positive) Lebesgue measure arbitrarily small.

As a simple example of genericity, let A (n x n), B (n x m) be real matrices,
write (A, B)= p Nu (N n2

nt- nm), and let FI(p)= if and only if p (i.e., the
pair (A, B)) is controllable. It is easy to see that H is generic. Indeed, (A, B) is
controllable if and only if the n nm matrix

X [B, AB,"’, A"-IB]

has rank n. Write xi, 1, ..., nm, for the columns of X. Controllability fails if
and only if every determinant formed by selecting n columns xi vanishes" that is,
O(p) 0, where

(p) (det [xilxi2 xi.])2,

and ranges over all sets of indices (il, ..., i,) with <= il < i2 < < i, <= nm.
Let be the locus of zeros of q. Clearly V is a variety in Nu and, since controllable
pairs exist, V is proper. Of course, the fact that the controllable pairs are open
and dense in parameter space is well known [4, p. 100], but the proof of denseness
here is a little simpler than the one just cited.

Finally, we remark that if rI is generic, the set

V= N V
/kerH

is again an algebraic variety [3, Chap. 1], and H is well-posed at every point in

VC. In general, ker H is a proper subset of ., that is, there exist points p (in V)
where H holds and may or may not be well-posed.

3. Extended decoupling problem. Consider the system

(1) 2 =Ax+Bu,

(2) z Dix, 6 k.

Here A, B and the D are real matrices of dimension respectively n x n, n x m
and q x n (iek), with n _> 1, __< m __< n, and =< q __< n (iek). In the geometric
decoupling theory 1], [2], one considers the corresponding linear transformations
A’Y" --, 2, B’q/--, 2, D’2 --, fi on N-vector spaces Y’, q/, with dimension
d(Y’) n, d(q/) m, d() q. It is known that the extended decoupling problem
(EDP) is solvable, possibly by use of dynamic compensation, if and only if

(3) ’ + ker D o, e k,
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where ’ is the largest controllability subspace contained in the subspace

(4) sUi f’l ker Dj.
ji

Solvability ofEDP is thus a property H of the parameter set (A, B, D1, "", Dk),
regarded as a point pc NN, with N n2 + nm + (ql +"" + qk)n. Our main
result is the following.

THEOREM. 1-I is generic if and only if

(5)

and

(6)

qi<n=
i=1

m >= + qi- min qi.
i=1 <i<_k

Roughly speaking, the theorem means that EDP is generically solvable if
and only if the row spaces of the D are (generically) independent, and the number
of (generically independent) control vectors (i.e., columns of B) is sufficiently
large. Since qi __> we always need m __> k; and if, for instance, m k, we must
have q- for all i.

The following notation will be used. A prime denotes matrix transpose; dual
linear transformation, or dual space. If n, m are integers,

n V m max (n, m), n Am=min(n,m).

If for each p N, (p) c is a linear subspace, we write

d(’) r (g)

to mean that the generic dimension of N is r, i.e., that d((p)) - r only for p in
some fixed proper variety V c [ depending on the function (.). Subspace
inclusions written N c 5 (g) are to be interpreted in the same fashion. We observe
that a finite union of proper varieties is a proper variety; hence if a finite set of
propositions each holds (g), the entire set holds simultaneously (g).

Proof of theorem.
(i) Preliminaries. It is clear that

(7)

and

(8)

d(ker Di) n qi (g), 6 k,

d(Im D’) qi (g), e k,

since the dimensional evaluations fail at p only if all q x q minors of the qi n
matrix D vanish. Similarly,

(9) d(j,ImD)=nAj.,qJ(g)’ ik,

and

(10)
d(Ki) n d(-)

n- n A Z q (g),
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By the same reasoning,

(11)

and

(12)

or

d(Im B) m (g)

d(Im B I"l 3Ui) d(Im B) + d(Ui)- d(Im B + 3Ui)

=0V (m-nx, qj)(g), ik.
j=/:

(ii) Necessity. Suppose EDP is solvable at p. By (3) and (4),

j=/=

9ffi + ker D f, isk,

ImDj) f-) ImD; 0, isk,
ji

that is, the subspaces Im D’ c f’ are independent. It follows from this and (8)
that EDP is generically solvable-only if

(13) qi n,
i=1

as claimed in (5). By (10) and (13),.

(14) d(,Ui) n- qj(g), i6k;
ji

and by (12) and (13),

(15) d(ImB f)Ui)= 0 V (m- qj)(g).
Now if Di 4: O, (3) implies N’ 4:0 and therefore (see [1]) Im B f) i 4: 0. Thus
by (15) generic solvability of EDP implies

m- qj_>_ 1, i6k,
j:/:

which is equivalent to (6).
(iii) Sufficiency. Suppose (5) and (6) hold. Write j:i qj q’i. By (5) and (10),

(16) d 3fi n q (g).

Write ImB . Using (10), (11) and (16) we have

d(,ff + )= n A (n- q’i + m)

>__nA(n+l) (by (6))

n (g).
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It follows that 2U + 2F (g) and thus

AoU, c ,vd, + ] (g),

By [2, Lemma 4.3, part (i) of proof] we have

N’ 7 (g),

where

(lYa) +l VI (A’ + ),

and

(17b) N0 0.

It will be shown that N7 ;( (g). For this it is convenient to use a more
refined method than heretofore. Replace pc [N by the indeterminate ; (21,
", 2N); i.e., . is simply a list representing the N entries of the matrices

A, B, D1,"’, Dk regarded as literal variables. We shall consider A,..., Dk as
matrices over the integral domain N[,] or its fraction field N(,). We then regard
the I’ defined by (17) as subspaces of the vector space R"(;t). Let ri, (resp. s,) be
the dimension of N’ ({esp. S’ AN’ + ) over R(;). We now compute the r,
and si,, dropping the subscript for convenience.

LEMMA. In the setup just described, let

5u Au +,
(18) ,+ oU f-) " # 0, 1, ,n,

0 0.

Then

s. n A (r. + m),

(19) r.+ n- n A (n- s. + q’), /l- 0, 1,

ro 0o

Proof Let R. be an n x r. matrix over [R(;) whose columns are a basis of
introduce the n x (r. + m)matrix

(20) . [AR., B],

let S. be an n x s. matrix such that Im S. Im ., and let S. be an (n s.) x n
matrix such that ker S. Im S.. Let D be a q’ x n matrix such that ker D
and write

Then by (18),

(22) N" + ker T..
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We define the rank polynomial O(M) of a matrix M over N(,) to be the sum of
squares of the minors of M having maximal dimension. Thus M is of full (i.e..
maximal) rank if and only if O(M) # 0. By (20),

(23) s, n A (r. + m)o 0(.) =/= 0.

By (21),

(24) rank T. n A (n s. + q’) O(T.) # 0;

hence by (22) and (24),

ru+ n n A (n su + q’)> qt(r.) # 0.

Since r0 0 trivially, it follows that (19) is true if and only if

(25) O(T,-1)0(o,-1)" 0(To)0(0) # 0.

A simple inductive argument on / shows that the rational matrices
and T,(,) have the property that ,(p) and Tu(O) are defined (g) for p e Ru, and
that, if Nu(O), 5u(p) are computed by (18) with 2 p, we shall have

and

5.(p) Im ;.(p)(g)

N,+ l(p) ker Tu(p)(g).

Therefore, to prove (25) it is enough to replace/, by some p [RN for which the
asserted dimensional evaluations can be verified. For this let el,..., e, be the
unit vectors in [N, put e,, 0 if v > n, and define

(26)

Aej O,

Aeq,+r era+r,

D [Iq, 0],

Then easy computations verify that the " and " c 2F generated by (18) with
(26) indeed have dimensions r. and s. given by (19). Hence the polynomial in (25)
cannot vanish, and the lemma follows.

From the lemma it results at once that

d(’) ri, (g)

for the subspaces ’ f defined by (17). We claim that

(27) ri. n q’i, k,

and hence that

(28) ’ Jf (g), e k,
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as asserted. Dropping the subscript we have from (19)"

r.+l =n-n A [n-n A(r.+m)+q’]

=0 V In A (ru + m) q’]

>= n A (ru + m)- q’

>= n A (r, + + q’)- q’ (by (6)).

Ifru<n-q’,thenr.+ +q’__< n, so

ru+ 1__> (ru+ + q’)- q’

=r.+l.
Since [11 the N" defined by (18) are nondecreasing, and since d(")_<

n q’, it follows that r. T n q’ with convergence in at most n q’ < n steps,
and the claim (27) is proved.

Finally, (5) implies that

D1
rank

i=1

qi(g)

rank D (g);
i=1

hence that

and so

Im D) 91 Im D’i 0 (g),
jf

;,U + ker D 0 (g),

This combined with (28) shows that (3) is true generically.

4. Concluding remark. The main result may be a useful practical guide in
identifying situations where dynamic decoupling is likely, in principle, to be
feasible. The notions of "generic solvability" and of "well-posedness" introduced
here are nevertheless rather primitive. They imply nothing about the "well-
conditionedness" of the computations leading to a solution at a well-posed
parameter set, or about the sensitivity of the solution in the neighborhood of such
a set. It seems likely, however, that little could be hoped for in those respects if
genericity were absent.

Acknowledgment. The authors are indebted to B. Francis for several helpful
discussions.
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GLOBAL CONTROLLABILITY OF
DISTURBED NONLINEAR EQUATIONS*

D. L. LUKES

Abstract. In [1] the author dealt with the global controllability of nonlinear ordinary differential
equations. The present paper treats a more general problem wherein the controller is required to do
its steering in the face of measurable but unpredictable disturbances entering the system equation.
Appropriate definitions of strong and weak controllability are made and lead to what the author calls
a compensator. Sufficient conditions for controllability and existence of a compensator are derived.
The results are of some interest in differential games as well ag in control.

1. Statement of the weak and strong controllability problems. The control
theory of this article is based upon the equations

(1.1)

(.2)

(1.3)

2(t) F(x(t), u(t), v(t), t),

X(to) Xo, x(t x

u(t) O(Xo, x l, t, v),

with to <- _<- tl and v @.
Equation (1.1) is a differential equation with variables x Ra, u e Rb, v R

and [to, tl]. The map F" R R W to, tl] Ra and the real parameters
o, are assumed to be given. denotes a dense linear subspace of the Banach
space Lto, tl] of equivalence classes of Lebesgue integrable mappings of [to, tl]
into R and v(.) denotes an element of v 9. To simplify the presentation will
always be selected so that each v @ can be represented by a continuous v(.).

In the context of a discussion in which Xo, x of (1.2) are treated as fixed, the
notation {x,u}v will be employed to denote the collection of pairs of maps
x "[to, tl] -- Ra absolutely continuous and u’[to, tl] Rb continuous such that
(1.1) is satisfied at a.e. e [to, tl] and both equalities in (1.2) hold. The v is
called a disturbance and x, u compatible state and control responses, respectively.
The following definitions are based upon equations (1.1)-(1.2).

DEFINITION 1.1. Call F weakly controllable if for some dense , as described
above, the following conditions are satisfied for each Xo and x in R

(a) {x,u}v :/: for each ve.
(b) There exists a map v --. x, u {x, u} such that for any satisfying

[Vo,tl V[vo,,l for some [to, t] there exist :, v s {x, u.} such that , ,[t,o,q
Xv, /’/vi[o,t]"
Remark 1.1. Part (a) of Definitions 1.1 and 1.2 ask that there be control

functions doing the steering and (b) asks that the state-control function pair x(t),
u(t) resemble a response to v depending upon only the past history of v.

* Received by the editors March 15, 1973, and in revised form July 26, 1973.

" Department of Applied Mathematics and Computer Science, University of Virginia, Charlottes-
ville, Virginia 22901. This work was supported by the United States Office of Naval Research under
Contract N00014-69-A-0060-0010.
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DEFINITION 1.2. Call F strongly controllable or simply controllable if for some
dense @ the following conditions are satisfied for each Xo,

(a) {x, u}v 4= for each v

(b) There exists a map v xv, u {x, u} such that for any e satisfying
F:lvo,tl VlVo,q for some [to, t], x, ulvo,q x,,

In other words a controllable F is a weakly controllable F for which it
suffices to use v, x, u in the definition of weak controllability.

The next definition leads to a useful alternative definition of strong control-
lability.

DEFINITION 1.3. A compensatorfor F is a map ’R" x R" x [to, tl] x --, R
with the properties"

(a) (x0, x 1, t, v) is continuous in for each fixed Xo, x R" and v @.
(b) (Xo, xl ., b)lVo,t (Xo, Xl ", v)lVo,q for all Xo, X

v satisfy ]Vo,,l Vlvo,, for some Ito, 1].
(c) Equations (1.1)-(1.3) have at least one solution x(. for each Xo,X R.
Remark 1.2. Comparison of Definitions 1.2, 1.3 shows that F has a compen-

sator if and only if it is strongly controllable. If F has a compensator then use

u (Xo, x 1,’, v) and the axiom of choice to select a compatible x(.) (if the
solutions of (1.1) are not unique) to obtain the required mapping v- x, u,.
When F is strongly controllable the composition v---, xv, uv--, uv induces the
required compensator .

The primary aim of this article is to establish the weak or strong controllability
of a substantial class of nonlinear (and linear) differential equations.

2. Relationships with other control problems. The success of Kalman’s
original geometric definition of controllability together with its algebraic charac-
terization is widely recognized in linear control theory. The controllability
hypothesis occurs frequently in the theory and in particular has led to elegant
results illuminating the ultimate capabilities of feedback in performance and
stabilization. The situation for nonlinear control is understandably in a much
more primitive state. Although the geometric definition readily extends to non-
linear systems the detection of controllability there is to a considerable extent an
unsolved problem. In I3] the author did achieve some success in dealing with
nonlinear systems possessing a controllable linear part.

The basic difference between this earlier work and the problem to be studied
here is the occurrence of the disturbance term v in (1.1). In problems where v is
absent from F the definitions of controllability given clearly reduce to the earlier
notion, i.e., the concept has been appropriately generalized.

The need for the generalization arises in applications where an unpredictable
external disturbance enters the system to be controlled. In some cases it might be
in the nature of a stochastic disturbance and in other problems simply be the
output of some adjacent equipment. The theory of differential games frequently
uses such a model with the v being interpreted as the control variables of other
players who are trying to influence the state response.

In some control problems the disturbance v(r), to =< r =< l, is unavoidable
but known at the initial time. Those problems require no generalization of the
controllability concept since they can be treated as one of the original undisturbed
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type, if(x, u, t) F(x, u, v(t), t). However it is frequently unrealistic, in problems
involving disturbances, to assume that u(z), <= t, is in some sense dependent
upon v(r), =< r. The definitions of weak and strong controllability state this
notion of independence in a technically precise manner. To a considerable extent
potential future independence is already present in a weakly controllable system.
But it is the compensator function of a strongly controllable F which an engineer
requires in order to build the hardware for doing the steering.

In the theory developed in the following sections continuity properties of F
contribute to concluding weak controllability while differentiability strengthens
the conclusion to strong controllability.

3. The main results. Attention will be restricted to those differential equations
(1.1) for which F can be represented in the form

(3.1) F(x, u, v, t) Ax + Bu + f(x, u, v, t)

in which A and B are real matrices and f is continuous.
Define the Kalman index k(A, B) to be the rank of the matrix IB, AB,...,

A 1B] of size a ab whose columns are those of the indicated matrix products
of A and B.

THEOREM 3.1. F is (weakly) controllable if the following conditions are satisfied
(a) k(A, B) a;
(b) f(x, u, vo, t) 0 for some Vo R and all x R", u Rb and in a neigh-

borhood of l;

(c) sup If(x, u, v, t)l < oo for each 7 < o, the sup being taken over the set

Ixl < , lul < o, Ivl < , t [to, l].
COROLLARY 3.1. The system F Ax + Bu + C(x, u, v, t)v is (weakly) con-

trollable if k(A, B) a, the matrix function C is continuous and for each 3’ < oe
the sup ICI taken over the set Ix] < oe, ]ul < oe, ]vl < 7, e [to, t-] is finite.

Remark 3.1. The word weakly has been enclosed in parentheses in the con-
clusions of Theorem 3.1 and Corollary 3.1 since it can be dropped, i.e., strong
controllability can be concluded, by making the additional assumption that F
satisfies a Lipschitz condition. The required condition for Theorem 3.1 would
state that for each bounded subset K R" R R [to, l there exists a
number L such that

(3.2) If(x, u, v, t) f(, 3, v, t)l <= Ll[lx l + lu 31]

for all (x, u, v, t) and (if, 3, v, t) in K. In particular it is easy to check that (3.2) would
hold if, for example, f has continuous first order partial derivatives in the co-
ordinates of x and u. Corollary 3.1 can be dealt with by inequality (3.2) applied
to C(x, u, v, t) with continuity of the first order partial derivatives of C being
sufficient.

THEOREM 3.2. The system F Ax + Bu + f(v, t) is controllable if k(A, B) a,

f is continuous and f(vo, t) 0 for some vo R and all in a neighborhood of l.

Iff is continuous then k(A, B) a is necessary.[or F to be controllable.
COROLLARY 3.2. The system F Ax + Bu + C(v, t)v with the matrix function

C continuous is controllable if and only if k(A, B) a.
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Remark 3.2. Important special cases of Corollary 3.2 are those in which
C(v, t) is independent of one or both of the variables v, and more particularly
where C is the identity matrix.

Remark 3.3. The proof of Theorem 3.1 provides a synthesized formula for a
compensator for F.

THEOREM 3.3. The members of the one-parameter family of control systems
F Ax + Bu + ef(x, u, v, t) corresponding to the values of the parameter e in
some neighborhood of zero are controllable if:

(a) k(A, B) a;
(b) f(x, u, Vo, t) 0 for some Vo R and all x R, u R and in a neigh-

borhood of a;
(c) f(x, u, v, t) is continuous and satisfies inequality (3.2) for some L L

independent of K.
4. The proof of Theorem 3.1. The proof is developed by means of a sequence

of lemmas. To simplify the notation a preliminary translation of the origin in
t-space allows us to let to 0 and we denote tl as T, and x as xr. In view of the
earlier observation that when v is absent from F the definition of a controllable
system reduces to the standard one there is no reason to present the proof of the
following lemma which is proven in most texts on linear control theory (see
[2, p. 99]). (Ordinary matrix transposition is denoted by *.)

LEMMA 4.1. The following statements are equivalent:
(a) F Ax + Bu is controllable:
(b) k(A, B) a;

eABB* ea* da is symmetric positive definite and hence nonsingulart) s =J’o
for each > O.

It will prove convenient to introduce the following notations:

(4.)

(4.2)

(4.3)

(4.4)

rx(t) eaxo + S ea*T-t)Sr (xT eATXo),

r2(t B* eA*T-t)Sr (XT eATXo),
K x(t co) eA(t-) S eA*T-t)S. eAT-o)

Kz(t co) B* ea*r-t)Sr eAr-)

(4.5) Fl(X, u)(t) K l(t, co)f(x(co), u(co), v(co), co)dco,

(4.6) F2(x, u)(t) K2(t, co)f(x(co), u(co), v(co), co)do).

LEMMA 4.2. Any continuous solution x(.), u(.) to the system of equations

(4.7) x(t) F(x, u)(t) + r(t),

(4.8) u(t) F2(x, u)(t)+ r2(t),

0 <= <= T, provides a solution to the boundary value problem (1.1)-(1.2)for F given
by (3.1).

Proof. Since Theorem 3.1 assumes that k(A, B)= a it will be sufficient to
deal with the situation wherein S, as defined by (c) of Lemma 4.1 is nonsingular
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for each e > 0. Clearly (4.1)-(4.2) then define continuously differentiable functions
ri(t (i 1,2) on 0 =< __< T. Moreover the Ki(t, co) (i 1,2) determined by
(4.3)-(4.4) have continuous derivatives in the triangular region 0 =< co =< __< T
with the vertex co T deleted. The singularity of the K at this one point will
not prove to be an insurmountable difficulty.

Assuming that there exists a solution x(.), u(.) to (4.7)-(4.8) it is a trivial
matter to check that x(0) x0 since both St and Fl(x, u)(t) are zero at 0. By
noting that KI(T, co) 0 and r(T) XT it is apparent that F(x, u)(T) 0 and
consequently (4.7) computes x(T) XT as required.

The conclusion of the proof requires the verification of (1.1). The formal
differentiation of (4.7) together with employment of (4.5), (4.6), (4.8) and the
observation that K(t, t) I results in the calculation

.(t) lAx(t) + Bu(t) + f(x(t), u(t), v(t), t)]

(4.9) K(t, co)- AK(t, co)- BK(t, co) f(x(co),u(co),v(co),co)dco

+/’(t)- Arc(t)- Br(t).

Using the defining equations (4.1)-(4.4) one can easily show that

(4.10) cK(t, co) AK(t, co) BK(t, co) O,

(4.11) l(t)- Arc(t)- Br(t)= O.

The immediate conclusion drawn from (4.9)-(4.11) is the required equation

(4.12) .(t) Ax(t) + Bu(t) + f(x(t), u(t), v(t), t).

Remark 4.1. The formal differentiation in the last part of the proof of Lemma
4.2 requires a word of justification. First note that by restricting 0 =< < T the
singularity in K at co T produces no problem. The formal differentiation
of the integral F1 is legitimate as long as f(x(co), u(co), v(co), co) is continuous in co.
By the continuity assumptions on f, x(.) and u(.), that condition is met if v(. is
continuous. If v(.) is only bounded and measurable then equation (4.12) will in
general hold almost everywhere (Lebesgue measure). For the purpose of this
article it will be satisfactory to deal primarily with continuous v(-).

LEMMA 4.3. If F satisfies conditions (a)-(c) of Theorem 3.1 then there is a dense
linear subspace of continuous functions @ c L’[0, T] such that (4.7)-(4.8) have a
continuous solution x(.), u(.) for each v 9.

Preliminary simplification of the problem. Notice that without any loss in
generality Vo can be taken equal to zero (replace f(x, u, v, t) by f(x, u, v Vo, t)).
Furthermore the ri (i 1, 2) in (4.7)-(4.8) can be assumed to be identically zero
(since the transformation x x- r, u u- r2 preserves properties "(a)-(c)
off).

The candidate for is the collection of continuous maps v(-) from [0, T]
into R having the property that v(co)- 0 for some neighborhood (depending
upon v) of co T. Select arbitrary v e and consider the new function f(x, u, co)

f(x, u, v(co), co). This function inherits the properties off assumed in (b)-(c) of
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Theorem 3.1. Consequently it is clearly adequate to establish the existence of a
continuous solution x(. ), u(.) to the simplified equations

(4.13) x(t) FI(X, u)(t),

(4.4) u() v(x,

where in (4.5)-(4.6), f f(x, u, 09)is continuous on R" R [0, T] and

(4.1 5) f(x, u, 09) 0 for all x

u R and 09 IT- e, T] for some e > 0 (depending upon v). In addition there
exists a bound

(4.16) If(x, u, 09) __< 71 for all x R", u R and

Completion of the proof of Lemma 4.3. The proof is based upon an application
of the Schauder fixed-point theorem (see I1, p. 456]).

Consider the vector space E E E, where E" is the linear space of con-
tinuous maps from [0, T] into R" and E is similarly defined. E is to be normed
using ](x,u)] max]x(t)+ max]u(t)] in which the maximum is taken over
e 0, T]. This makes E a Banach space with convergence in the norm topology

being uniform convergence.
Consider the formula

(4.17) F(x, u)(t) Fl(X, u)(t), F2(x, u)(t)].

The following related statements will be verified"

(a) V defines a continuous map of E into itself.

(b) ]/V(x, u)l is bounded on E.

(c) For all p sufficiently large, maps E into the subset of E,

Ep {(x, u) [(x, u)(t + A) (x, u)(t)l <= pIAI, I(x, u)l =< p, all t, A}.

(d) Ep is a compact and convex subset of the Banach space E.

To aid in seeing that/V(x, u) E whenever (x, u) E, utilize (4.15) to write
e)

(4.1 8) Fi(x u)(t) Ki(t, 09)f(x(09), u(09), 09)d09,
,0

and notice that the integrand is continuous for 0 < 09 =< __< T- e and that the
upper limit of integration is continuous in t. Hence (4.18) defines continuous
functions of (i 1, 2).

By continuity on compact sets it follows that there exists a bound

(4.19) Ki(t, 09)] 72 for 0 __< 09 __< __< T-

(i 1, 2). Let (xo, u) E and (xk, uk) E with (x, u) converging to (xo, u)
as k . Estimation with (4.19) gives

IFi(x, un)(t) Fi(xoo u)(t)l
(4.20) fo=< 2 If(x(09), uk(09), 09) f(Xoo(09), Uoo(09), o9)1 d09,
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from which it follows by the continuity off and hence uniform continuity off on
compact subsets of R R 0, T] that the right-hand side of (4.20) converges
to zero as k . But this implies that the left-hand side converges uniformly to
zero and finally then that/(xk, uk) ff(x, u) as k . This proves (a). Part
(b) follows readily from (4.18) and (4.16) by continuity.

The first step in establishing (c) is to notice that from formulas (4.3) and
(4.4) one can show there is a constant )’3 such that

(4.21) IK(t + A, co)- Ki(t, co)l =< 731AI
for all 0 =< co =< < T- e, (i 1, 2). Then with this inequality estimate,

(4.22)

IF,(x, u)(t + A) F,(x,
min(t +A,T-c)

[Ki(t + A, co) Ki(t co)]f(x(co), u(o), co) dco

min(t + A, T-,

in(t,T- t:)
Ki(t, co)f(x(co), u(co), co) dco

for all (x, u) E. Conclusion (c) follows immediately from (4.22).
It is a simple exercise to show E, is a closed and convex subset of E. Since

Ep is a bounded subset of E, once its closed character has been established the
observation that it is an equi-uniformly-continuous family allows application of
the Arzela-Ascoli theorem to conclude its compactness.

A direct consequence of (a)-(d) is that for all sufficiently large p the restriction
of/ to Ep provides a continuous map of a compact and convex subset of a Banach
space into itself. Hence the Schauder theorem applies to produce the conclusion
that /V has a fixed point in Eo. In other words (4.13)-(4.14) has a continuous
solution x(.), u(.) in E and the proof of Lemma 4.3 is complete.

Conclusion of the proof of Theorem 3.1. Lemmas 4.1-4.3 show that under
the hypothesis of Theorem 3.1, for the dense linear subspace 9 L][0, T] of
continuous functions selected, there exists for each fixed Xo, Xr R a solution
x(.), u(.) to (4.7)-(4.8) on 0, T] for each v 9. This says that the first condition
in Definition 1.1, {x, u},, for each v 9, is met. Although the fixed point is
not necessarily unique the axiom of choice provides the means for selecting a
unique solution x, u {x, u} and thus a candidate map v x, u is available
for testing against Definition 1.1.

To show that condition (b) of the latter definition is met by the candidate
map, consider v, e 9 wi,th lto,q vlto,tl for some fixed [0, T]. What is re-
quired is showing that x, ulto,, can be extended to 0, T] as a solution to equations
(4.7)-(4.8) corresponding to replacement of v by in (4.5)-(4.6). Consider the
equations

(4.23) KI(Z, co)f((co), t(co), (co), co) do + I(T),

(4.24) fi(z) K2(z, co)f(if(co), (co), (co), co) dco + ?2(z),
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<- r <- T, where

(4.25) i(T)-- fl Ki(r, o9)f(xv(o9), uv(o9), v(og), 09)do9 + ri(’c

(i , 2).
If (4.23)-(4.24) can be shown to have a solution those functions could be

extended backward to [0, T] by setting (), R(r) x(:), u(:) for 0 __< : __< t.
Then using the fact that [to.,l v]to,,, the substitution of (4.25) back into (4.23)-
(4.24) and addition of the integrals would show that the extended maps ,
satisfy the equations

K,(, co)f(if(co), (co), (o9), o)) do9 + rl(r),

K2(r, co)f((co), (co), (co), co)de) + r2(r

for 0 =< r < T. Consequently by Lemma 4.2, condition (b) of Definition 1.1,
namely :, e {x, u} with :, lt0,t x, ulto,,l, would be verified.

The existence of a solution to (4.23)-(4.24) however has already been taken
care of by the remarks about the preliminary simplification preceding the proof
of Lemma 4.3 and the proof of that lemma. This completes the proof of Theorem
3.1.

Proof of Remark 3.1. This is an appropriate point to ask "why, without
additional assumptions about f, does the above argument not conclude strong
controllability?" If (4.7)-(4.8) fail to have a unique solution for each v there would
be some reason to expect that although F is weakly controllable it might not be
strongly controllable. (Of course those equations might not have solutions but
F could still be strongly controllable since the equations are obviously not
equivalent to (1.1).) However, any additional condition on f which guarantees
unique solutions would give the strengthened conclusion. One example is con-
dition (3.2).

Supposef satisfies (3.2) and for some v, e 9, lto,, vlto,, for some [0, T).
Since [xv[, lull, Iv[ and Ixl, lull, I1 are continuous they are bounded on [0, t] and
(3.2) can be applied to estimate the differences via (4.5)-(4.8)"

(4.28)
Ix()- x(r)l IKx(, co)lL[Ixo(co)- x(eo)l + lug(co)- u(o9)l] do

--< 72L [IXv(CO Xo(CO)l + lUv(O U(CO)l do

and similarly

(4.29) lu(og)- UO(O))I 72L [IXv(O))- X(09)I + lUv(09)- U(09)I d6o

for 0 _<_ r _<_ < T with the constant ,2 possible dependent upon but not :.
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Addition of (4.28)-(4.29) gives

dp(z) < 272Lp(z)(4.30)
d

where p()is the integral appearing in (4.29). Multiplication of (4.30) by
exp (-2?2L: and integration shows that

(4.31) p() exp (- 2y2L 0.

But p(:) >_ 0 and it is clear p() must be zero for 0 =< _< t. Hence xo, uolto,q x,
ul[0,] and the proof of the strong controllability is complete.

$. Remark about the lroofofTheorem 3.3. The details of the proofofTheorem
3.3 are not presented here since the approach is very much like the one used on
Theorem 3.1. Since the parameter 8 can be freely restricted to keep [el small, a
contractive mapping argument replaces the Schauder theorem to obtain weak
controllability. The strong controllability is a result of uniqueness exactly as
before.

6. Other remarks about proofs. Most of the corollaries follow from the
proven theorems without further explanation. In Corollary 3.1 the required
boundedness results from that of [Cl and the boundedness of [v(t)l which comes
from the assumed continuity of v. The appropriate choice Vo 0 is clear.

To show the necessity of the condition k(A, B) a in Theorem 3.2, suppose
that k(A, B) < a. From the linear theory (see [2, p. 99) there exists a nonsingular
change of state variables which transforms F into the form + lu + f(v, t)
in which , and/ have the form

A
0 A22

It is then clear that there are states which cannot be connected by a response for
each choice of v. The argument is concluded by noting that this property is pre-
served by nonsingular linear transformations on Ra.

7. Discussion of the results. Although the proofs were frequently non-
constructive, there are problems for which the developed theory presents a com-
putational procedure. For example if the control variable u is absent from f so
F is of the form F(x, u, v, t) Ax + Bu + f(x, v, t) with (3.2) holding, then the
steering compensator can be computed from (4.8) as

(7.1) u(t) O(Xo, x x, t, v) K2(t, co)f(x(co), v(o), co) do + r2(t).

The instantaneous measurement of the state x(t) and the disturbance v(t) would
be required in the implementation of (7.1). This synthesized compensator applies
as well to problems where u enters f.

Simple examples show that in general there will not exist a compensator that
will do the required steering if L], at least not if the steering signals are to
contain finite energy in the sense that [u(t)[ dt <= c. That is why the definition
requires that a compensator need only be able to steer against a linear subspace

which is dense in L]. In view of the remarks made in 2 and the results of [3]
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this sacrifice results from not allowing the controller future information about v.
Of course in some special cases a compensator exists with L. For example
consider F Ax + Bu + Cv and suppose there exists a matrix D such that
BD -C. Let u Dv + to transform F into F Ax + B. Then a com-
pensator for L is obtained by solving the resulting controllability problem
for the undisturbed system.

One can easily show that the compensators shown to exist in 3 can handle
a disturbance if Iv(t) v0l 0 sufficiently fast as l. In the differential game
setting in which v is interpreted as the control variables of opposing players this
says the v-players get weak toward the end. In capture problems the state splits
into x (x l, x2) with x, x2 R and 2 a. The capture condition then can
be taken as x x2. By selecting the final point on the diagonal in R R, the
player in command of u (the pursuer) can then guarantee capture for all evasive
maneuvers v 9.

As a final remark it should be noted that although the members v of the
disturbance class selected in the proofs "turned off" prior to t and thereby
killed off the nonlinear term the problem solved could not be treated by simply
waiting for the nonlinearity to disappear and then solving the problem of steering
an undisturbed linear system. The compensator never knows ahead of time
when the disturbance might vanish and in fact might not vanish until the very
end time, in which case it would be too late to do any corrective steering.
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CONVEXITY AND PROPERTY (Q) IN OPTIMAL
CONTROL THEORY*

L. CESARUf AND M. B. SURYANARAYANA:

Abstract. In the present paper the authors present a number of results concerning closure, lower

closure and lower semicontinuity in problems ofoptimal control. In these theorems the convexity ofthe
relevant sets plays a major role, together with certain further conditions, usually denoted as "semi-

normality" conditions, among which are, in particular, properties of upper semicontinuity of variable
sets. Particular emphasis is given to recent results where seminormality conditions have been reduced
to a minimum, or not used at all. We also show that certain analytical conditions of practical signi-
ficance, recently used in lieu of seminormality, imply a weak form of seminormality.

Introduction. In the present paper we present a number of results concerning
closure, lower closure, and lower semicontinuity in problems of the calculus of
variations and optimal control theory. In these theorems the convexity of the
relevant sets plays a major role, together with certain further conditions, usually
denoted as "seminormality" conditions, among which are, in particular, Kurao
towski’s property of upper semicontinuity I27] of variable sets, or Property (K)
(also denoted as Property (U)in [7]) and its recent variant, Property (Q) [7]-15].
Property (Q) has been recently used by many authors, such as C. Olech [31],
A. LaSota and C. Olech [29, T. S. Angell [1-1, R. F. Baum [2], D. E. Cowles [21],
[22], M. B. Suryanarayana [33], L. Cesari, J. R. LaPalm and D. A. Sanchez
M. F. Bidaut [4], C. ,Castaing and M. Valadier [6], S. N. Chow and J. D. Schuur [19]
and P. Kaiser [26].

In the present paper we summarize results concerning closure theorems ( 1),
lower closure theorems ( 2), and lower semicontinuity (3), with particular
emphasis on recent results where "seminormality" conditions have been reduced
to a minimum, or not used at all. In 1.7 we restate Property (Q) in different
forms and we prove, in particular, that certain analytical conditions of practical
significance ( 1.6), recently used in lieu of seminormality, imply weak forms of
seminormality.

1. Abstract Mayer problems.
1.1. Notations. Let G be a given measurable subset of the t-space E" of finite

measure, (t , ..., t); for every G, let A(t) be a given nonempty subset of the
x-space E", x (xl, x"), and let A {(t, x)lt G, x A(t)}. For every (t,x)
e A, let Q(t, x) be a given subset of the z-space U, z (z, ..., z).

Main Problem 1. Given a sequence of measurable functions x(t), (t), Xk(t),
k(t), teG, k 1,2, X, Xk:G E", ,k:G Uwith

(1) Xk(t A(t), k(t) Q(t, Xk(t)), G a.e., k 1,2,

find modes of convergence Xk X, k and conditions on A(t), Q(t, x), such
that
(2) x(t) A(t), (t) Q(t, x(t)), G a.e.

* Received by the editors October 2, 1972, and in revised form August 1973. This research was
done in the frame of AFOSR Research Project 71-2122 at the University of Michigan.

" Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104.
/Department of Mathematics, Eastern Michigan University, Ypsilanti, Michigan 48197.
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Let us assume now that for every (t, x) e A, a subset U(t, x) of the u-space E"
is given, let M {(t, x, u)l(t, x) A, u U(t, x)}, let f(t, x, u) (f, ..., f) be
defined on M, and let Q(t, x) denote the sets

Q(t, x) f(t, x, u(t, x)) {zlz f(t, x, u), u e U(t, x)}.
Main Problem 2. Given a sequence of measurable functions x(t), (t), x(t),

,(t), u(t), G, k= 1,2, x,xb G E", ,:G Er, ug: G E" with

(3)
x(t) A(t), u,(t) U(t, x(t)),

(t) f(t, x(t), u(t)), tGa.e., k- 1,2,...

find "modes of convergence" xk --. x, k and conditions on A(t), U(t,x),
M, Q(t, x), f(t, x, u) which imply that there is a measurable u G --. E such that

x(t) A(t), u(t) U(t, x(t)),
(4) (t) f(t, x(t), u(t)), G a.e.

These are the two main forms of the so-called closure problem in abstract
Mayer problems. Problem is obviously more general than Problem 2. On the
other hand, when Q is defined in terms off and U as in Problem 2, then implicit
function theorems (E. J. McShane and R. B. Warfield [30]) guarantee that solutions
to Problem 2 can be derived from solutions to Problem 1. Other implicit function
theorems have been proven, e.g., by C. Castaing and M. Valadier [6], C. J.
Himmelberg and F. S. VanVleck [24] and M. Q. Jacobs [25].

For the sake of brevity we shall report here only results concerning Problem 2
as more immediately applicable. Under the conditions of all statements below,
the implicit function theorems in [30] apply.

1.2. Filippov’s statements. To simplify the exposition, let v 1, G [a, b]
c E 1, and A be compact. For any (t, 2) A we denote by N(t, 2) (closed b-neigh-
borhood of (t, if) in A) the set of all (t, x) A at a distance =< 6 from (, ). For any set
F c E we denote by F, the closed e-neighborhood of F in Er.

We say that variable sets Q(t, x) are metric upper semicontinuous at (, .)
provided we have the following property.

Property (*). Given e > 0 there is a 6 > 0 such that for all (t,x)e
we have Q(t, x) [Q(t, x)].

The sets Q(t, x) are said to be metric upper semicontinuous on A provided they
have the above property at every point (, if)e A. This property is also denoted
as upper semicontinuity by set inclusion.

Filippov’s solution [23] to Problem 2 is well represented by the following
simple statement.

STATEMENT 1.2.i. Let X, Xk’[a,b] E" be absolutely continuous functions,
let (t)= x’(t), (t)= x’(t), b[a,b] a.e., u,’[a,b] E measurable, for which
(3) holds, and let x x uniformly in [a, b] as k (no further requirement on, ). Let us assume that the sets A and M are compact, that f is continuous on M,
and the sets Q(t, x) are all convex. Then there is a measurable u [a, b] E" for which
(4) holds.

Under the hypotheses of this theorem, say A and M compact andfcontinuous
on M, then the sets Q(t,x) are necessarily compact, equibounded, and metric
upper semicontinuous on A.
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1.3. Properties (K) and (Q). The property of "metric upper semicontinuity"
mentioned in 1.2, though quite adequate for equibounded closed variable sets,
does not seem to be general enough for closed sets which may be unbounded,
or at least not equibounded. A more general concept is the following one. Let S
be a metric space, Y a topological vector space, and let 2r denote the set of all
subsets of Y. Then a set-valued function Q" S 2Y is said to have Property (K)
(Kuratowski’s upper semicontinuity [27]) at a point g S provided

(5) Q()= n cl U Q(s),
> 0 sN,()

where N(g) is the closed f-neighborhood of g in S. Analogously, Q is said to have
Property (Q) at the point g S provided

O() N cl co U 12(8).
6 > 0 sN6()

Here cl Z denotes the closure of a set Z in the space Y, and cl co Z denotes the
closure of the convex hull of Z.

Since Q(g) is in any case a subset of the second member of (5), then the c sign
is always valid there, and so we are actually requiring that the sign hold in (5).
Also, Q is said to have Property (K) in S if it has property (5) at every point g S.
Sets Q(s) having Property (K) are closed as intersections of closed sets.

Note that if /= {(s, z)ls S, z Q(s)} A x Y, then ,/g is the graph of the
set-valued function Q, and it is easy to prove that ///is closed in A x Y if and only
if Q has Property (K) in A (cf. [7]).

For sets Q(t, x), (t, x) A, Q(t, x) E, as in 1.1, we may require Properties
(K), (Q) with respect to (t, x) in A, say for Property (Q)"

(6) Q(, ) n cl co U Q(t, x),
6 > 0 (t,x) N6(l,)

where Nil, ) denotes the set of all (t, x) A at a distance __< 6 from (L ). Alter-
nately, we may be concerned with the lesser requirement that, for every G,
the sets Q(L x), x A(), Q(L x) c Er, we have Properties (K) or (Q) with respect to x
in A(t), say, for Property (Q)"

(7) Q(r’, ) N cl co U O(, x),
> 0 xN6ff()

where N;(:) denotes the set of all x A([) with Ix l =< .
Concerning the sets U(t, x) and M in 1.1, we may remark that M is the graph

of U’A 2e", and thus, if A is closed, then M is closed in E+"+"’ if and only if U
has Property (K) with respect to (t, x) in A. Analogously, for each G, the set
M([) {(x, u)lx A([), u U(, x)} is the graph of U "A([) --* 2e", and thus, if A([) is
closed, then M([) is closed if and only if U has Property (K) with respect to x on
A(O.

There are many interrelations between the properties of the sets U(t, x), M,
Q(t, x), in particular concerning Properties (K) and (Q). For the sake of brevity we
refer to [7]-[12], [26].

Let us mention here merely that for sets Q which are equibounded, convex,
and closed, Property (*) of 1.2 (upper semicontinuity by set inclusion) implies
Property (Q). Also, let us mention here that, if we think of x as an n-vector
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(x 1, ..., x"), then Properties (Qo), 0 =< p =< n, have been proposed [213, [22],
which are intermediate between Properties (K) and (Q), and which actually are
similar to Property (K) with respect to p of the variables x and to Property (Q)
with respect to the remaining variables. For the sake of brevity we refer to [16],
[213, [22], [26].

1.4. A first extension of Filippov’s statements. Again we assume v 1,
G a, b]c E l, and A compact as in 1.2. The following statement extends
Statement 1.2.i.

STATEMENT 1.4.i. Let X, Xk:[a,b -, E" be absolutely continuous, (t)--x’(t),
k(t) X,(t), [a, b] a.e., Uk:[a, b] E"’ measurable for which (3) holds, and let

Xk --* X as k - uniformly on [a, b] (nofurther requirements on , k). Let A and M
be closed sets, f continuous on M, and the sets Q(t, x) be all convex, closed, and satis-

fying Property (Q) with respect to (t, x) in A. Then (4) holds 7].
Examples show that (4)may not hold if the sets Q(t, x)do not have the required

Property (Q), which, on the other hand, is not in general a consequence of the
continuity off on the closed set M. For a detailed analysis we refer to [7] and for
further remarks to [8], [9], [10] and [25].

The question has been asked whether a "seminormality" requirement lesser
than "the sets Q(t, x) having Property (Q) with respect to (t, x) in A" would suffice
in Statement 1.4.i, and for this "Property (Q) with respect to x only in A(t) (for
almost all t)" had been proposed. As long as we take "uniform convergence
Xk-- X" as the sole mode of convergence, this reduction in "seminormality"
requirements is not possible, as counterexamples have shown [10, p. 313]. In
the proof of a number of known existence theorems, "uniform convergence
Xk --* X" can indeed be replaced by other modes of convergences (see 1.5-2.3
below) for which far weaker seminormality requirements, or none at all, suffice.
However, in certain existence theorems "with an exceptional set" (see, e.g., [17],
[28]), "uniform convergence" in small neighborhoods of the exceptional set seem
to be relevant, and the statement of this section still applies.

1.5. Solutions to Problem 2 in connection with weak convergence. Again
concerning Problem 2, here are a few statements which parallel Statements 1.2.i
and 1.4.i in a more general context. We shall denote by IHI the usual Lebesgue
measure of a measurable subset H of E. Let G, A(t), A, U(t, x), f M, Q(t, x) be as
in 1.1, and M(t) as in 1.3. Instead of the usual requirements such as A, M closed
and f continuous on M, we shall need below only the following Condition (C)
(or Carath6odory-type continuity requirement):

Condition (C). For every e > 0 there is a compact subset K of G such that
IG KI < e, the sets Ar {(t, x) Alt K} and Mr {(t, x, u) Mlt K} are
closed, and f(t, x, u) is continuous on Mr.

As is well known, this Condition (C) is certainly satisfied whenever M G
x E" x E and f(t, x, u), defined on M, is measurable with respect to for every
(x, u) E" x Em, and continuous with respect to (x, u) for every G. Let us
mention here that Condition (C) as stated implies that for almost all G, the
sets A([) and M([) are closed and f([, x, u) is continuous on M([).

In the present context no further relation is needed between the functions
k, Xk, Uk, , X besides those indicated below, or (3) of 1.1.
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STATEMENT 1.5.i. Let x(t), Xk(t), (t), k(t), Uk(t), e G, k 1, 2, be measur-
able functions, x, xk :G E", , k (LI(G))r, Uk :G E", with xk - x in measure,
k weakly in (LI(G))r, jor which (3) holds. Let us assume that G, A(t), A, U(t, x),
f M, Q(t, x) are as in 1.1, that Condition (C) holds, and that for almost all e G,
the sets Q(L x), x A([), are closed, convex and satisfy Property (Q) with respect to x
in A(i). Then there is a measurable function u(t), G, u:G E jot which (4)
holds 13], 14].

STATEMENT 1.5.ii. This statement is the same as Statement 1.5.i with k
strongly in (LI(G)) as k oo, and for almost every e G, the sets Q([, x), x A(I),
are only closed and satisfy Property (K) in A(I) [_13], I14].

Remark 1. If the sets U(t) depend on only, then the differences

8k(t f(t, xk(t), uk(t)) f(t, x(t), uk(t)), tG, k= 1,2,...,

exist. If we know that 6k e (LI(G)), and that 6k --, 0 weakly in (L(G)), then State-
ment 1.5.i holds with the sets Q(i, x) only closed and convex (for almost all e G) (no
Condition (K) or (Q) required) [13]. This remark will be used in 1.6.i below, and in
1.6 we will give analytical conditions which guarantee that 6k 0 strongly in L.

STATEMENT 1.5.iii. Let x(t), Xk(t), (t), k(t), Uk(t), e G, k 1,2,..., be
measurable functions, X, Xk’G - E", , k e(L(G)), Uk’G Era, with Xk --* X in
measure, k -- weakly in (LI(G)), and for which (3) holds. Let us assume that
G, A(t), A, U(t, x),f M, Q(t, x), are as in 1.1, that Condition (C) holds, and that, for
almost all e G, the sets Q(i, x) are closed and convex. Also let us assume the jbllowing
two conditions.

Condition (). There are measurable bounded functions p(t),
p" G U, such that, for almost all e G, we have p(i) e Q(i, x)for all x e A(i).

Condition (fl). For every N > tr and almost all G the sets Q(, x) CI V(0, N),
x e A(), have Property (K) with respect to x in A(I). (V(0, N) is the ball of radius N
around 0
Then there is a measurable function u(t), G, u’G E"’, for which (4) holds I15].

Remark 2. If for almost all e G, and every e A(), it occurs that If(i, x, u)l
+ oo as lul oo, u e u(, x), uniformly in some neighborhood Na;(:) in A(i),

then Condition (fl) is a consequence of the remaining hypotheses. Thus, we see
that under the conditions of Statement 1.5.iii and If(t, x, u)l---, +
as stated, no "seminormality" requirement is needed. For the simple proof of this
remark, see [15], [7] and, in the present specific hypotheses, also [26].

Remark 3. A slight extension of Statement 1.5.iii can be obtained by replacing
(), (/3) by the following new requirements.

Condition (*). There is a measurable function p(t), G, p (LI(G)) such
that, for almost all G, we have p(i) Q(i, x) for all x A([).

Condition (/3*). For any N >_ sufficiently large and almost all G, the non-
empty sets Q([, x) 0 V(0, qN(i)), x A(i) satisfy Property (K) with respect to x in
A(i). Here qN(t) max {N, [p(t)l}, t G [15], [34].

If the sets Q(i, x) are closed and convex and for almost any and ff A(i) it
happens that If(i, x, u)l o as lul / , u u(, x), uniformly (in x) in some
neighborhood N6;(ff) of A(i), then Condition (fl*) is a consequence of the remaining
hypotheses, as pointed out in Remark 2 above.
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1.6. Lipschitz-type and growth-type conditions on f. Recently a number of
analytical conditions onfhave been proposed, under which closure theorems (as
well as lower closure and lower semicontinuity theorems) have been proved
without seminormality conditions. In a previous paper [18] we have considered
a great many of these conditions, all of the Lipschitz type or of the growth type.
We have shown in [18] that all these onditions easily imply a rather general
Property () onfor function-theoretical type (see below), on the basis of which the
expected closure theorems without seminormality conditions (and lower closure
and lower semicontinuity theorems) immediately ensue on the basis of the general
statements of 1.5. We list here a few of these Lipschitz-type and growth-type
conditions, say, (Fp), (Gpq), (Hq) (see [18] for many others). It is convenient here
to express these conditions in terms of the same sequences Xk(t), uk(t), ts G,
k 1, 2,..., of 1.1. We assume that G, A(t), A, U(t), M, f are as in 1.1, with
U(t) depending on only.

Condition (F) is a wide extension of the uniform Lipschitz condition of
f(t, x, u) with respect to u.

Condition (F). For __< p < , x, xk (L,(G))", IlXk X[[ 0, and

If(t, Xk(t), u(t)) f(t, x(t), uk(t))l <-- Fk(t)h(lXk(t) x(t)[), 6 G. k 1, 2,...

where h(), 0 _<_ < +oo, is a given monotone nondecreasing function with
h(0+) 0, h(() c(, c _>_ 0, 0 < 7 _-< P, for all ( >= (0 0 (c, 7, (o given constants),
and Fk(t)>O, tG, FkLp,(G), k= 1,2,..., are given functions with
p’= p/(p- 7)(p’ c if p), and ]]FklJp, _<-- C, a given constant.

For analogous conditions, (F) and others, see [18]. For previous work con-
cerning Lipschitz-type conditions in an analogous context, see E. H. Rothe [32] and
L. D. Berkowitz [3].

Condition (Gpq) partakes of both the Lipschitz-type and growth-type
conditions.

Condition (Gpq). For __< p, q < oo, X, Xk E (Lp(G))n,
{{Xk{Jp --’ Lo. ][/./[[q. []Uk{ [q =< L. (L. Lo given constants). X --- X in measure in G
as k . and there are constants c. c’... fl. 0 <. < p. 0 < fl <_ q. and a function
b(t) >__ O. G. b L(G). such that for all (t. x. u). (t. y. u) s M. we have

If(t, x, u)- f(t, y, u)l _-< (t)+ c(Ixl
For analogous conditions, (Gq) and others, see [18]. For previous work con-

cerning these types of conditions see F. E. Browder [5], and as mentioned, E. H.
Rothe [32].

Condition (Hq) is a variant of conditions (G,).
Condition (H,). For <= q < oo, x, xk measurable, x -, x in measure in G as

< L, a constant, and there are other constantsk c, u, uk (Lq(G))’, ]lul]q, Ilull-
c’, fl, 0 < fl =< q, and a function b as above such that for all (t, x, u), (t, y, u) M,
we have

If(t, x, u) f(t, y, u)l -<_ ,(t) / c’lul a-’.

For analogous conditions, (H oo) and others, see [18]. As mentioned, all these
conditions imply Property () below.

Again we assume that G, A(t), A, U(t), M,fare as in 1.1, with U(t) depending
on only, and we consider sequences x, , xk, , ua, k 1, 2, ..., as in Statement
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1.5.i satisfying (3) or

x(t), Xk(t A(t), Uk(t U(t), (t) f(t, Xk(t), uk(t)), tG, k= 1,2,....

Since U(t) depends on only, also the function k(t)= f(t,x(t),uk(t)), t G,
k 1, 2, ..., are defined on G. Under the sole Carath6odory-type Condition (C)
all functions k and k are measurable in G, and therefore so are the differences

6k(t f(t, Xk(t), Uk(t)) f(t, x(t), Uk(t)), t6G, k= 1,2,-...

We have proved in [18] that all of Conditions (Fp), (Gpq), (Hq) (and the others
considered in [18]) imply that 6k (LI(G)) (or 6 (Lp(G)) for some p >__ 1), and that

(8) lim 11’5k111 0.
k-"a.

Whenever (8) holds, we say that Property () holds for the given sequence. We
have now the following further closure theorem without seminormality conditions.

STATEMEYT 1.6.i. Let x(t), xk(t), (t), k(t), Uk(t), G, k 1, 2, be measur-
able junctions, X,X :G - E", , k (LI(G))r, Uk:G -* E", with k -’ weakly in
(LI(G)), .for which (3) holds. Let us assume that G, A(t), A, U(t), j. M, Q(t, x) are as
in 1. l, that U(t) depends on only, that Condition (C) holds, and that, for almost all

G, the sets Q(, x), x A([), are closed and convex jbr every x A(I). Let one of
the jbllowing conditions hold

(a) For some p, <= p <= , x, Xk (Lp(G)), and Condition (Fp) holds.
(b) For some p, q, <__ p, q <= z, x, XR (Lp(G)), Uk (Lq(G))m, and Condition

(Gpq) holds.
(c) For some q, <= q <= , uk (Lq(G))" and Condition (Hq) holds.

Then there is a measurable function u(t), G, u: G - E",.for which (4) holds.
This statement is a corollary of Statement 1.5.i and of Remark of. 1.5,

proved in [13]. The same conclusion of Statement 1.6.i of course holds if we only
know that x x in measure and Property () holds.

i.7. Property () implies a weak form of Property (Q). Property (Q) with
respect to x as defined by (7) has been used recently by many authors. Some (see,
e.g., M. F. Bidaut [4], C. Castaing [6]) have formulated it in the equivalent form"

(9) For every sequence of points x, s 1, 2,..., with x 6 A(), x ff as
S -’ Z, we have

Q(,:) UI clco [..J Q(:xs
h=l s=h

Another equivalent form is as follows"
(10) For every sequence of points (xs, z), s 1,2,..., with xA(f),

xs g as s , z Q(, x), we have

Q( if)= clco zs
h=l j

Keeping in mind the definition of the sets Q(t, x) we see that an equivalent
definition of Property (Q) with respect to x at (t, if) is as follows"
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(11) For every sequence of points (x, u), s 1, 2, ...,
xs --’ , we have

O(,ff) f’l clco f(,xs,u,
h=l

In 13] the remark was also made that for the proof of Statement 1.5.i, the
full force of Property (Q) with respect to x is not needed. We know already from
real analysis that there is a subsequence k, s 1, 2,..., such that x,(t) x(t)
pointwise a.e. in G as s m. All we need for the proof of Statement 1.5.i is the
following.

(12) We can select a further subsequence, say still k for the sake of simplicity,
such that, for almost all e G, we have

Q(t, x(t)) cl co f(t, x,(t), u,(t
h=l

We are now in a position to prove that Property () implies the weak form of
Property (Q) we have mentioned in (12).

SXAXEEX 1.7.i. If the sets U(t) depend on only, if Condition (C) holds, if
x(t), x(t), u(t), e G, k 1, 2,..., are measurable functions, if the sets Q(t, x(t))
are closed and convex for almost all e G, if6 0 strongly in (L(G)), x(t) x(t)
in measure in G as k , then (12) holds: that is, there is a subsequence k,s

1, 2,... such that x.(t) x(t) pointwise a.e. in G as s , and, for almost all
G, we also have

Q(t, x(t)) h= cl co f(t, x,(t), u,(t))

Proo Here 111 0, hence 6(t) 0 in measure, and there is a subsequence
[k] such that 6(t) 0 pointwise a.e. in G as s m. Let T denote the set ofmeasure
zero in G where this does not occur, or the sets O(t, x(t)) are not closed and convex.
For every e G T we have, then, 6(t) 0 as m, or

f(t, x,(t), u,(t)) f(t, x(t), u,,(t))

Let be any fixed point in G T. Given e > 0, there is some g(e, t) > 0, such
that for all s we have

]a(t)l f(t, x,(t), u,(t)) f(t, x(t), u.(t))l <

We shall take g --(e, t) > 1/e. Note-that the sets U(t) depend on only; hence,
uk(t) e U(t), and f(t, x(t), uk,(t)) Q(t, x(t)), s G T. First, for the chosen and
all s >= g, we have then

f(t, x(t), u(t)) e [Q(t, x(t))],

where [. ] denotes the closed e-neighborhood of Q(t, x(t)). Since e G- T, the
set Q(t, x(t)) is closed and convex; hence, the set [Q(t, x(t))] is also closed and
convex, or

cl co [Q(t, x(t))] [Q(t, x(t))],
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and, in addition,

Thus

Q(t, x(t)) f3 [Q(t, x(t))].
t>o

{o ))}cl co U f(t, x,(t), u (t cl co [Q(t, x(t))] [Q(t, x(t))].
s=

As e ---, 0 we certainly have (e, t) --, oe, and

["1 cl co U f(t, xk,(t), uk.(t c f’l [Q(t, x(t))] Q(t, x(t)).
h=l s=h e>O

This relation holds for all e G T, that is, almost everywhere in G. Statement
1.7.i is thereby proved.

Remark 4. Since in Statement 1.7.i the only information we have on the
behavior of the sets Q(t, x) is the one we can derive from the fact that IIll -’ 0,
it is clear that the form (12)of Property (Q)is the best we can derive. As mentioned,
this form (12) is still strong enough so that the argument for original theorem
1.5.i can be applied. Suppose now that there is a set T of measure zero on G such
that for every (L x), e G T, x e A(), the set Q(, x) is closed and convex, and in
addition, limx_ f(L x, u) f(, 2, u) uniformly with respect to u. This is certainly
the case if f satisfies a Lipschitz condition in x uniformly with respect to u.

Then Property (Q) holds at (L 2) in the usual form. Indeed, given e > 0 we
can find 6 such that If(f, x, u) -f(L , u)] < e for all x A(t), Ix [ <= 6, and
all u U(t). Then, for x e N6;,(2) we have Q(L x) c [Q(, )], and, as before,

f’l cl co U Q(, x) f’l cl co [Q(t, x)] Q(t’, x).
> 0 xN6;() > 0

Remark 5. Statement 1.7.i holds even in situations where U(t, x) depends on
both and x. Here are some cases of interest (see [34] for details).

Case (A). There is a subsequence [k] such that uk,(t),e U(t, x(t)), G a.e.,
1, 2, The argument is now as for Statement 1.4.i starting with the sequence

[k] instead of [k].
Case (B). Let f(t, x, u) be defined in A x Era, though U(t, x) is still a subset

of E,, which may depend on and x. Let us assume two things" (B1) for every
te G T and e > 0 there is an r/> 0 such that u,e E,,, lu fi[ < r/ implies
If(t, x(t), u) f(t, x(t), fi)l < e; (B2) for every e G T and r/> 0 there is a > 0
such that x A(t), Ix x(t)] __< a implies U(t, x) [U(t, x(t))],.

Indeed, in the proof of Statement 1.7.i we have considered any fixed e G T
and any given e > 0. Let us now determine r/as in (B1), and then a as in (B2).
Also, let us take g rs(t,e, a) so that s > g implies ]x,(t)- x(t)l <-_ a. Then,
Ibk(t)l _-< e and u(t) U(t, x.(t)) [U(t, x(t))],. Thus, there is some U(t, x(t))
such that Ifi u(t)l <= rl, and finally

IiL(t)l If(t, x(t), u(t)) f(t, x(t), )1 __< e.

Then

If(t,x(t), u,(t))- f(t, x(t), )1 <_ Iu,(t)l / 16,,(t)l =< 2e,
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and

f(t, xk,(t), uk,(t)) [Q(t, x(t))]2.

The proof of Statement 1.7.i can now be repeated without further changes.
Note that (B 1) is the uniform continuity off(t, x(t), u), u Era, as a function of

u in E,, for any fixed G T, and that (B2) is the metric, upper semicontinuity
with respect to x only of the sets U(t, x) at (t, x(t)).

Case (C). Let us assume thatf(t, x, u) is still defined on M {(t, x, u)l(t, x) A,
u U(t, x)} and that, for every G T and e > 0, there is 6 > 0 such that for
x A(t), Ix x(t)l < 6, u U(t, x), there is some a U(t, x(t)) such that If(t, x, u)

f(t, x(t), a)[ _<_ e. The argument is the same as above.
Remark 6. Note that in Case (B) above the metric upper semicontinuity with

respect to x of the sets U(t, x) cannot be replaced by Kuratowski’s upper semi-
continuity, as the following example shows.

Example. Take v= n=m=r= 1, f(t,x,u) u, 0<= <= 1, -1 <= x <__ 1,
U(t,x)= {0} if x=0, U(t,x)= {u>=x-1} if0<x 1, U(t,x)- {u=<x-2} if
-1 =< x < 0. The sets U(t, x) are identical to the sets Q(t, x). Property (Q) with
respect.to x is not satisfied at the points (t, 0), 0 < < 1.

2. Abstract Lagrange problems.
2.1. Notations. Let G be a measurable subset ofthe t-space E offinite measure,
(t 1, ..., V), for every G let A(t) be a given nonempty subset of the x-space

E", x (x , x"), and let A {(t, x)lt G, x A(t)}. For every (t, x) s A let
ff)(t, x) be a given subset of the -space U+

Problem 1’ We consider here a sequence of measurable functions x(t), (t),
xk(t), k(t), r/(t), G, k 1, 2, ..., x, x "G - E", , "G - U, r/ "G E 1, r/ L(G),
with

xk(t) A(t), (rl(t), (t)) Q(t, x(t)),
(13) tGa.e., k= 1,2,....
We define i, =< __< + , by taking

(14) lim inf t" ri(t) dt,
k--*

and we denote by Q(t, x) u the projection of the sets O(t, x) on the z-space
U. We seek "modes of convergence" x x, - , and conditions on A(t),
O(t,x), Q(t,x),. which imply that is finite, and there is a measurable function
q(t), G, rl LI(G) such that

(15)
x(t) A(t), (q(t), (t)) O.(t, x(t)), G a.e.,

rl(t) dt <= i.

We assume here that for every (t, x) A, a subset U(t, x) of the u-space E’" is
given, we denote by M the set {(t, x, u)l(t, x) A, u U(t, x)}, we consider functions
fo(t, x, u), f(t, x, u) (f, f) defined on M, and for every (t, x) A, we denote
by Q(t, x) the sets

O(t,x) {(z z)[(z > fo(t x u)z f(t x u)u U(t x)} U+
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Then the projection Q(t, x) of (t, x) on the z-space E is the set Q(t, x) f(t, x,
U(t, x)) {zlz f(t, x, u), u e U(t, x)}.

Problem 2’. We consider here a sequence of measurable functions x(t), (t),
x(t), (t), q(t), u(t), e G, k 1,2, ..., x, x G -- E",
u’G E"’, with

x(t) e A(t), u(t) e U(t, x(t)), .(t) f(t, x(t), u(t)),
(16)

(t) fo(t, x(t), u(t)), e G, k 2, ...,
and we define as above, -o =< =< + o. We seek "modes of convergence"
x -- x, -, , and conditions on A(t), U(t, x), M, O(t, x), Q(t, x), fo and f, which
imply that there is a measurable u’G --, E", such that
I17) x(t) A(t), u(t) U(t, x(t)), (t) f(t, x(t), u(t)), G a.e.,

(18) e L,(G), [ q(t) dt <= i,

where r/(t) j’o(t, x(t), u(t)), G.
These are the two main forms of the so-called lower closure problem in abstract

Lagrange problems. The same considerations at the end of 1.1 hold also in the
present situation.

Again, for the sake of simplicity, we shall refer below mainly to Problem 2’.
For v 1, G [a, hi, A compact, a Filippov-type solution to Problem 2’

is well represented by the following statement.
STATEMENT 2.1.i. Let x,x’[a, b- E" be absolutely continuous functions, let

(t) x’(t), (t)= x’(t), e [a, b] a.e., u’[a, b] Em, measurable, .for which (16)
holds, and x x as k - uni)brmly on [a, b] (no further requirements on , ).
Let us assume that A, M are compact sets, fo, f are continuous on M, and the sets

O_,(t, x) are all convex. Then, is finite, and there is u’[a, b] E measurable for
which (17), (18) hold.

Under the conditions of Statement 2.1.i, say A and M copact and fo, f
continuous on M, it is not restrictive to replace O(t,x) by OL(t,x)= [(z,z)
O(t, x)lz <= L, where L is the maximum of fo on M. Then the sets Q(t, x) and
QL(t,x) are compact, equibounded, and certainly are "metric upper semicon-
tinuous" on A.

2.2. A first extension of Filippov’s statements for Problem 2’. Again we assume
v l, G [a, b] E, and A compact as in 1.2. The following statements extend
Statement 2.1.i.

STATEMENT 2.2.i. Let x, x’[a, b]- E be absolutely continuous functions, let
(t) x’(t), (t) x’(t), [a, b] a.e., u "[a, b] --. E"’ measurable, rl L([a, b]),
for which (16) holds with < + o, and x - x as k --. uniformly on [a, b] (no
further requirements on , , q). Let A and M be closed sets, fo and f continuous
on M, and the sets Q(t, x) all convex, closed, and satisfying Property (Q) with respect
to (t, x) in A. Let us assume that there is a constant >= 0 and a function O(t) >= O,

G, L[a, b], such that fo(t, x, u) >__ -/(t) 7lf(t, x, u)l for all (t, x, u) m.
Then is finite, and there is a measurable u’[a, b] --. E" for which (17), (18) hold [7].

2.3. Solutions of Problem 2’ in connection with weak convergence. We assume
here as in 1.5 that v >= 1, and that G is a given measurable subset of the t-space
E of finite measure. The following statements parallel those in 1.6.
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STATEMENT 2.3.i. Let x(t), Xk(t), (t), k(t), r/k(t), Uk(t), t G, k 1, 2, ..., be
measurable functions, X, Xk’G -- E", , k (L(G)), r/k L(G), Uk’G E measur-
able, for which (16) holds with < + , and Xk -- X in measure in G, k -- weakly
in (L (G)), and let us assume that there are also jhnctions 2, 2k Lx(G), k 1, 2,
with k(t) >__ ,k(t), ’’k -- ’" weakly in L(G) as k . Also, let us assume that Condition
(C) holds (for f and fo) and that, for almost all G, the sets (, x), x A(/), are
convex and have Property (Q) with respect to x in A(). Then is finite, and there are
measurable functions u(t), r/*(t), G, r/* L(G), such that (17) holds, 2(t) <= r/*(t),
rl(t) fo(t, x(t), u(t)) <= rl*(t und q*(t) dt <= [13].

Under a variety of conditions, we can guarantee that, in addition, (18) holds,
that is, t/ Lx(G), and hencea r/(t) dt <= i. This is certainly the case if any one of the
following hypotheses holds, under each of which there are also natural choices
for the functions 2k above [13].

Hypothesis 1. There is a constant 7 _-> 0 and a function (t)_>_ 0, t G,
Lx(G), such that fo(t, x, u) >__ -(t) 7If(t, x, u)[ for all (t, x, u) m.
Under this hypothesis we may well take 2k(t) --O(t) 7[k(t)], e G. Since

k weakly in (Lx(G))r, the functions k, as well as [k[, are equiabsolutely
integrable, and then there is some co(t) => 0, G, co e LI(G), and a subsequence,
say still {k}, such that ]k] --’ CO (and 2k -- ’CO) weakly in LI(G as k
Then 2(t) <__ r/(t) <= r/*(t), G, 2, r/, r/* Lx(G).

Hypothesis 2. x, Xk e(Lp(G))", IlXk- xll--, 0 for some p, __< p =< +
(k e(LI(G)), (k weakly in (LI(G)), and there are constants /, /’=> 0 and a
function O(t) => 0, teG, OLI(G), such that fo(t,x,u) >= -/(t)- 7]f(t,x,u)l

7’lxl for all (t, x, u) e m.
Under this hypothesis we may well take 2k(t)= --O(t)- ]k(t)l- Y’lXk(t)] p.

With the same notations and conventions as above, we have, then, 2(t) -O(t)
,co(t) 7’[x(t)[, e G, and again 2(t) __< rl(t) <= rl*(t), G, 2, rl, rl* Lx(G).
Hypothesis 3. Xk (Loo(G))", ]]Xk]loo LI, k (Loo(G)), IIkl]oo _--< L2 for given

constants Lx, L2, and there are a function O(t) >= O, G, LI(G), and a mono-
tone nondecreasing function r((), 0 =< ( < + oe, such that fo(t, x, u) >_

+ If(t, x, u)l] for all (t, x, u) e m.
Under this hypothesis we may well take in Statement 2.3.i, 2k(t)= 2(t)

-/(t)(Lx + Lz),t G, and then again 2(t) =< r/(t) __< ri*(t),t G, 2, r/, r/* e LI(G).
For other conditions, examples, and remarks we refer to [13].
S:A:EMEN: 2.3.ii. This is the same as Statement 2.3.i with (k ---’ ( strongly in

(Lx(G)) as k ---, oe, and, for almost every G, the sets Q(L x), x e A(t), are only
closed and satisfy Property (K)in A() [13], [14].

Remark 7. Here, as in 1.5, if the sets U(t) depend on only, then the differ-
ences

6k(t) f(t, Xk(t), Uk(t)) f(t, x(t), Uk(t)),

’O(t) fo(t, X(t), U(t)) fo(t, X(t), U(t)), teG, k= 1,2,...

exist. If we know that 6k (LI(G)), 6 L(G), that 6k 0 weakly in (LI(G))’,
and _that lim sup j’a 6(t)dt 0 as k--, o, then Statement 2.3.i holds with the
sets (, x) only closed and convex (for almost all e G) (no Conditions (K) or (Q)
required) [13]. This remark will be used below.
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To state the next lower closure theorem, we use the same notations as above.
For any (t,_ x) A and corresponding set (t, x) c E’+ 1, we consider the projection
Q(t, x) of (t, x) on the z-space Er, and the real-valued function

T(z; t, x) inf {z[(z, z) ((t, x)}, z 6 Q(t, x).

In other words, for every (t, x)e A and z e E, z e Q(t, x), we consider the set {u}
of all u U(t, x) for which z e f(t, x, u), and then T(z t, x) in_f fo(t, x, u), u {u} }_
Note that oe =< T(z; t, x) < + oe for every z e Q(t, x). If O(t, x) is convex, so is
Q(t, x), and in [9] it was proved that either T(z" t, x) oe for all z e Rint Q(t, x),
or T(z;t, x) > -o for all z e Q(t, x). In the latter case, T(z;t, x) is a real-valued
convex function on the convex set Q(t, x) u. (Here Rint Q denotes the set of
all points z which are interior to Q with respect to the hyperspace of minimum
dimension containing Q.)

We shall denote by V(0, R) the closed ball in U of center the origin and radius
R.

STATEMENT 2.3.iii. Let x(t), Xk(t), (t), k(t), qk(t), Uk(t), e G, k 1, 2,..., be
measurable functions, X, Xk" G --. E", , k (L(G))", r/k 6 L(G), Uk G - E measur-
able, for which (16) holds with < + , and XR --* X in measure in G, k -- weakly
in (LI(G)). Let us assume that Property_(C) holds (for both fo and f), and that for
almost all G and all x A() the sets O(t, x) are convex and closed. Let us assume
these further conditions.

Condition (). There is a measurable bounded function p(t),
p" G - U, such that p(t) Q(t, x) for G and all x A(t).

Condition (fl). There is a constant c >= 0 such that IT(z" t, x)l <- c for almost
all G, all x A(t), and z Q(t, x) 0 V(0, 2tr).

Condition (/). For every N > a and almost all G, the sets )(t, x)
V(0, N)] satisfy Property (K) with respect to x in A(t). Then there is a measurable

finction u "G --. E br which (17), (18) hold.
Remark 8. Condition () is certainly verified if it happens that for almost

every 6 G and every ff A(t), we have If(t, if, u)l --, + as lul
uniformly in some neighborhood Na;(2) of 2 in A(f). We see, therefore, that under
very mild conditions on fand fo, no "seminormality" conditions are needed.

Remark 9. A slight extension of Statement 2.3.iii can be obtained by replacing
Conditions (), (fl), (7) by the following new requirements"

(a) There is a measurable function p(t), 6 G, p" G U, such that p(t) Q(t, x)
for almost all G and all x A(t).

(b) There is a measurable function p(t) O, t6G, pLl(G),such that IT(z; t,x)l
<= p(t) for almost all t G, all x A(t), and all z Q(t,x)fq V(O, 2a(t)), where
a(t) max {No, Ip(t)l} for some constant No > 0.

(c) For all N _>_ No and almost all e 6 the sets 0.(t, x) CI [E x V(0, aN(t))]
have Property (K) with respect to x in A(t), where O’N(t) max {N, ]p(t)l}.

(d) For some p, q, <__ p, q <= o, 1/p + 1/q 1, the function p(t)/r(t) is of
class Lq(G), while , k e (Lp(G)y, k 1, 2, ..., k --’ weakly in (Lp(G)) [15], [34].

Finally, as in 1.7, and by the use of the analytical.Conditions (FR), (apq), (Hq)
on fo and f, we can state another lower closure theorem without seminormality
conditions, which parallels the closure theorem 1.6.i.
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STATEMENT 2.3.iv. Let x(t), Xk(t), (t), Ck(t), rh(t), uk(t), G, k 1, 2, ..., be
measurable functions, x, xk’G E", , k s (LI(G))r, r/k s LI(G), uk’G Em,forwhich
(16) holds, k weakly in (LI(G))r, and c < i,< + . Let us assume that G, A(t),
A, U(t), fo, f M, O(t, x) are as in 2.1 (Problem 2 ), that U(t) depends on one, that
Condition (C) holds (for both fo and f), and that for almost all G, the sets Q(L x),
x s A([), are closed and convex for every x A([). Let us assume that one of the
following conditions holds"

(a) For some p, <= p <= o, x, Xk u(Lp(G))n, and Condition (Fv) holds (for
both fo and f).

(b) For some p, q, <__ p, q <= , x, X (Lp(G))n, U . (Lq(G))m, and Condition
(Gpo) holds (for both fo and f).

(c) For some q, <= q <= , Uk (Lq(G))’, and Condition (Hq) holds (for both
fo andf).
Then is finite and there is a measurable function u(t), G, u’G Em, such that
(17) and (18) hold with rl(t =fo(t,x(t),u(t)), tG. In particular, r/eL(G), and

l(t) dt <= i.
This statement 2.3.iv is a corollary of Statement 2.3.i and Remark 7 proved

in [13].

3. Lower semicontinuity theorems for free problems.
3.1. A necessary and sufficient condition for lower semicontinuity. Here

take v 1, G [a, b] c E 1. For every [a, b], then, A(t) is a given subset of the
x-space E"; we take A {(t,x)la <= -< b, x A(t)}

E2,+ 1. We assume A (and M)closed, andfo(t, x, u) is a continuous function on M.
We denote by - the class of all functions x(t) (xl, x"), a =< __< b,

x absolutely continuous, with x(t) A(t), t [a,b], and fo(t, x(t), x’(t)) of class
Ll([a, b]). Then for x - the functional 1Ix] is defined by

I[x] fo(t, x(t), x’(t)) dt.

For elements x, xk ,, k 1, 2, ..., we choose the "mode of convergence
xk x" defined by xk x uniformly on [a, b] and x, - x’ weakly in Ll([a, b]).
As an application of the Dunford-Pettis theorem on weak convergence in L1,
it is easy to prove that, if x, xk , k 1, 2, ..., and x;, x’ weakly in L([a, hi),
and x(t) - x(t) pointwise at at least one point [a, hi, then x(t) x(t) pointwise
at every [a, b], and actually xk x uniformly in [a, b] as k

We say that l[x] is lower semicontinuous in
with xk ---, x uniformly in [a, b] and xk --* weakly in La([a, b]), it occurs that
I[x] <= lim infk_

A more specific hypothesis is needed on A, namely that A be the closure of its
interior, A cl (int A).

STATEMENT 3.1.i. If A is closed, A cl (int A), M A E", and fo(t, x, u)
is continuous on A, then a necessary and sufficient condition for I[x] to be lower
semicontinuous in - is that fo(t, x, u) be convex with respect to u in E" for every
(t,x)A.

The necessity of the condition was proved by Tonelli in 1912 (Tonelli’s
argument for uniform convergence applies as well for the mode of convergence
chosen above). The sufficiency has been proved by Cesari in [15].
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3.2. A lower semicontinuity theorem with weak convergence. Here v 1,
G is any measurable subset of E of finite measure, for every G a subset A(t)
of E" is assigned; A- (t,x)ltG,xA(t)} cE+", M=A EraCE+"+m
and fo(t, x, u) is a given function on M. We shall assume that usual Carath6odory
Condition (C) holds. Then, for any pair x(t), u(t), G, of measurable functions
with x(t) A(t), G a.e., the function fo(t, x(t), u(t))is measurable. We shall con-
sider only pairs for which fo(t, x(t), u(t)), G, has a Lebesgue integral on G (finite,
+ , or ), so that the functional I[x, u] is defined for such pairs

I[x, u] fG fo(t, x(t), u(t)) dt.

STATEMENT 3.2.i. Let x(t), Xk(t), U(t), Uk(t), 6 G, k 1, 2,.", be measurable
functions, x, Xk G - E", u, Uk (L(G))", with Xk -- X in measure in G and Uk -- U

weakly in (L(G))" as k --. . Let M A x E’,fo(t, x, u) defined on M, convex with
respect to u for every (t, x) A, let us assume that Condition (C) holds, and that
fo(t,x,u) is bounded on the set M {(t,x,u)M[ lul _-< 1}, Then

I[x] <= lim inf I[Xk],
k-*

where each of these integrals necessarily is finite or +
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REMARKS ON THE CONTROL OF DISCRETE-TIME
DISTRIBUTED PARAMETER SYSTEMS*

J. ZABCZYK

Abstract. The aim of this paper is to investigate limit properties of the infinite-dimensional
control system described by a difference equation with a quadratic cost functional. Some related
results of independent interest concerning stability and the Riccati operator difference equation are

given also.

1. Introduction. K. Y. Lee, S. N. Chow and R. O. Barr investigated in [7]
the infinite-dimensional system described by a difference equation with a quad-
ratic cost functional. It turned out that a theory similar to that of the finite-
dimensional case can be developed. The control on the infinite interval and the
behavior of the solutions as the length of intervals tends to + were also con-
sidered.

In this paper we are mainly interested in limit properties of the solutions.
We shall show, among others, that in all theorems of [7], weak convergence can
be replaced by strong convergence or even by norm convergence. We shall
consider also a more general problem: What must be the conditions to ensure
the minimal cost taken on finite intervals [0,..., N- to be bounded for
N + ? Some related results of independent interest concerning stability and
the Riccati equation will be given also.

2. Notation, statement of the problem in the case of finite intervals. We shall use
notations similar to those in 7]. So let H and U be Hilbert spaces, q):H - H,
D:U H be linear and bounded operators. H is called the state space, U the
space of controls.

The control system is given by

Xi+ (Xi .at- Dui, x H, u U, O, 1, "",

and the quadratic cost functional is given by

N-1

JI(XO" UO, Ul- 1) E I(Qxi xi) + (Rui, ui)], N 1,2,
i=0

Here Q’H--, H is a bounded self-adjoint, positive semidefinite operator, and
R’U U is a bounded, self-adjoint, positive definite operator. An operator P
transforming a Hilbert space X into space X itself is called positive semidefinite
if for every x X, (Px, x) >= O" in this case we shall write P => 0. If, in addition,
P is an invertible operator, then it will be called positive definite, and in this case
we shall write P > 0.
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Let (H), N 1, 2,..., be the Hilbert space consisting of all sequences
(Xi)o_<i< N with xi H, i= 0, 1,..., and with an inner product defined by" for
x, y fv(H), x (xi), y (yi),

(x,y)= (x,,y,).
O<=i<N

Similarly, the Hilbert space f2u(U may be defined.
Now we state the problem of the optimal control on the finite interval

0,,2,...,N- ],N= 1,2,....
Problem 1. For every Xo e H, determine a sequence (u, u’, uv_ 1) e f2u(U),

so that for any sequence (uo, ..., uN_ 1) e f2s(U),
J(Xo u, "", u_ ) __< 4(Xo" Uo, "’", u_ ).

3. Solution of the problem. In this section we summarize a part of the results
obtained in [7]. We give another proof of these results based on dynamic pro-
gramming. This proof seems to be simpler than that in [7].

We start with some lemmas.
LEMMA 3.1. Let A, B be linear, bounded operators A :H - H, B :H H. Then

the operators I + AB, I + BA are both invertible or both not invertible if they are
invertible, then

(3.1) A(I + BA)-1 (I + AB)-

If A >__ O, B >__ O, then I + AB is an invertible operator and

(3.2) A(I + BA)-1 >__ O.

Proof It is well known that the operators AB and BA have the same spectrum
(see [4, p. 311])" in particular I + AB is an invertible operator iff ! + BA is. If the
operators (I + AB)-1 and (I + BA)-1 exist, then since

(I + AB)A A(I + BA),

therefore

(I + AB)-x(i + AB)A(I + BA)-1

(I + AB)-1A(I + BA)(I + BA)-1,

and therefore (3.1) holds.
Using a similar argument, we see that the spectrum of the operator AB is

equal to the spectrum of Bw/- if a _> 0, B _> 0. But the operator B/-
is positive semidefinite, so evidently, (I + B,/-) exists" therefore (I + AB)-
exists also.

To prove (3.2) we may, without loss of generality, suppose that A-1 exists.
Then

A(I + BA)- A[(A-1 + B)A]- (A-1 + B)-I >= 0.

LEMMA 3.2. The system of the equations

(3.3) V+ l(X)= inf [(Qx, x)+ (Ru, u) + V(bx + Du)]
uU
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where Vo(x) 0, x 6 H, 0, 1, 2, ’.’, N 1, has the unique solution (Vo, V1, "",

VN). Functions Vi, O, 1,..., N, have the following forms" Vi(x (Kix, x),
0, 1,..., N, where the operators Ki’H- H, 0, 1,..., N, are defined

recursively

(3.4) Ko =0, Ki+ O*Ki(I + DR-1D*Ki)- I@ + Q, i=0, ...,N- 1.

Functionsf U --, (- c, + ), 1, 2, ".’, N,

ji(u) (Qx, x) + (Ru, u) + (Ki_ l(dPx + Du), dPx + Du)

take on their minima at the unique points

ui R-1D*Ki_ I(I + DR-1D*Ki_ I)- Ix, 1, N.

Proof. Lemma 3.2 is evidently true for N 1. Let VN(x) (KNx, x), x H,
where KN is the linear, bounded, semidefinite operator given by (3.4). Then

VN l(X) min fN+ l(u) (Qx, x) + (*KNx, x)
uU

+ min {(JR + D*KD]u, u)+ 2(D*Kx, u)}.
uU

But the operator R + D*KND is an invertible operator, so the function fN/l
takes on its minimum at a unique point fi (see [8, p. 7]). But dfN + U U is given by
dfN+ lu 2{JR + D*KND]u + D’KNOx}, so [R + D*KND] -D*KNdOx and
therefore

f -JR + D*KND]- 1D*KNdPx -(I + R- 1D*KND)- 1R- 1D’KNOx.
Using Lemma 3.1, we get

f -R- 1D*KN(I + DR-1D*KN)- Ix uN+ l.

Let us simplify the notation by defining

W R- 1D*Ki(I + DR- 1D*Ki)- 1alp, O, 1, ....
Thus we have

VN + l(x) (Qx, x) + (RWNx, WNx) + (KN[ DWN]x, [ DWN]X).

So the proof of Lemma 3.2 will be completed if we prove that KN+I N+I,
where

KN+I Q + WvRWN + (- DWN)*KN(crP- OWN).

But - DWN [I- D(I + R-1D*KND)-IR-1D*KN]dP,
and easy calculations give

DWN (I + DR-1DKN)-I, (see also [4, p. 311 ]).
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Thus

N+ Q + [R- 1D*KN(I + DR- 1D*KN)- I]*D*Ku(I + DR-1D’Ks)- 1

+ *[(I + DR- 1D*K)-1]*Kv(I + DR- 1D*Ku)- 1

Q + **[(I + KNDR- 1D*)-I(KDR- ’D* + I)]K(I + DR- 1D*K)- 1
Q + *K(I + DR-1D*KN)-1 K+ 1.

Let us remark that, by virtue of the Lemma 3.1, the operators KI,

0, 1,..., are well-defined and self-adjoint, and K _> O.
We now proceed to prove the next theorem.
THEOREM 3.1 (see [7]). For every initial state Xo H and N 1, 2,..., the

optimal control (u, u}_ 1) is given by the feedback form
u’ R- 1D*KN_ i_ 1(1 + DR- 1D*KN_i_ 1)- lfXi WN-i- 1Xi,

i=0,1,".,N- 1.
The optimal cost is given by

J(Xo" u, ..., _,) (Xo, Xo) V(xo).

Proof The theorem is evidently true for N 1. If it is true for N, then for
N + we will have

N

JN+ I(XO; UO, UN) (QXO, XO) -F (RUo, Uo) q- 2 [(Q-.xi, xi) k (Rui, ui)
i=1

(Oxo, Xo) + (Ruo, Uo) + J(xl ;u l, "’",

So

J+ l(Xo; Uo, "", u) >= (Qxo,xo) + (Ruo, Uo) + Vv(@Xo + Duo)

and, by virtue of Lemma 3.2,

Jv+l(Xo; Uo, "", Uv) >-_ (Oxo,Xo) + (RWxo, Wxo) + (Kx,x).

Therefore

J+ (Xo Uo, "’", u) >__ J + (Xo W,xo,’", Wox).

In this way the proof of Theorem 3.1 is completed.

4. Properties of the Riccati operator difference equation. Let d be the Banach
space ofall bounded self-adjoint operators K:H H with the usual operator norm
and Y,f the cone of all positive semidefinite operators. The cone is normal. For the
notions of cone, normal cone and other properties of cones which will be needed
in the sequel, we refer to [6].

In this section we shall be interested in the properties of the equations

(4.1) Ki+l O*Ki(I + SKi)- lO + Q, O, 1,2, "",

(4.2) K dO*K(I + SK)-I + Q,

where Ko, Q, S e 3(. The results of this section will be needed in 6.
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THEOREM 4.1. Let us define the transformation A "V :;,U by the formula
A(K) d*K(I + SK)- + Q.

The operator is monotonic, and for Kn An(Ko), Ln An(Lo), Ko, Lo
n= 1,2,...,

IlK.- L.I _-< IlKo Loll I(I / SKo)-I)(I + SKx)-1 (I + SKn_x)-dOI
(4.3)

I1(I + SLo)-10(1 4- SL1)-10’’" (I + SL._a)-101
If, in addition, Q > O, then A is a I-concave operator.

In the proof we shall need the following lemma.

LEMMA 4.1. Let A,B dU and A >= B > O" then

B-1 >_A -1 >0.

Proof of the lemma. Let C >__ 0 be such that A B + C. It is not difficult to
check that

B- -(B + C) -1 B-xC(I + B-C)-IB-.
But, by virtue of Lemma 3.1,

C(I + B-1C)-1 >= O.
Thus

B-IC(1 + B-xC)-XB-1 >= O.

Proof of Theorem 4.1. Let us remark that Lemma 3.1 implies that A really
transforms g into 3C. To prove the monotonicity, let us suppose K _> K2 0"
then

A(K1)- A(K2)= *[KI(I + SK)- Kz(I + SK2)-13.
Let, in addition K2 > 0. Then

K(I + SK)- Kz(I + SK2)- (K- + S.)- -(K + S)-.
In view of Lemma 4.1,

K-1 + S =< K + S,

so, applying the same lemma, we have

(K-1 + S) -1 7_ (K q- S) -1

Therefore in the case K > 0, A(K1) A(K:) >__ 0; we obtain the general case

K => 0 by the easy limit argument (we can add to operators K1 and K: the
operator I, e > 0 with --, 0).

We recall (see [6]) that an operator A" is called an/-concave operator
iff"
(1 ) for every K , there exist numbers a, fl > 0 such that I <= A(K) <__ flI,
(2) for every number (0, 1) and operator K f, there exists o > 0 such that

A(tK) >= (t + e)A(K), for every (0, e0).
Of course if Q > 0, then condition (1 o) is satisfied. To prove that condition (2)

is satisfied also, let us observe that

A(tK)- (t + c)A(K)= (1 t- e)Q + (I)*{-eK(l + SK) -1

+ t[K(l + tSK)-1- K(I + SK)-I]}(I).



726 j. ZABCZYK

So it is sufficient to prove that

(4.4) K(I + tSK)-1- K(I + SK)- >__ O.

But the inequality (4.4) is true if K > 0, because then it is equivalent (see Lemma
4.1) to the true inequality

K-1+ tS< K-1+ S.

We get the general case by the simple limit argument.
To complete the proof of the Theorem 4.1, we have to show that (4.3) holds.
It is not difficult to check that

So

K(I + SK) -1 L(I + SL) -1 (I + KS)-I(K L)(I + SL) -1

K. L. (I)*(I + K._ 1S) l(Kn_ L._ 1)(I + SL._ 1)- l(I)

*(I + K._IS) -1 *(I + KIS)-X*(I + KoS)-I(Ko- Lo)

(I + SLo)-1(I + SL1)-1... (I + SL._ 1)-

and therefore the inequality (4.3) is true.
THEOREM 4.2. Let us suppose Q > 0; then (4.2) has at most one solution K .

If K gg is the solution of (4.2), then IlK; KI[ 0 geometrically fast as +
and Ki, i= O, 1,2,..., are defined by (4.1).

Proof Let us suppose Q > 0. Using Theorem 4.1, we see that an operator A
satisfies all conditions of [6, Thm. 6.3], so the equation K A(K) has at most
one solution. If a solution K exists, then the conditions of [6, Thm. 6.4] are satisfied,
so the successive approximations Ki Ai(Ko) tend to K. Let us define

U H, D* D =x//, Ti=(I + SKi)-I, T=(l + SK)-I, R I.

We shall see in 6 (see the proof of Theorem 6.2) that r(- xS(1
+ w/SKS)-SK@)< but (I) x//(I + x/Kx/)-lx//K(I) --(I ,(I
+ /K]/-) -K)a (I + SK)-lao, so r(T)< 1. Therefore there exists a
natural number ko such that Tkll < 1. Since [Ki- K --,0 as i---, +, so

T//xT//2 T/oll --, To + oo. From Theorem 4.1 it follows that

K K.II K Ko Tkl["ll Tq rorx ro-1

where n pko + q, 0 <= q < ko, p, q nonnegative integers, and therefore
--, 0 geometrically fast.

Remark 4.1. If Ko < K (for instance if Ko 0), then the sequence of successive
approximation’s is monotonic.
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5. Stability theorem. We now prove a general stability result. A special case
of it will be needed in the next section.

THEOREM 5.1. Let X be a Banach space and O’X X be a bounded, linear
operator, and let N’[0, +) 0, +), N(0)= 0 be a continuous, strictly
increasing, convex function. If, for every x X, there exists an > 0 such that

n=O

then the spectral radius r(O) of O,

r(O) lim,

is less than 1.

Proof. Let eN be a set consisting of all sequences (xi)i_o,1,..., x X, for which
there exist e(x,)> 0 such that E;+__ g(llxill)< + c. It is not difficult to
check that ’N is a normed space with the norm

Let us remark that if (x)e (u, then

For every n 0, 1, 2,... and x e X, we define

Z,(x) (x, Cx, 2x,..., "x, O, 0,... ).

Then Z,’X---, eu and is a bounded linear operator. Since for every x eX,
sup, I]Z,(x)]l < + oe, so in view of the Banach-Steinhaus theorem, there exists an
M > 0 such that IIZ,(x)ll < Mllxll, n 0,1, .... Therefore, for n 0, 1,... and
x 4: 0, we have

-,-o ,--o KMIIxlI/

The same Banach-Steinhaus theorem implies that sup, I1"11 < be-
cause for every x e X, limi II, xll 0.

For some 7, 0 < < I/M, we define the function m’X {0, 1, 2,...} as
follows"

The function m is bounded.
Since we have
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hence re(x) <= (N(y/M))-x

For io >-_ (N(v/M)) -x we have

So we have proved that

thus r(O) < 1.

Remark 5.1. The method used in the proof is similar to that used in [1, pp.
190-193] in the case of N(r) r and for the semigroup of operators.

Remark 5.2. It is not difficult to prove by the same method an analogous
theorem in the case of continuous-time: If T(t) is strongly continuous semigroup
of operators and br every x X there exists > 0 such that

N(a Tx I[) < + ,dt

then there exist M > 0, 2 e (0, 1) such that r, _-< Me -x’ jbr every >__ 0 (see also
[3]).

6. Control on the infinite interval. First case. We shall now consider a control
on the infinite interval with the condition" For every x H,

.(6.1 sup inf Js(X;Uo, ,us-l) < +.
N (uo,"’,ur- 1)

This condition is equivalent, by virtue of Theorem 3.1 to the condition" For
every x e H,

(6.2)

where Ko 0 and

sup (Ksx, x) < +

Ks+ *Ks(I + DR- DKs)- + Q,

A(Ks) with S DR-XD*, N>_O

LEMMA 6.1. Let (6.1) hold; then Ks - K strongly as N - + o, where K is a
bounded, positive semidefinite operator.

Proof Since the sequence (Ks) is monotonic, Lemma 6.1 is an immediate
consequence of the well-known theorem (see [5, p. 925, Ex. 21]) which follows.

THEOREM 6.1. The positive semidefinite solution of the equation K A(K)
exists iff the condition (6.1) holds.

Proof If K" 6 gC and K" A(), then K" >_ KN AN(0), so sups(KNX, X)
< + oe, for every x H.

To prove the inclusion in the opposite direction we show, first of all, that if

Ls .,tro,g L, Ls, L e 3ff then A(Ls) A(L) also. In fact, from 3 (see the proof
strongly

of Lemma 3.2) it follows that for every L

A(L) Q + W*RW + ( DW)*L( OW),
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where

W W(L)= (R + D*LD)-’D*L.

Using [5 Thm. 2, p. 9221 we see that W(L)stron W(L) and W(L) W(L)
strongly

But then A(LN)-----* A(L) also.
strongly

Let now K be the operator defined in Lemma 6.1" then Ku ,K so
strongly

A(K) A(K) also. But K + A(K), so K A(K).
THEOREM 6.2. Let Q > O. The equation K A(K), K , has a solution !ff

there exists a bounded operator W H U such that

(6.3) r( DW) < 1.

Here r( DW) denotes the spectral radius of DW.
Proof. If K A(K), K , then we define W (R + D*KD)-ID*KO. To

+prove (6.2)it is sufficient to show that for every x H, ,=o l[( DI/V)x < +
and then apply Theorem 5.1, setting N(r) r2. Let us introduce some notations:
T DW, T DW, where the operators (R + D*KD)-1D*KiO,

0, 1, ..., were introduced before in 3. Let us remark (see Theorem 3.1) that for
every N 1, 2,..., the optimal trajectory (Xo,X,"’, xx_) starting from x is
given by formula

Xi

and the optimal control (Uo,

TN_iTN_i+ TN_IXo, i- 1,2, "", N- 1,

"’’, UN-1) by

U WN_ i_ 1Xi, 0, 1, N 1.

Thus
-boo

([Q + W*RWJTixo, Tixo) < (Kxo, Xo).
i=0

Since Q > O, we have ZL T’xol2 < +o for every Xo e H, and therefore
r(T)= r(- DW) < 1.

If r( DW) < for some operator W’H ---, U, then the feedback control

Therefore

(Kuxo, Xo) (Qx, x) + (Ru, u)
N-1

([Q + W-i-1RWv-i 1]Tu-i"" TN-1X0, TN-i’’" Tu_ 1X0)
i=1

+ ([Q + Wv_ IRW_ IXo, XO).
If we fix No < N and base on the fact that W strong W, W stoni W*, T strongly T,
then we will get from the above relations"

(Kxo, Xo) >- (Kuxo, Xo)([Q + W*RW]xo, Xo)
No

+ ([Q + W*RW]Txo, rxo).
i=1
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gives
N-1

JN(xo; o,’’" N-,) ([Q + l/V*Rl/V]ixo, iXo)
i=0

where T (I)- DW. So

lim (KNxo, Xo) =< lim JN(xo rio, fiN- 1)
N N

=< ([Q + lff*Rl/V]’Xo, ’x0) < + o
i=0

because * I __<2i, i=0,1,..., for some >0 and 2, 0<2< 1.
Remark 6.1. Using the same method as in the proof of Theorem 6.2, we can

prove that for every x e H,

(6.4) (Kx, x) ([Q + W*RW]Tix, Tix).
i=0

TnFORF. 6.3. Let us define the operators PN’H ’(H), N 1, 2,."
the formulas

PNx (x TN_ X Tu_ 2 TN_ x ..., r TN X O O "’), N 1,2,

by

Poox (x, Tx, T2x, TN- ix, TNx, ), x H.

If Q > 0 and there exists K ,:U such that K A(K), then limN IIPN P 0.

This theorem says that the optimal trajectories for the finite control intervals
converge to the optimal trajectory for the control problem on the infinite interval
and the convergence is in the operator norm.

Proof Let us remark that for any natural numbers N, N1, with N > N1, it
holds that

(6.5)

N1

]Poox Px 2 TiX TN-, TN-1X 2

i=1

N-1

+ 2 , IITixll 2 + 2 ., IITN-,’"TN -1XII 2

i>N i>N

We suppose now Q > 0 and K A(K) for some K e 3f, and let us fix e > 0.
Let N1 be a natural number such that

(6.6) 2 Z [IT’xl[ 2 < [Ix[I2,
i>N

N,

(6.7) K- T*’(Q + W*RW)T’
i=0

where y infll,ll_ (Qy, Y) > 0. Such a number N exists. In fact, since r(T) < 1,
there exists numbers M > 0 and 2, 0 < 2 < 1, for which
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(6.8) T*I] I1T*i <- M2i, O, 1,2,...,

SO

M2/2

y IIr’ll
i> v, 22

On the other hand, by virtue of (6.4),
+oo

(6.9) K T*’(Q + W*RW)T’.
i=O

This together with (6.8) gives (6.7). By standard considerations, relying on the
fact that K K 0 as + , we show that

(6.10) 11 TII -- 0, II Wl]

In view of (6.9) and (6.7), there exists an N2 > N1 such that for N > N2, x H,

(Kx, x) (Kx, x) ( + W_ lgW_ l]X, x)

+ Z(-I"’"
i=1
_

_lX, X

(Kx, x)- /6.
Thus for N > N2, x H, lxll ,

N-1

([Q + w__,w__,]_, _x, _, _lX)
6 i>N

N-1

[IT-,"" Tu-lll 2,
i>N

Let now N3 > N2 be such that for N > N3,
N

Z’x T_,,, Tu_ lxll 2 Ilxll 2
i=1

see (6.10).
At last, for x H, I1 a, and N

Ilex ex[I /3 + /3 + 2/6

This completes the proof in the case Q > 0.

TnzogzM 6.4. Let us define the operators" Vu’H ((U), N 1, 2,"’, by
the formulas

Vx (-W_ ix,-W-_2Tu_x, "", -WIT2 Tu_ x, O, O, ),

N= 1,2,...,
Vx (- Wx, WTx, WT2x, ).
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Under the same assumptions as in Theorem 6.3,

lim VN Voo 0.
N

Proof The proof of the theorem is analogous to that of Theorem 6.3.
This theorem states that the optimal controls for the control problem on the

finite intervals tend to the optimal control for the control problem on the infinite
interval and the convergence is in the operator norm.

7. Control on the infinite interval. Second case. In [7] the control problem on
the infinite interval was investigated under the following hypothesis.

Hypothesis 7.1. For every sequence (ui)(U) and for every Xo H, the
sequence (xi) given by

Xi+l fXi -4- Dui, O, 1,2,’",

belongs to (2(H).
In [7] it was proved that the condition IIll < was sufficient for Hypothesis

7.1 to hold.
In this section we strengthen, otherwise than in 6, some of the results

obtained in [7].
LENMA 7.1. Hypothesis 7.1 is true iff r() < 1.
Proof To prove the sufficiency, let us denote vi Du, i-0, 1, 2,.... We

have

X + U " fl) nt" "nt- f Vo "nt- f + XO i=0,1,’",

SO

Therefore we may write

X0 X ,’’" (1, I[(I z[,...), Xo iv Ull[,

where denotes the convolution transform.
Using the well-known Young’s inequality (see [5, p. 951, (c)]), we get

i= 0 i= 0 i=0

But, of course, r() < implies

__
ill < + o.

The necessity follows immediately from Lemma 5.1. It is necessary only to
put N(r) r2 and u O, O, 1,....

When Hypothesis 7.1 holds, then it is possible to formulate the control
problem on the infinite interval as follows (see [7]).
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Problem 2. For every initial state Xo e H, find a sequence u* (u’)e
such that for every (ui) (2(U),

where

LotX" Uo, u, >= Jtx" u’d, u"?,

Joo(x" Uo, ul, ’. (Qxi, xi) + (Rui, Ui)]
i=0

and xi+l xi + Dui, O, 1,....
Let us introduce sequence x* (x.*, ), x.*,+ x.*, + Du.*, xd Xo.

Here u* (u, u*, .-.) is the only point for which the minimum is achieved.

As in 6 we shall use the following notions"

WN (R + D*KND)-1D*K, T el) DWzv, N O, 1,...,

K lim Kv, W (R + D*KD)-D*K, T qb DW.

The following theorem holds.

THEOREM 7.1. If r() < and R > O, then the condition (6.1) is satisfied and
jbr every x e H,

x* (x, Tx, Tex, ...), u* (-Wx,- WTx,...),

(7.1) PNx strongly’ x* in /2(H),

(7.2) VNx strongly’ ll* in I2(U) as N + .
Proof To prove that (7.1), (7.2) hold we introduce the operators

A’/2oo(U) 12oo(H), B" H 12oo(H),
Q’/(H) -, t(U), R’/(U) l(U),
C’12(H) /(H), N 1,2,...

by the formulas

where

A(u,)

xo =0, x+ =aPxi+Dui, i=O, 1,...,

Bx (fix), Q(xi)--(Qxi)

R(ui)-- (Rui), CN(Xi) (Xo, Xl ,’’’, XN-1,0, ").

Since, for every N > No

No
RW x WN x + RW Tu TN x Wv Tu r x

/=1

<= (Kx, x) <__ (Kx, x),
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and so, for every No 1, 2, ...,

Therefore,

No
(RWx, Wx) + (RWTix, WTix) <- (Kx, x)

/=0

U (- Wx, WTx, WTZx, .)e 12(U).
Let us define the sequence

(x, Tx, Tax, ...);

then , AU + Bx. Consequently i e 12(H) and it is easy to see that

(Kx, x) J(x; ).

So we have proved that

U* ’ X*

Since J(x;. takes on its minimum at Vx, it follows that for any sequence
us (uo, ua, ..., us_ , O, O, ...), which can be identified with (uo, u, ..., us_ ),
we have

J(x u) J(x; V,x) ((u V,x), u’ V,x)

+ (QCuA(uu- Vux), CuA(uu- Vux)).

Using this equality we obtain that

(7.3) J(x; u*) J(x; VlX >=
where

But

therefore

inf (Rz, z) llu*N Gx 12
Ilzll-

(Kx, x)= J(x; u*) _>_ JN(X U*N) JN(x; VNx (Kux, x)"

JN(X U*N) JN(X VNX "-+ O,

and consequently (see (7.3))

But

u*N VNX strongly O.

Ii* SOstrongly VNX stronglY’’’ U*.

To prove the relation (7.1) let us remark that

Pux C[A(Vx) + Bx],

x*=Au* +Bx.
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Since

A(VNX) "’strongly’ Au*

and

CNBx strongly Bx

we get that

PNx strongi’ X* in 12(H).

The proof of Theorem 7.1 is completed.

8. Final remarks’ There exist many papers which developed a similar theory
for the continuous-time problem (see [2], [9]). But the restriction to the discrete-
time case enabled us to prove some stronger results in the sense that for instance
strong or weak convergence in the formulation of appropriate theorems were
replaced by the convergence in operator norm.
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A NEW ALGORITHM FOR OPTIMAL FILTERING OF
DISCRETE-TIME STATIONARY PROCESSES*

ANDERS LINDQUIST"

Abstract. An algorithm (which does not involve the usual Riccati-type equation) for computing
t/e gain matrices of the Kalman filter is presented. If the dimension k of the state space is much larger
than that of the observation process, the number of nonlinear equations to be solved in each step is
of order k rather than k as by the usual procedure.

1. Introduction. Let {x.} be a k-dimensional and {y.} an m-dimensional
(wide sense) stationary stochastic vector process generated by the well-known
model:

(1.1) x,+ Fx. +
(1.2) y, Hx,, + w,,

where, for convenience, Xo, {v,} and {w,} have zero mean and are pairwise un-
correlated, and

(1.3) E{ XoX’o } Po,

(1.4) g{l)il)j} Pl(ij,

(1.5) E{wiw)} P2(ij

(6ij is the Kronecker delta and denotes transpose). The matrices F, H, Po,
and P2 are constant and have the appropriate dimensions. To simplify matters
we assume that P2 is positive definite (of course all Pi are nonnegative definite).

Now, it is well known that the linear least squares estimate , of x, given
{Yo, Y l, "’", Y,-1} can be determined by the Kalman filter [5]"

(1.6) ,,+
with initial condition o 0 and the gain matrix K,, given by

(1.7)

Here the error covariance matrix

(1.8) E,-- E{(x,
can be recursively computed from the equation

(1.9)

with initial condition 12o Po. Therefore, this procedure requires computation
of the (symmetric) k x k matrix I2, in each step in order to obtain the gain K,,,

* Received by the editors December 26, 1972. Material added to the original version of this paper
is enclosed in square brackets.

? Institute of Optimization and Systems Theory, Royal Institute of Technology, 10044 Stock-
holm 70, Sweden. Now at Department of Mathematics, University of Kentucky, Lexington, Kentucky
40506.
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while actually the k x m matrix

(1.10) Q-- 5ZH’
is needed. When, as is often the case, m << k, this amounts to computing plenty of
unnecessary information.

In this paper we present an algorithm by which Q, can be computed directly
without using the Riccati-type equation (1.9). Instead of the k(k + 1)/2 equations
of (1.9), we need only solve 2km + m(m + 1)/2 equations, which is a major re-
duction when m << k. In the scalar output case (m 1) we actually only need 2k
equations.

[Before turning to the derivation of our algorithm we shall present some
facts about the classical problem of determining the linear least squares estimate
of y, given {Y0, Yl, "", Y,-1} when {y,} is an arbitrary m-dimensional (wide
sense) stationary stochastic sequence. Due to the stationarity it is possible to
solve the normal equations recursively for the (m x rn matrix) filter coefficients
as n increases. For the scalar case (m 1) such recursions can be found in [8],
[9], [13] and also in the theory of orthogonal polynomials [1], [2]. The latter is
of course no coincidence since the connection between prediction and orthogonal
polynomials is well established [3]. When rn > 1, the situation is somewhat more
complicated (which accounts for the fact that the number of equations in our
algorithm increases "discontinuously" as m becomes greater than 1). Recursive
equations for this case can be found in [7], [12], [14]. However, a relation which
is important for our purposes is missing in [7] and although this relation is men-
tioned in [12], [14], there is no proof for it. Therefore, in presenting a set of such
equations we shall supply the reader with a short but complete proof. At the
same time we shall be able to relate these equations to certain forward and back-
ward prediction problems.]

In 2 we shall introduce some notations and recall certain facts from esti-
mation theory, in 3 the abovementioned recursions for the filter coefficients will
be developed, and in 4 and 5 we shall return to what is the basic contribution
of this paper, namely, the derivation of an algorithm for Q, without making use
of (1.9).

Independently, Kailath [4] has recently shown that (under certain con-
ditions which are fulfilled in the stationary case) the Riccati equation for the
continuous-time Kalman-Bucy filter can be factorized to yield equations similar
to ours. Indeed, our method modified to the continuous-time case gives exactly
the corresponding equations of Kailath, as we shall demonstrate in [10-1. Similar
results have also recently been announced by Rissanen [6], who, however, does
not consider the model (1.1)-(1.2).

We have presented our algorithm for Q, in connection with the one-step
prediction problem (which is the standard problem in the literature). However,
the algorithm can also be used for the pure filtering problem as pointed out in 4.

The equations in [1], [2] were first made known to us by R. E. Kalman, who suggested the theory
of orthogonal p6lynomials studied in an algebraic context as a possible vehicle in obtaining a more
effective algorithm. Our approach, however, is quite elementary in the sense that only facts of linear
algebra are used. References [9], [12], [13], [14] were brought to our attention by a referee.
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2. The forward and backward prediction problem. Let Yo, Y, Y2, Y3, be
a wide sense stationary sequence of m-dimensional stochastic vectors with zero
mean and covariances

Ci E{y,+iy’,},

which, of course, are m x m matrices such that C_--- CI. To simplify matters,
we assume that this vector process has full rank in the sense that the generalized
Toeplitz matrices

Co
T, C Co C’ C’,_|,

n 0, 1, 2,..., are positive definite.
Now, for each n {1, 2, 3,.-.} we can define two problems of estimation,

namely, the forward (P,) and backward (P*,) one-step prediction problem.
Problem P,. Find the linear least squares estimate , of y, given {Yo, Y,

"",Yn-}.
Problem P*,. Find the linear least squares estimate ,9,* of Yo given {y, Y2,

Yn}
Clearly these estimates have the following form"

n-1

.n E
i=O

n Oni Yi,
i=l

where ()ni and */are m m matrices. Then, by defining and *o to be unit
matrices, the estimation errors can be written

(2.1) 7,, Yn n (’niYi,
i=0

(2.2) *. YO *n O.i Yi"
i=O

We introduce the following notations for the error covariances"

(2.3)

(2.4) R*, E{y,,y,, ’}.
Now let E, be the matrix formed by an infinite number of m m matrices

arranged in a vertical array with zero matrices in positions 0, 1, ..., n 1, n + 1,
n + 2,... and a unit matrix in position n"

(0, ..., 0, i, 0, 0,...).

Furthermore, given X :o EX and Y Z’=o EY, where X, k 0, 1,
.., p < , and Y, k 0, 1,..., p, are m m matrices (some of which may be
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zero), define the m x m matrix IX, Y]"

where T is the infinite matrix Too. (Of course we could define IX, Y] in terms of
Tp, but we prefer an expression which is independent of p.) Then we have

(2.5) [Y,X] IX, Y]’ and [Ei, E] Ci_.

Finally, introduce the shift operator a"

p

(2.6) a’X 2 E+,X (i => 0).
k=O

It is then easily seen that

(2.7) [E, rX] [E_,,X] (k >= i)

and that

(2.8) ErX, aY] EX, Y].

We are now in a position to express some well-known orthogonality prop-
erties in terms of

(2.9) ,-- L Ekt.k
k=O

and

(2.10) .* L E.*.
k=O

LEMMA 2.1.

(2.11) [Ek,,] =0 forO <= k < n,

(2.12) [E,, ,] R,,

(2.13) [Ok, (I)l] Rkfkl.
Proof. Equations (2.11) and (2.12) follow from

i=0 i=0

which by orthogonality is 0 for k < n and R, for k n. We obtain (2.13) by ob-
serving that

i=0

which, by {2.11) and (2.12), is 0 for k < and R for k I. Then it follows from
{2.5) that {2.13) holds for k > also.
LA 2.2.

(2.4) [,] 0 @r 0 < k n,
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(2.15) [E0 O,*] R,*,

(2.16) [(7n-k * a *0k, -lo[l Rktkl (0 < k, < n).

Proof. Equations (2.14) and (2.15) are obtained in the same way as (2.11) and
(2.12), only replacing , by "*y,. To obtain (2.16), also observe (2.6) and (2.7) to
see that (for k l)

,-,] &’[, +, ][-, ,-,mr] m’[,+,-,
i=0 i=0

Remark 2.1. Observe that , is uniquely determined by the system (2.11) of
normal equations:

n--I

(2.7) Z c_,.,,, -c_,, k 0, ,..., ,
i=0

for the coefficient matrix

_
is nonsingular. Likewise, is uniquely determined

by (2.14)"

(2.18) Ck_i()n --Ck, k 1,2, n,
i=1

which can also be written

n-1

(2.19) , C’k O,*,, =--C’k-,,
i=0

k=0,1,...,n- 1.

Remark 2.2. In the scalar case (m 1) we have a particularly simple relation-
ship between P, and P,*, namely O,* O,.,-i and R,* R,. In fact, the first
relation follows from (2.17) and (2.19) (for C’i Ci). Then the second relation is
obtained by comparing (2.12) and (2.15).

Remark 2.3. Note that R, and R,*, are positive definite. In fact, observing that
T, is positive definite, this follows from R, [O,, O,3 and R,* [O,*, O,*]. Clearly,
R, and R,* are also symmetric.

3. Difference equations for O. and
LEMMA 3.1. The jbllowing equations hold with the initial condition given by

o O Eo"
(3.1) O,+ ’On On Fn,

(3.2)

where F, and F*, are m x m matrices defined by the following equations"

(3.3)

where

RnF * ,(R.r.) S.,

(3.4) S,

(3.5) [oO,, Eo]

(3.6) [E,+,, O,*].
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Pro@ Let S, be defined by (3.4). Then

k=0

which is equal to (3.6) by Lemma 2.2. Also, due to (2.7),

S [o’(I)n, Eo] + [(I)n, Ek- 1](I)n*k,
k=l

which, by Lemma 2.1, is equal to (3.5).
To prove (3.1), first observe that ,+1 can be represented in the following

form

n+ En+ "- o’n-k()k Bnk,
k=O

where Bnk are m m matrices. (In fact, this equation is equivalent to the following
system"

(.*. kBni di) k O,l,l + 1,n
i-k

which can be solved for the B,i matrices, for ’o I.) By Lemma 2.2, we have

[(Tn-if.*t 0.+ 1 [(7"-i0 E.+ 1] --i- R.*, B,, (0 <__ <= n).

The left member, being equal to Z=o [E+,_,, , + ], is zero by Lemma 2.1,
and due to (2.7) the first term on the right side equals S’ as given by (3.6). Hence,
since R’ is nonsingular, by (3.3), B, -F’. Then form ,+ oI, to see that
(3.1) holds.

Similarly (3.2) can be proved by considering the representation

tI) * Eo + O’(kBnkn+l
k=O

Then Lemma 2.1 (together with (2.8)) and (3.5) imply

[O’(I)i, (I)n*+ 1] Si + RiBni,

the left member of which is zero (Lemma 2.2), and therefore B,i -Fi. Thus
(3.2) holds. This concludes the proof of the lemma.

In the case m (i.e., the process {y,} is scalar) we have ,*k
R,* R, (see Remark 2.2) and, consequently, F,* F,. The corresponding
versions of (3.1) and (3.2) can be found in the theory of orthogonal polynomials
(see [1, p. 183] or 2, p. 155]). In the general case (m > 1) similar equations can be
found in [7], [12], [13]. However, [7] does not contain relation (3.3), and although
this relation is mentioned in [12], [14], there is no proof for it.

LEMMA 3.2. The error covariances R, and R*, satisfy the following difference
equations with Ro R’ Co"
(3.7) R,+ R,,- F*’/*F*

(3.8) R* *n+l R,
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[or the uncoupled equations

(3.9) R,+ R(I FF*),

(3.10) R*+ &,q- r*r).

Also the following relations hold:

R+xr. (.*+ r.*)’(3.11)

and

(3.12)

(3.13)

(R.+ ,)-’ (R,)-’ + r.(R*+ ,)-’F’,,

(R*+ ,)-’ (R*)- + r*(R+ ,)-’F*’.] 2

Proof. From (3.1) and (3.6) we have

[En+ l,n+ ,] [En+ l, n] Snr
which, by (2.7) and Lemma 2.1, is the same as (3.7) or (3.9), depending on which
of the two expressions (3.3) for S is used. Likewise (3.2) and (3.5) yield

[o, o+ ,] [o, o] s’r,

which is the same as (3.8) or (3.10) (Lemma 2.2). To obtain (3.11), postmultiply
(3.7) and (3.8) by F, and F respectively, and use (3.3). Finally, from (3.9) we have

1) -1(R,)

which, by (3.11), is equal to (3.12). (To see this, transpose (3.11), premultiply by
(R+ ,)-’ and postmultiply by (R,+ ,)-’.) Equation (3.13) is derived in the same
way.

4. algorit for the ga matrix. We now return to the problem described
in 1. Thus the innovation process (2.1) will be

(4.)

Our object is to determine the gain matrix (1.7)"

(4.2)

where Q,, defined by (1.10) and (1.8), can be written

(4.3)

Here we have first used the orthogonality between , and (x,- },) to obtain
Q, E{x,(x, ,)’}H’ and then (4.1) and the fact that x and w are uncorrelated.
By a similar argument, we can express the error covariance R, E{ff,y},
defined in 2, in terms of
(4.4) R. HO. + P.
Of course, (4.2), (4.3) and (4.4) can easily and in a well-known fashion be derived
directly, and our reference to the equations in is merely for the purpose of
comparison. Note in particular that we make no use of the Riccati equation (1.9).

The corresponding part of the proof should also be bracketed.
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Now, since E(vjx’i} 0 for j >_ and E{x,x’} Po (stationarity), (1.1) yields

(4.5) E{x,,x’i} F"-ipo (n >= i),

and therefore, remembering that y Hx + w, we have

(4.6) E{x,,y’i} F"-PoH’ (n >= i)

(for x and w are uncorrelated) and

(4.7) Ci HUPoH’ + P26o (i >= 0).

Inserting (2.1) into (4.3) and observing (4.6), we obtain

(4.8) Q, F"-’Poll’
i=0

Then, if we define

(4.9) Q*, F"+ I-iPoH’*.,
i=0

we can exploit Lemma 3.1 to obtain

(4.10) Q,+I Q, * *

(4.11) Q,*+x FQ*, vo,r,,
where Qo Poll’ and Q FPoH’.

Furthermore, from (3.6) we have

S, C, + ,*,
i=0

which by (4.7) and (4.9) equals

(4.12) S, HQ*,.
This enables us to determine F. and F,* from (3.3)"

(4.13) r. R; HQ*.,

(4.14) F,* (R*,)- IQ*,’H’.

By (4.4), R can be expressed in terms of Q,, while for R,* we must employ the
recursion (3.8) of Lemma 3.2.

Hence we are now in a position to state our main result.
THEOREM 4.1. The optimal gain matrix for the filter (1.6) can be determined

in the following way:

I. FQ.(HQ. + P)-’,(4.2)

where

(4.15)

(4.16)

(4.17)

Q,+, Q, Q*.(R*.)-

Q*,+, FQ FQ,(HQ, + P2)- ’HQ,,*
R +, R Q’H’(HQ, + P2)-’HQ,

with. initial conditions Qo Poll’, Q FPoH’ and R HPoH’ + P2.
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Remark 4.1. Note that Q, and Q,* are k m matrices and R,* is a symmetric
m m matrix. Thus we have 2km + [m(m + 1)]/2 equations to determine Q,.

IRemark 4.2. Since only the inverse of R,* is needed, we may replace (4.17) by

(4.18) (R* - - - *,+1) (R*,) + (R*,) Q,, H (HQ,,+ + P2) 1HQ*,(R*,) 1.

To see this, just insert (4.14) and (4.4) into (3.13). Equation (4.18) can also be ob-
tained directly from (4.17) by applying the matrix inversion lemma3 and noticing
that R, HQ, + P2 is given by

(4.19) Rn+ R,,- HQ*.(R*.)-1Q*.’H’

with initial condition Ro HPoH’ + P2.]
Remark 4.3. Equations (4.15), (4.16) and (4.17) can also be used for the pure

filtering problem to determine the linear least squares estimate of x, given
{Yo, Yl, "’", Y,}. In fact, it is well known that we now have the following filtering
equation (which of course is derived without resort to the Riccati equation):

(4.20) c, Fc,_ + L,,(y,, HFc,_ 1)

with initial condition o 0, where the gain L, is given by

(4.21) L, Q,(HQ,, + P2)-1.

[Remark 4.4. We have made an effort to present our algorithm for Q, in a
compact form using as few equations as possible. Equations (4.15), (4.16) and
(4.17) contain all the information needed for determining the gain sequences K,,
and L,. However, as usual, a certain judgment has to be exercised in implementing
our algorithm. Computational requirements call for minimizing the number of
arithmetic operations (see, e.g., 11 for details), and different considerations have
to be made for the one-step predictor and for the pure filter. The reader should
convince himself that in general Table describes the natural implementation of
our algorithm (when m << k), although the number of equations has increased.
For example, instead of computing the quantities R,-- HQ, + P2 from Q, in
each step, amending the projected equation (4.19) (3.7) (which of course is con-
tained in (4.15)) usually (but not always) reduces the number of arithmetic oper-
ations. Also, which is even more important, there should be a minimum of multi-
plications by the large matrix F. We have introduced some auxiliary variables in
addition to the ones defined in the text, U, (R,)-1, U*, (R*,)-1, Q, =_ FQ,
and Q*, =_ FQ*, (the last two used for the one-step predictor only). However, it
should be noted that special properties of the system’s matrices may call for some
other implementation of the algorithm. For example, with a sparse F (e.g., a
companion matrix) the multiplication by F becomes less critical.]

The author would like to thank Prof. I. H. Rowe (among others) for suggesting this. (This
remark was communicated to the editor on March 20, 1973.)
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TABLE

Pure filtering One-step prediction

Qo PoH’
Q’ FPoH’
Ro HPoH’ + P2
U U R

Qo FPoH’

L.=Q.U,,

Q.+I Q.
Q*.+, F(Q*. L.S,,)

S,, HQ*.
r’*.- *’

R,,+ R,,- S,,F*.
U.+ (R.+ )-
u*,+ * *’U,, + F. U,,+

K,, Q,,U,,

Q*, FQ*.
-Q..I-’.

Q*.+, Q*. K,,S,,

5. The scalar output case. In the case m we have a somewhat simpler
situation. Since R,* R,,, which is given by (4.4), equation (4.17) now becomes
superfluous, and therefore we end up with 2k equations. (Also note that S, is now
a scalar.)

We can also write our equations directly in terms of the gain vector k, with-
out increasing the number of equations4

(5.1) k,+, [1 (h’k*)2] ’[k,, (h’k,*)Fk,,*],

(5.2) k*+, [1 (h’k,*)2] ’[Fk*, -(h’k*)k.],

with initial conditions ko k (h’Poh + P2)-FPoh, where we write H as h’ to
emphasize that it is a vector.

In fact, observe that k, FQ,R2 . Then define k,* Q*,R2 , from which
we have F, h’k*. Therefore, (3.8) gives

R,+x [1 (h’k,*)2] n,,,
and (4.10) and (4.11) yield the desired result. (Since R,+, and R, are both positive,
so is [1 (h’kn*)2], and therefore we can safely divide by this quantity.)

[The equations can be simplified at the expense of the "symmetry" by adding
(h’k*,) times (5.2) to (5.1)"

,k,+ k,, (h k,)k,+

.,+ [ (h’.*)] [F.*

but we should remember that computational requirements may call for retaining
the original algorithm of 4.]

Similar equations can be obtained for the pure filtering problem.

[We can obtain similar equations for m > if we amend the equations for both R. and R.*.]
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OPTIMAL FILTERING OF CONTINUOUS-TIME STATIONARY
PROCESSES BY MEANS OF THE BACKWARD

INNOVATION PROCESS*

ANDERS LINDQUIST]"

Abstract. A new approach to linear least squares estimation of continuous-time (wide sense)
stationary stochastic processes is presented. The basic idea is that the relevant estimates can be ex-
pressed not only in terms of the usual (forward) innovation process but also in terms of a backward
innovation process. The functions determining the optimal filter as well as the error covariance
functions are seen to satisfy some differential equations. As an important example the Kalman-Bucy
filter is considered. It is demonstrated that the optimal gain matrix can be determined from 2ran
equations (where n is the dimension of the system and m of the output) rather than 1/2n(n + 1) as in the
conventional theory. This is an advantage when, as is usually the case, m << n. These equations were
first derived by Kailath, who used a different method. Also they are the continuous-time versions of
some equations previously obtained (independently of Kailath) by the author.

1. Introduction. In this paper we consider linear least squares filtering of
wide sense stationary stochastic vector processes, where the estimation is based
on past observations of the process on an ncreasing but finite time interval.
Since therefore the filtering estimate will be a nonstationary process, the weighting
function of the filter will be a function of two time variables rather than one as in
classical Wiener theory, where observations from the infinite past are assumed to
be available. This weighting function satisfies a generalized Wiener-Hopf equation
for which no general method of solution is known. Since this is also the case
when the process to be estimated is nonstationary, it may seem unnecessarily
restrictive to assume stationarity. However, it turns out that this assumption will
enable us to give simple differential equations for the weighting function and the
error covariance function. These equations are completely characterized by the
covariance between the estimation error process and the initial value of the
estimated process, and therefore, at least in theory, we have reduced the problem
to determining this function of one variable.

The usefulness of our results becomes apparent when applying them to
Kalman-Bucy filtering [4] of wide sense stationary processes. It is well known
that the computation of the "gain matrix" for such a filter requires the solution
of an n x n matrix Riccati differential equation, where n is the dimension of the
system. The number n is usually much larger than the dimension m of the ob-
served process. Our approach will yield 2ran nonlinear differential equations
instead of the 1/2n(n + 1) of the Riccati equation and therefore will supply a more
effective algorithm for the gain matrix whenever m << n. The same equations were
recently presented by Kailath [3], who derived them directly from the Riccati
equation. However, our approach helps to reveal the fact that the property of the
error covariance matrix which makes Kailath’s method work holds for wide
sense stationary stochastic processes in general, and not only for those realized
by a finite-dimensional linear stochastic system.

* Received by the editors February 12, 1973.

5" Department of Mathematics, University of Florida, Gainesville, Florida. Now at Department
of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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In order to obtain our results, in 3 we define the backward innovation
processes. This is in the spirit of a previous paper [6] by the author on filtering
of discrete-time processes, and we shall find some similarities in the structures of
analogous equations, but also some important differences. So, for example, the
equations for the "Kalman gain" are somewhat more complicated in the discrete-
time case in that an equation for the "backward error covariance" is required.
The reason for this, of course, is that in the continuous-time case the innovation
processes can be defined (as we have done) to have constant incremental co-
variances, while in the discrete-time case they are identical to the error processes,
for which no such constancy holds. (Hence the discrete-time counterpart of (4.7)
also contains the backward error covariance matrix.)

2. Preliminaries. Let z(t) be the m-dimensional stochastic process

(2.) z(t) () cl + w(t)

defined on [0, T], where y(t) is a zero mean vector process such that

T"Ely(t)[
2 dt < c,

and w(t) is a process with zero mean and covariance function

(2.2) E{w(s)w(t)’} I min (s, t)

(prime denotes transpose), which implies that w(t) has orthogonal increments.
If H is the Hilbert space of all second order stochastic variables (of course,

we have tacitly assumed an underlying probability space (f, B, P)) with inner
product (, r/) E{r/}, then define Ht(z) to be the closed linear hull in H of the
stochastic variables {zi(s); 0 < s __< t, 1, 2,..., m}. Furthermore, for any

H, let/ denote the projection of onto Ht(z), i.e., the wide sense conditional
mean of given {z(s); 0 __< s _<_ t}. If x is a vector with components xi H, we
shall take/x to mean the vector with components xi.

We shall need a few results from linear filtering theory which in the present
form are essentially due to Kailath. Denote y(t) by)(t) and define the innovation
process

(2.3) v(t) z(t) 3(r) dr,

for which we have the following lemmas.
LEMMA 2.1. The process v(t) has zero mean and covariance function (2.2) and

hence orthogonal increments. Moreover,

(2.4) H,(v) H,(z), 0 -< <= T.

LEMMA 2.2. Let x be a stochastic vector with components in H, and let v(t)
be a zero mean vector process with orthogonal increments and covariance function

In order to take full advantage of integration theory, we assume that all stochastic processes
defined are measurable in (t, o).
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(2.2). Then

;i cl e xvls)’ } dyes)(2.5) E’x

Informal versions of these lemmas have appeared in a series of papers by
Kailath on the "innovation method". For rigorous proofs see Kailath [2] or
Lindquist [5].

3. The backward innovation processes. For the moment assuming that
[0, T] is fixed, define the following stochastic processes for s [0, t]"

(3.) y,(s) y(t- s),

(3.2) z(s) z(t)- z(t- s),

(3.3) wds) w(t)- w(t- s),

where y, x and w are the processes defined in 2. Then equation (2.1) gives us

(3.4) zt(s y(r) dr + w(s),

which is an equation of the same type as (2.1), for it is immediately clear that

(3.5) E{w(s)w(-c)’} I min (s, r).

Therefore wds) has orthogonal increments for each fixed t. Also it is clear that

(3.6) z(s) zt(t)- zdt- s)

and therefore

(3.7) Ht(z,) Ht(z).

Now, introducing the notation Pt(s)= ’yt(s), we consider the innovation
process corresponding to (3.4)"

(3.8) vt(s) zt(s) )9,(r) dr,

which we shall call the backward innovation process for {z(s); 0 =< s __< t}. Clearly
we have one such process for each e [0, T]. The following lemma is then an
immediate consequence of Lemma 2.1 and equation (3.7).

LEMMA 3.1. For each fixed t, vds) has zero mean and covariance function (3.5),
and hence orthogonal increments. Moreover,

(3.9) Hs(v,) Hs(zt), 0 <= s <= t,

and, in particular,

(3.10) Hdv,) H,(zt)= H,(z)= H,(v).

Therefore, whenever we wish to determine a linear least squares estimate
based on the data {z(s); 0 __< s < t}, we can also express it in terms of z, v or vt,
whichever we find appropriate.
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4. An equation for the error covariance. Let z(t) be the m-dimensional data
process defined by (2.1) and x(t) a related n-dimensional zero mean stochastic
process such that the compound process (x(t), y(t)) is wide sense stationary with
E(x(t)x(t)’} Po. Also, to simplify matters, assume that (x,y) and w are un-
correlated.

Now, our problem is to determine the linear least squares estimate
(t) =/x(t), and in the process of doing so we are interested in the estimation
error covariance function

(4.i) P(t) E{Y(t)Yc(t)’},
where )?(t)= x(t)- 2c(t).

To this end, we recall the well-known fact that (for a fixed t) the filtering
estimate .9t(s) of yt(s) given the data {z#:); 0 =< r _< s} is

(4.2) .9,(s) G(s, r) dz,(r),

where G is a function (defined through a generalized Wiener-Hopf equation)
only of C, where Ct(z,s)= E{y(r)y(s)’}. However, due to the stationarity,
C(r, s)= E{y(s)y(r)’} does not depend on the parameter t, and hence G is good
for all e [0, T]. Therefore we have

E{x(t)p,(s)’} E{x(t)If] G(s r)drl’ }
E dr[’(4.3) {x(s)[f a(s r)y(s z) }

where we have used the fact that (x, y) is wide sense stationary and x and w are
uncorrelated.

We are now in a position to apply Lemmas 2.2 and 3.1 to see that

(4.4) 2(t) Q(t, s) dvt(s),

where

(4.5)

Q(t, s)= E{x(t)[y,(s)

E{x(s) [ys(S)

E{ff(s)y(0)’ },

where again we have exploited the stationarity and uncorrelatedness properties
mentioned above, relation (4.3), and also the fact that 2(s) and y(s) 9s(s) are
orthogonal and that the same is true for if(s) and ps(s). Hence Q(t, s) does not
depend on t, and we shall therefore call it Q(s):

(4.6) (t) Q(s) ,lv,(s).
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Then we have the error covariance

PIO {x0x0’} {))’}
(4.7) flPo O(s)Q(s)’ ds,

which concludes the proof of the following theorem.
THEOREM 4. l. With the conditions imposed in the beginning of this section, the

error covariance (4.1) satisfies the matrix differential equation

P(t) -Q(t)Q(t)’,
(4.8)

P(O) Po,
where

(4.9) Q(t) E{Yc(t)y(O)’}.

Here the dynamics of the n m matrix function Q is essentially that of the
error signal if, so to proceed we have to impose further conditions on the process
x(t). We choose to illustrate this by applying Theorem 4.1 to the Kalman-Bucy
filter.

Assume that the n-dimensional wide sense stationary process x(t) is given by
the stochastic differential equation

(4.10) dx Ax dt + B dr, x(0) Xo,

and the m-dimensional data process by

dz Hx dt + dw, z(O) O,

so that y(t) is in fact equal to Hx(t). Here v(t) is a vector process of type (2.2), Xo
is a zero mean stochastic variable, and Xo, v and w are pairwise uncorrelated. The
matrices A, B and H are constant.

Now, it is well known [4] that the filtering estimate (t) is generated by

(4.11) d A dt + K(dz- H dt), (0) O,

where the "gain-matrix" function K is given by

(4.12) K(t) P(t)H’.

The n n matrix function P is usually determined from a matrix Riccati equation,
which amounts to solving 1/2n(n + 1) nonlinear differential equations, in order to
obtain the nm functions in the gain matrix K. Our procedure yields 2ran
equations, which is a major advantage whenever, as is often the case, m << n. To
see this, first observe that the error process .(t) is given by

(4.13) d (A KH) dt + B dv dw

with initial condition .(0)= xo. Moreover, y(0)= Hxo, which is uncorrelated
with v and w. It is then easy to see that

Q =(A- KH)Q, Q(o) Poll’,
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and that we therefore have the following 2mn equations to determine the optimal
gain:

(4.14)
(t) -Q(t)O(t)’H’,

Q(t) (A K(t)H)Q(t),

with initial conditions K(0) Q(0) Poll’. Clearly, there exists a unique solution
of the system (4.14). Indeed, establishing this is a standard exercise in the use of
the contraction mapping principle.

Equations (4.14) have also been obtained by Kailath [3] by differentiating
the Riccati equation. However, unlike Kailath’s method, ours completely avoids
the Riccati equation. It also demonstrates the fact that the low rank property (in
the interesting case m << n) of/5 is not only a property of "lumped" stationary
processes (4.10) but is one of stationary processes in general.

5. Differential equations for the weighting function. Consider the problem to
determine the linear least squares estimate .9(t) y(t), where as before the data
process z(t) is given by (2.1):

(5.1) z(t) y(r) dr + w(t).

We assume that y is wide sense stationary and that y and w are uncorrelated.
Then as we pointed out in 4, we have

(5.2) )5(t) F(t, s) dz(s),

where F is the weighting function to be determined. This function is known to
satisfy a Fredholm integral equation (a generalized Wiener-Hopf equation), but
we shall demonstrate that it also satisfies a system of differential equations.

Now it is easily seen that we can rewrite (5.2) in terms of the backward data
process (3.2) to obtain

(5.3) )5(t) F(t, s) dz,(s).

Also we define the backward weighting function F* by the equation

(5.4) )),(s) F*(s, s z) dz,(z).

As we pointed out in 4, the stationarity insures that F* is the same for all values
of the parameter t. Moreover,

(5.5) )5,(t) F*(t, )dz().

We can also express ,9 and Pt in terms of the innovation processes v and vt.
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In fact, equation (4.6) yields for the case x y:

(5.6)

where

(5.9)

r(t)

or, introducing the notation

(5.8) F(t)- E{y(t),9,(t)’}.

Also, a straightforward application of Lemma 2.2 (with v v) yields

.9,(t) F(s)’ dv(s).

Hence, by (3.8),

and, by (2.3),

,9(t) F(s) dzt(s) F*(s, s z) dz,(z) ds

F(s) F(z)F*(z, z s) dr dz(s)

33,(t) r(s)’ dz(s) F(s, s r) dz(r) ds

F(s)’ F(’c)’F(’c, r s) dr dz(s).

(The change of the order of integration is permitted due to a Fubini-type theorem
for stochastic integrals. See, e.g., [1, p. 197].) It is clear from these expressions
that

(5.10) F(t, s) F(s) F(r)f*(r, r s) d:,

(5.11) F*(t, s) F(s)’ F(r)’F(r, s) d’c.

Now, the following theorem is a continuous-time analogue of Lemmas 3.1
and 3.2 in [6.

TnEOREM 5.1. The weighting functions F and F* satisfy the following differ-
ential equations:

(5.12)
cF

OF*
ct

--(t, s) F(t)F*(t, s),

(t, s) F(t)’F(t, s)
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for >= s, with initial conditions F(s, s) F(s) and F*(s, s) F(s)’, where F is defined
by (5.7)or (5.8). The error covariances R(t) E{(t)(t)’} and R*(t) E {37,(037,(0’}
satisfy"

(5.14) /(t) F(t)F(t)’,

(5.15) /*(t) F(t)’F(t),

with initial conditions R(0) R*(0) E{y(t)y(t)’}.
Moreover, if x is the process of Theorem 4.1 and N is the weighting function

defined by

(5.16)

then N satisfies

(5.17)
c3N

c(t) N(t, s) dz(s),

--(t, s) -Q.tt)F*(t, s)

for >= s, with initial condition N(s, s) Q(s), where Q is given by (4.9).
Proof. Equations (5.12) and (5.13) follow from (5.10) and (5.11), and (5.17) is

derived in the same way as (5.12) only exchanging (5.6) for (4.6). Finally, (5.14) and
(5.15) are consequences of Theorem 4.1. To obtain (5.14), put x y, and to obtain
(5.15), put x Yt and exchange y for

As an example, we can now apply equations (5.12) and (5.13) to obtain an
alternative derivation of equations (4.14). In fact, by (5.2) and (5.5), K(t)

E{x(t)(t)’} and Q(t)= E{x(t)t(t)’} can be expressed in terms of F and F*
respectively. Also observe that E{x(t)y(s)’} eat-s)PoH’ and finally that F(t)

HQ(t).
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HILBERT NETWORKS. I*

VACLAV DOLEZALS"

Abstract. In this paper there is constructed a simple model of a general nonlinear network.
The network considered consists of at most countably many lumped elements described by (not
necessarily linear) operators from a Hilbert space into itself. Several theorems are proved on the
existence and uniqueness of the solution of the network. Also, it is shown that, under certain conditions,
the solution of an infinite network is a limit of solutions of finite subnetworks.

Introduction. In the last two decades, considerable attention has been paid to
networks consisting of finitely many nonlinear elements. The most profound
results in this respect have been obtained by Minty [1]. The networks considered
in [1] are assumed to consist of finitely many nonlinear resistors which are
described by monotone multivalued functions. On the other hand, an abstract
model of a network was constructed by Roth [11].

While the approach developed in [1] is purely "network-theoretic", i.e., it
starts from the description of the network by its graph and its elements, many
results were also obtained that view the network as a simple interconnection of
blocks, each of which is described by some operator on a Hilbert space or possibly
on an extended Hilbert space. In this context, let us mention the paper by Zames
[2], which considers mostly feedback systems and establishes relations between
stability and passivity or monotonicity, and several papers by Sandberg. A nice
survey of results dealing with systems described by causal operators on extended
Banach or Hilbert spaces is given in Sandberg’s paper [3]. There are also scores
of papers dealing with systems which have a particular structure; let us mention
only the paper by Zames and Falb [4].

On the other hand, very recently efforts have been made to investigate net-
works consisting of infinitely many elements. Pioneering results in this field were
obtained by Flanders [5] and Zemanian [6]. While results obtained in [5] apply
mostly to networks with constant linear resistors under a direct current regime,
[6] is concerned with infinite networks whose elements are described by certain
linear operators on some Hilbert space. However, it is assumed that the network
can be partitioned into subnetworks each of which has an R- or L- or C-network-
like character.

In the present paper we attempt to unify all the approaches to the network
problem indicated above. To be more specific, we assume that the network elements
are described by (in general nonlinear) operators from some Hilbert space H into
itself; thus, within this framework, currents and voltages are elements in H.
Moreover, for the network model discussed it is immaterial whether it consists of
finitely or infinitely many elements; also, we do not make any special assumptions
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about the network structure except for the requirement that the graph of the
network be locally finite.

Naturally, our network model is not "universal", i.e., there are physical
systems which cannot be analyzed by our model. This is mainly due to the fact
that, for the sake of simplicity, we have assumed that the operators describing
the network elements are defined on the entire space. Thus, for example, our model
does not apply to the case when the underlying space is L2[0, "r], "C > 0, and the
network contains differentiators (inductors), unless the system of integro-differ-
ential equations governing the regime is replaced by a system of integral equations.
Similarly, if we deal with the space L2[0 o0), we encounter difficulties when
integrators (capacitors) are present, unless we make some additional assumptions
about the growth of capacitors as --, o. However, as mentioned above, it does
not matter whether finitely or infinitely many elements are present.

On the other hand, our model can be immediately applied to any specific
R, L, C-network with constant elements in the frequency domain.

Fortunately, the above limitations are of a technical nature; they can be
easily removed by constructing a more general (and, consequently, more com-
plicated) model of a network. This will be done in a later paper.

Also, let us point out the following fact" since the analysis takes place in a
Hilbert space, we assume a priori that all energies associated with the network
are. finite. This, however, appears to be a quite natural assumption.

As for the development of our theory, it is convenient to introduce first the
concept of an abstract network V" as a pair (Z, a) of certain operators. This is done
in the first part of the paper. We define the solution of g" in a fashion which is a
straightforward generalization of Kirchhoff’s laws, and establish several theorems
on the existence and uniqueness of a solution.

In the second part we define a Hilbert network 47 as a pair (, G), where G
is an oriented graph (finite or infinite) and 2 is an (impedance) operator describing
the relations between currents and voltage drops in branches of . It is shown
that the concept of a solution of can be defined in two different but equivalent
ways, i.e., either as a solution of the associated abstract network or as a solution
of the classical Kirchhoff’s laws. Due to this fact, theorems obtained in the first
partapply to a Hilbert network. As a result, we obtain theorems on the existence
and uniqueness of a solution of a Hilbert network, and some results which are
extensions of certain laws in classical network theory. Finally, it is shown that if
the impedance operator 2 of an infinite Hilbert network ? satisfies a certain
monotonicity condition, then the solution of 47 is a limit of solutions of finite
subnetworks of

1. Abstract networks. If N1, N are nonzero normed linear spaces, IN1, N2]
will denote the space of all linear continuous operators from N into N2 moreover,
if e > 0, then Lip,IN 1, N 2] will signify the set of all (not necessarily linear) operators
A "N N2 such that

(1.1) IIAxa Ax2[ <= X XZ[
for all Xl,X2 e N1.

In the sequel, and ’ will be fixed Hilbert spaces, i.e., complex or real,
complete (not necessarily separable) inner product spaces.
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Let Z be a (not necessarily linear) operator from off into itself, and let
a 6 [off, off’], a - 0; then the ordered pair ff (Z, a) will be called an abstract
network over off. Also, Z will be called the impedance operator of ,A/, and a the
structural operator of. If, in particular, Z is linear, V will be called linear.

DEFINITION. Let ,A/ (Z, a) be an abstract network over off, and let e off;
an element 6 off will be called a solution ofU corresponding to e if

KI" (c, Zi e) 0

for every c 6 W such that ac 0, and
K2 ai O.

A network V will be called regular if for every e e off there exists a unique solution
i6 Yf corresponding to e, i.e., if there exists an operator A :W --* W, called the
admittance operator of g’, such that Ae for each e off.

For further purposes, let us introduce the following notation.
If a is the structural operator of V, let

(1.2) N. {x "x 6 off ax 0};
clearly, N, is a closed linear subspace of 34g. Furthermore, let N be the orthogonal
complement of N, in off, and let P be the orthogonal projection of off onto N,.

If N, {0}, then is clearly regular and 0 is the unique solution of
corresponding to any chosen e off; thus, in the sequel we will assume that
N, {0}.

Observe that, using this notation, a solution of V corresponding to e
can be defined as an element e off which satisfies the relations

KT" Zi- e6NZ,

The following proposition gives necessary and sufficient conditions for a
network to be regular.

THEOREM 1.1. Let f (Z, a) be an abstract network over off, and let N,, P
have the meaning defined above;furthermore, let be the restriction of Z to N,.
Then f is regular iff the operator P’N. N. possesses an inverse (P)- "N.

N.. In this case, the admittance operator A offf is given by

(1.3) A (P,)- P.

If, in additioh, ff is linear, then A is linear, and A e [off, off] provided Z [off, ,].
Proof (a) Assume first that (P2)- exists, and define A by (1.3). Choose

e e off and let Ae. Since A "off N,, we have e N, and K holds. Next, let
c e N,; since Pc c, we have

(c, Zi e) (Pc, Z(P2) Pe e)

(Pc, 2(P2)-’Pe e)

(c, P*2(P2)- 1Pe P’e)

(c, P2(P2)-Pe Pe) O.

Hence, Zi e NZ,, and consequently, is a solution of corresponding to e.
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Suppose now that there exists some that satisfies K’ and K with the
same e,. Then, for any c Na, (c, Zi- e)= 0 and {c,Z- e)= O, and
consequently, (c, Zi Z) 0. Because i, are elements of Na, we have

(1.4) 0 (c,2i- 2) (Pc,2i- 2i) (c, P2i- P2I).

However, since both Pi and Pi are in Na, we can set c Pi Pi and obtain
from (1.4), P2i- P2i 0. The existence of (P2)-1 then implies that i= i.
Hence, /" is regular and (1.3) holds.

(b) Conversely, suppose that is regular, i.e., there exists an operator
,’ --. such that, for any e , e is the unique solution of 4" cor-
responding to e. We are going to show that the operator P’Na --* Na is invertible.
Thus, suppose first that there exist x l,x2 Na such that P2xl Px2--y.
Then we have for any c Na,

(c, Zx y) (Pc, Zx y) (c, P2x Py) (c,P2x y) 0;

similarly, (c, ZX2 25 O. Consequently, xl and x2 are solutions of 4 cor-
responding to y, so that necessarily x x_" hence, P2 is one-to-one.

Next, arbitrarily choose y N, and put ,y. Then we have by K2, K1,
N and (c, Zi y) 0 for all c Na. This equality yields

(1.5) 0 (Pc, Zi- y) (c, PZi- Py) (c, PZi- y).

However, since Pi Na and y Na, we can set c Pi y; then we get from
(1.5), Pi y 0, i.e., P is onto. Hence, P2 is invertible.

Finally, if W" is linear, (1.3) shows that A is also linear. If Z [, ], then
P is bounded on Na since IIPII thus, by the open mapping theorem, (P)-
is also bounded and (1.3) shows that A [Jcg, ]. This completes the proof.

The following three theorems give various sufficient conditions for regularity
of an abstract network.

THEOREM 1.2. Let (Z, a) be an abstract network over , and let N P
have the meaning defined above. Assume that there exist a number la :/: 0 and a real
2 with 0 < 2 < such that

(1.6) I laPZ Lipa INa, N,],

where I is the identity operator on N,. Then ff is regular and the admittance operator
A of /V" is in Lipt [, ’], where/3 (1 2)-lllal.

In view of Theorem 1.1, the proof of Theorem 1.2 is a straightforward applica-
tion of the contraction mapping theorem to the operator Q:Na N, defined by
Q,x (I laPZ)x + lay, and is omitted.

THEOREM 1.3. Let V" (Z, a) be an abstract network over 9g, and let N,, P
have the meaning defined above. Assume that there exist constants c > 0 and 2 > 0
such that

(i) Re (Zx Zx2,xl x25 >- c[Ix x2l[ 2
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for all x1, x2

_
Na,

(ii) PZ Lipx [N, N].

Then r is regular and the admittance operator A of r is in Lips [oug, oug] with
--(C,)-1(/ _[_ N//2 C2).

The proof of this theorem is again a routine application of properties of
monotonic operators and is omitted. (See, for example, [7, p. 718].)

Remark 1. If (Z, a) is an abstract network and the operator Z is such
that Re(Zx Zx2,x x2) cllx x2[I 2 for all X1,X2 and some
c > 0, and Z e Lipx [oct, rg] for some 2 > 0, then conditions (i), (ii) in Theorem 1.3
are trivially satisfied, and consequently, X is regular. In other words, a network
./V with such Z is always regular whatever the structural operator a is.

For the proof of the next theorem we will need the following proposition.
LEMMA 1.1. Let be a Hilbert space with inner product (., )i, 1, 2, and

let A [1, 2].
(a) If

(1.7) inf sup [(Ax, Y)21 Cl ) 0

and

(1.8) inf sup [(Ax, Y)21 2 > O,
y

then A is one-to-one from 2,Ugl onto ot2, A-"e [2, gtl] and

(1.9) IIA-111 -< c- 1.

(b) If /fz Jog and there exists c > 0 such that

(1.10) I(Ax, x)[ cllxll 2

for all x e , then (1.7) and (1.8) are satisfied with 1 C2 C.

Since the proof is similar to that of the Lax-Milgram theorem (see [8, p. 92]),
we will indicate only the main steps. It follows from (1.7) that

(1.11) I(Ax, x)2l c11x1122

for all x e. This shows that A is one-to-one. Moreover, (1.11) and the bounded-
ness of A imply readily that ACga is closed in 2. Next, suppose that AAgl - 2;then, by a standard theorem, there exists Yo 2 with [[Y0[[ such that Yo _1_ A.
Thus, for all x e gl with []xi[ 1, (Ax, Y0)2 0 which contradicts (1.8); hence,
A is onto 2. Inequality (1.9) follows then from (1.11). The assertion (b) is obvious.

Remark 2. It is a matter of routine to show that conditions (1.7) and (1.8)
are necessary and sufficient conditions for A and the adjoint A* to have a bounded
inverse.
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THEOREM 1.4. Let ,A/ (Z, a) be an abstract network over , and let N, and
P have the meaning defined above. Assume that Z Z + Z2, where Z Idol, 3]. If

(i) inf sup I(Zlx,y)l c > O,
xeNa yeN,,

inf sup I(Zlx, y)l > O,
yll xll
YeNa xeNa

(ii) there exists/l > 0 such that PZ2 Lip IN,, N,],
(iii) c-12 < 1,

then dV is regular and the admittance operator A of.A is in Lipa [3, ocf], where
6 =(c- 2) -1.

Proof. Let 1 and zY2 be the restriction of Z1 and Z2 to N,, respectively.
First, consider the operator PI "N, N,; note that N, as a closed linear subspace
ofcX( isa Hilbert space in its own right. Ifx, y e N,, we have (Plx, y) (2ix, Py)

(ZlX, y); hence, conditions (i) show by Lemma 1.1 that (PI) -1 exists, is
bounded and II(P21)-1 c-1. To conclude the proof, it suffices to verify that
the operator Q.’N, - N, defined by

QyX -(P2)- IP22x + (P2,)- y

is a contraction, and consequently, the equation PZx-y possesses a unique
solution for any chosen y e N,.

From Theorem 1.4 we get immediately the following proposition.
COROLLARY 1.1. Let r (Z, a) be a linear abstract network over and let

ze[,].
(a) If Z satisfies conditions (i) in Theorem 1.4, then ,A is regular.
(b) If there exists c > 0 such that

(1.12) I<Zx, xSI >= cl x 12

for all x N,, then U is regular.
In either case, the admittance operator A of Y is in [, 2,], and All M c-.

Remark 3. If the network ,A (Z, a) is linear, Z e [,] and (1.12) holds
for all x e with some c > 0, then ,A is clearly regular; thus, in this case, regularity
of ,A is independent of a.

Let us now establish an equivalent formulation of the network solution;
to this end, we will need the following lemma.

LEMMA 1.2. Let ,’ be Hilbert spaces, let a e [3f, ’] and let a*,/f be
closed in (a*e [f’, 2/f] signifies the adjoint of a). Furthermore, let y then
there exists x 2If’ such that

(1.13) a*x y

ifffor every z with az 0 we have (z, y) O.
Proof. If N c is the null space of a, then our lemma claims that a*x y

has a solution x y e N. However, by a standard theorem (see [3, p. 133]),
N, (a*’)+/- hence N (a.*4’’)+/-+/- a*Cg’ a*’, which proves the lemma.
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An obvious application ofLemma 1.2 to conditions K 1, K2 yields the following
equivalent formulation of the network solution.

THEOREM 1.5. Let V" (Z, a) be an abstract network over off, and let
be a closed subspace ofoff, where a* is the ad]oint ofa. Then the following statements
are true

(i) If, for some e of, the network ,A/" possesses a (not necessarily unique)
solution of, then there exists a v off such that

(1.14) Zi + a*v e,

(1.15) ai O.

(ii) If, for a given e f, there exist elements vf and v of such that (1.14)
and (1.15) hold, then is a solution of ,IV corresponding to e.

It is clear that if Na, 4: {0} (Na, being the nullspace of a*), then the element
v in (1.14) is not determined uniquely, even in the case that is unique. However,
if we impose the requirement that v be in Na,, v will be determined uniquely.

Combining this fact with Theorem 1.5, we get the following result.
THEOREM 1.6. Let U (Z, a) be an abstract network over off and let a’of’

be closed in off. Define the operator K’N x No, of by

(1.16) K(x, y)= Zx + a*y.

Then U is regular iff K possesses an inverse K-1.
Proof. Assume first that K- exists. If e e of, then there exist unique elements

e Na and v e Na such that K(i, v) e, i.e., (1.14) and (1.15) hold. However, by
Theorem 1.5, is a solution of V corresponding to e; furthermore, is unique,
because if there existed another i’ Na, we had by Theorem 1.5, Zi’ + a*v’ e for
some v’ e off’, which contradicts the uniqueness of (i, v). Hence, Y is regular.

Conversely, assume that Y is regular. Choose e e off, and let i Na be the
unique solution of V corresponding to e. Then, by Theorem 1.5 there exists a
unique v e No such that (1.14) holds, i.e., we have K(i, v) e. Moreover, if there
existed some different pair (i’, v’) Na x No, with K(i’, v’) e, then, by Theorem 1.5,
i’ would be a solution of corresponding to e; however, since necessarily v’ v,
we would have i’ 4: i, which contradicts the regularity of V. Hence, K-1 exists
and the proof is complete.

Remark 4. Comparing Theorems 1.1 and 1.6, we obtain the following equiv-
alence:

is regular ,, (P,)- exists K- exists.

The following theorem provides a basis for proving an approximation theorem
on infinite Hilbert networks.

THEOREM 1.7. Let .A/" (Z, a) be an abstract network over off, let No be the
nullspace of a and P be the projection of of onto No. Let there exist constants
c, 2 > 0 such that

(1.17) Re (Zx Zx2,x x2) )" cllx x2ll 2

for all x l, X2 No, and

(1.18) PZ Lip [No, No].
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Furthermore, assume that the following conditions are satisfied"
(i) ,,, n 1, 2, 3,..., is a sequence of closed linear subspaces of such

that ,ug c 2 ’f3 Yt and P,, is the orthogonal projection from
onto

(ii) For every n, a, [, ’] is such that

Na, {x’x6,a,,x 0} c
and Na. Na. 1,

(iii) N U,7= Na. is dense in Na, i.e.,
Let e , let be the (unique) solution off corresponding to e, and let
be the (unique) solution of (Z, a,) corresponding to P,e. Then i, in

If, in addition, f" is linear, then conditions (1.17), (1.18) may be replaced by
requirements

(1.19) I(Zx,xSI >- cllxll 2, c > 0,

for all x e Na, and

(1.20) Z [, 3.
Proof. First, from Theorem 1.3 it follows that X is regular. Moreover, by

(iii), Na. Na for every n, and consequently, (1.17) holds for all xl,x2
Let Q, be the orthogonal projection from onto Na.; due to the inclusion

Na. Na we have Q, Q,P. Consequently, (1.18) yields for all xl,x2 Na.,
IIQ,(Zx Zx2)ll Q,P(Zxl Zx2)l =< P(Zxl Zx2) 2 x -x2ll,i.e.,
Q,Z Lipz [Na., N,.]; hence, is regular by Theorem 1.3.

Next, choose e Jeg and construct the solution of ,4/ corresponding to e.
If e, > 0, then by (iii) there exists j N such that [[j- ill < (e/2)min [1, c2-1].
Thus, due to (ii), there exists an integer M > 0so thatj Na. for all n >_ M. Choose
some n >= M and let i, be the solution of /, corresponding to P,e thus, we have
i, Na, and

(1.21) (c, Zi,,) (c, P,,e)

for every c N,..
On the other hand, we have N, and

(1.22) (c’, Zi) (c’, e)

for all c’ N,, and consequently, also for all c N,.. However, if c N,. ,,
we have (c, P,,e) (P,,c, e) (c, e). Hence, (1.21), (1.22) yield (c, Zi,, Zi) O,
and consequently,

(1.23) (c, Zi,,- Zj)= (c, Zi- Zj)

for any c N,.. Since i,,, j N,., we can set c i,, j and get from (1.23),

(1.24) ( i,, j, Zi,, Zj) (i,, j, Zi Zj).

Using (1.17), (1.18) and the fact that P is an identity on N,., we obtain from (1.24),

cl] i,, ill 2 =< Re (i,, j, Zi,, Zj) Re ( i,, j, ZZ Zj)

(1.25) <= [(P(i,,- j),zg- Zj)] [(i,,- j,P(Zi-

<= i,, j P(Zi Zj) <= i,, J l" 211i Jll.
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Consequently, IIi, -Jl[ c-2li Jl[ < e/2" thus, we have, finally, IIi,- i11
=< [[i,, j[[ + [j i[[ < e, which is what we wanted to show.

As for the last proposition concerning a linear network, observe first that
and each ,, is regular by Corollary 1.1 (b). On the other hand, except for the

proof of regularity of and ,, (1.17) was used only for establishing the inequality
(1.25). However, it is easy to see that (1.25) follows from (1.19), too hence, the proof.

Concluding this section, let us mention the abstract analogues of the classical
"reciprocity law" and "energy conservation principle".

THEOREM 1.8. Let ff (Z, a) be an abstract network over .
(a) If k acta is a (not necessarily unique) solution of U corresponding to

e a’,k 1,2, then
(i2, e) (il, e2) provided Z is symmetric,

and
(Zx, y) (Zy, x) for all x, y 9ta,

(i2, el) (il, e2) provided Z is self-adjoint.

(b) If acta is a solution of A/" corresponding to e 9ta, then

( i, e) ( i, Zi).

The proof follows immediately from conditions K, K2 and is omitted.
Let us note the fact that (a) applies practically only to the linear case, since

self-adjointness of Z clearly implies linearity of Z, and symmetry of Z implies
antilinearity of Z.

2. Hilbert networks. In this section we will apply the results obtained in the
preceding section to nonlinear Hilbert networks, i.e., networks described by an
oriented graph and a (not necessarily linear) impedance operator from some
Hilbert space c into itself. Since the graph and the vector of voltages or currents
can be either finite or infinite, it will be useful to introduce some convenient
notation.

Let c, c2 be cardinal numbers such that cx, c2 N0; a matrix M [mik
(the element mik stands in the ith row and kth column) will be said to be of type
c x c2 if the set of rows (columns) has cardinal ct(c2). A c x matrix will be
called a c-vector and denoted by [k] whenever it will be necessary to display its
components. The sum of two matrices of the same type is defined elementwise.

If M and N are conformable matrices, the product M. N is defined in the
usual way by assuming that each element of M. N is defined. (We will use the dot
." for denoting the matrix multiplication in order to distinguish it from the

product of operators defined by such matrices.)
Furthermore, if c No, F will stand for the Hilbert space 12; if c n < No,

F will denote the n-dimensional Euclidean space. For convenience, we will interpret
elements in F as c-vectors; also, if , r/ F, then (, q) ro and [[ 2 r.

In the sequel, acg will denote a fixed separable Hilbert space. If c __< N0, we let

(2.1) af’c {x’x [Xk] c-vector, xk6aCg, [[xk[[ 2 < oo}
and

(2.2) (x, y> (xk, Yk)

for every pair x, y e. Clearly, is again a separable Hilbert space.
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Next, let (set of branches) and (set of nodes) be nonempty sets having
cardinals c2 and c 1, respectively, c 1, c2 -< No. Thus, we will assume that all elements
in are ordered into a fixed (finite or infinite) sequence (hi), and elements in f
into a fixed sequence (vk).

A mapping G: ---, x U will be called an oriented graph if
(i) for any vk the sets

and

] {bj’bje , Gbj (v,, v)}- {bj:bje, Gbj (v, v)}
are finite and at least one of them is nonempty,

(ii) {b :b e , Gbi (v, v) for any v e f} .
Thus, our graph does not contain "isolated" nodes and branches beginning

and ending at the same node; also, each node Vk e U is incident with only a finite
number of branches. Observe that we have c -< 2c2.

Let G be an oriented graph; define the (incidence) matrix d [dik] of type
C2 X clby

ifGbi (v,v,),

(2.3) d= -1 ifGbi=(vk, v),

0 ifGbi=(v,v)ando 4: k, :/: k.

Next, let K be an arbitrary diagonal matrix of type c x c 1, K diag (k 1, k2,’" ")
such that the number k - 0 for every i, and such that the matrix

(2.4) a K. dr [aik

has the property that ; ]akl z < o. Since each row of dr contains only finitely
many nonzero elements due to the assumption (i), such a matrix K always exists.

Define now the operator 4" c2
_
cl by

(2.5)

where x [x] is any c2-vector in t2. Due to our construction of the matrix a
it follows that e [((, ’].

Furthermore, let

(2.6) Na x’x e J((, fix 0}
it is easy to see that N is a closed subspace of 0(fc and does not depend on the
choice of the matrix K.

Let G be an oriented graph, and let cz _-< No be the cardinal of its set of branches

’" moreover, let 2 be a (not necessarily linear) operator from (fc into itself.
Then the ordered pair A? (2, G) will be called a Hilbert network, and 2 the
impedance operator of if’.

A network 47 will be called linear if2 is linear, and infinite or finite if c2 0
or c2 < N0, respectively.
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If a vector x [Xk] c2 has some relevance to the network , it will be
understood that the kth component Xk of X is associated with the branch bk ,
where the branches in have been enumerated in some fixed manner as mentioned
above. Thus, using physical terminology, if e [ek] gc2 has the meaning of a
vector of voltages in , then ek gig is interpreted as the voltage in the branch bk"
similarly, if [ik] ,c2 is the vector of currents in ff, ik /g is the current in

bk. If we denote u [Uk] i ,c2, then the kth component Uk of U is the
voltage drop in bk caused by currents ii, i2, i3,’’’.

A special case of a Hilbert network is obtained, if the impedance operator Z
is described by a matrix. Indeed, assume that to each ordered pair (bi, bk) x
there is assigned an operator Zik :g such that the mapping 2 defined on
gc2 by

(2.7) Zx Zik EXk
maps ocgc into itself. In this case, the voltage drop Ul in branch b is additive in
drops caused by currents i,i2,i3, ..., i.e., Ul k Zlkik" Of course, if each
operator Zk is linear, then the network 17 is linear, and vice versa.

DEFIYITIOY 1. Let A? (2, G) be a Hilbert network, and let e Jdc" an
element will be called a solution of A? corresponding to e if is a solution of
the associated abstract network ./V (2, ) over ocgc corresponding to e, i.e., if

KT

K" iNa.

A network A will be called regular, if .*" is regular, i.e., if for each e e )Fc: there
exists a unique e A,c: such that K’ and K are satisfied. In this case, the admittance
operator of 4 is called the admittance operator of A/.

Obviously, we have defined the solution of a Hilbert network as a solution
of the associated abstract network. The question is, however, what justifies such
a definition. Having the classical Kirchhoff’s laws in mind, it would be perhaps
more natural to define the solution concept for A/ by the following definition.

DerNmON 2. Let .V (2, G) be a Hilbert network, and let e e" an
element e c will be called a classical solution of A2, corresponding to e if

K?. ft. (2i- e)= 0

for every 2 e c: satisfying the equation a. 0, and

K" a.i=O.

Observe that this definition is meaningful. Indeed, if e, iec2, then
2i- e u is also in c, and consequently, 9r. u is defined and belongs to
for any 7 e F2" also, it is easy to verify that the classical solution does not depend
on the choice of the matrix K.

Fortunately, it turns out that both solution concepts coincide; to prove this
fact, we will have to carry out some auxiliary considerations.

First, let us define the mapping a" c2 -+ F by

(2.8) a a. ,
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and let

(2.9) Na {’ e c2, a 0}.
Clearly, Na does not depend on K. Moreover, since a e [/c2, it,i, Na is a closed
linear subspace of c2, and consequently, Na is a separable Hilbert space in its own
right.

It is obvious that if Na {0}, then 0 e ovfc2 is the only classical solution
of A? for any e e oufc thus, we will assume in the sequel that Na =/= {0}.

Choose a fixed orthonormal basis {i} in Na, and let Co _-< No be the cardinal
of {i}. Moreover, let X be the c2 Co matrix, whose columns are all the c2-vectors
i enumerated in some fixed fashion. It is clear that

(2.10) a. X 0.

Define now the mapping X’Ic --0 c by

(2.11) Xr/ X.r/.

Then we have the following lemma.

LEMMA 2.1. (a) 3 [/co, lCz] and Na 1c.
(b) )11 I[I for each c.
(c) If ,* [lc, lC] is the adjoint of "2, then

(2.12) X*X I,

with I being the identity operator on c, and *q Xr. q for every q e c2.

Proof. Proposition (a) is an obvious consequence of the definition of X, and
(b) is nothing else than Parseval’s equality for the basis i}. Proposition (c) follows
immediately from the definition of an adjoint operator.

The next lemma is crucial for our further considerations.
LEMMA 2.2. Let the operator be defined on o by

(2.13) 2z X. [Zk];

then we have"
(i) X e [co, c2];

(ii) Na Xfc and X is one-to-one
(iii) X 0 on 2,c"

(iv) 1]2z Ic2 []zllofOr every z e o;
(v) if * e [Vgc, vgco] is the adjoint of , then

(2.14) +*+ I,

where I is the identity operator on g0, and

(2.15) 2*v ZT. v

for all v
(vi) Nyc, N, where N, {x’x e vg, *x 0};
(vii) if P is the orthogonal projection from
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Proof. First, let us show that the definition (2.13) is meaningful. To this end,
choose some fixed orthonormal basis f} in " since f is separable, the cardinal
c of { f/} does not exceed No. Let the c-vector f be defined by f If/].

Now, arbitrarily choose z [zk] 17o. by definition of

(2.16) [[zk 2__ [[Z[[2 <

Since f} is a basis in g, for every k there exist numbers rj,j 1, 2, 3, ..., such
that

(2.17) z rjfj and Ilz]] [rkj[ 2.

Define the Co c matrix R by R [rj]; thus, z R.f. Moreover, from (2.16)
it follows that

(2.18) IrjI Iz 2 < .
kj

Next, consider the c2 c matrix Y X. R; if ym and pm are the mth column
of Y and R, respectively, we have ym X" pro. However, each column pm is in c

due to (2.17); since the columns of X constitute an orthonormal set in F2, y" will
be in F and, by Parseval’s equality, [lyml[--[[pml[. Thus, denoting y"= [y’],
we have for every m, lye’[ 2 [lyre[ 2 U [rkm[2. Consequently, by (2.18),

(2.19) I12 [rkm[ 2 Izll 2
mk mk

Hence, for each i, the ith row Yi [Y/, y/2, y/3,...] of Y is in F, and consequently,
the product x [xi] Y" f is defined, i.e., xi and Ilxl 2 El lyI z by Par-
seval’s equality. Thus, by (2.19),

2(2.20) Ilxill 2 Ilxll 2 ly/l 2 ilziio
il

and we have X. z X-R. f Y. f x; hence, (2.20) proves (i) and (iv).
Next, if z /f17o, then fiz a. X. z 0. z 0 and (iii) holds.
Let us now prove (ii). First of all, (iv) shows that X is one-to-one. To prove

that the range of " is N, choose some x [x] N; then x a. [x] 0.
Since x t0172, it follows in the same way as above that there exists a c2 x c matrix
S [s] such that x S. f and

(2.21) Z lSik{ 2"-" [Ixl{ 2 < 0(3
C2

ik

Thus, we have a. S. f 0, which yields a. S 0. Since each column sk of S is
in 117 due to (2.21) and a. s 0, then by Lemma 2.1 (a), (b) there exists a Co-vector
qk lC such that s X.q, and [Is[I q[[. Hence,

(2.22) [Sik[ 2 [[qkl[ 2

for every k. Denote r/I," It/1 , r/2, r/3, ...] and define the Co c matrix E by
E [r/ik], (i.e., the r/’s are columns of E). Then it follows from (2.22) and (2.21) that

(2.23) Irtgl 2 [Sik[ 2 < (30.

ki ki
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Moreover, S X. E, i.e., x X. E. f, and E. f ocgc due to Parseval’s equality
and (2.23). Hence, x e 2)rco, and consequently, Na c 2)rc.

Conversely, if x e 2)rc, then x w for some w e )rico, and thus, by (iii),
tx t2w 0, i.e., x Na; hence 2)rco c Na, and (ii) is proved.

To prove (v), denote X [ik] choosing x [xi] )rco and u [ui] )re2,
we have, by continuity of the inner product and absolute convergence of the series
involved,

t

Z Z <#’ iltUi> Z <Xg, Z ilaUi>
# t

<IX/t]’ [2 i.Ui]>co <X, T u>cO.

This with the identity <Xx, u)c2 <x,X*u)co proves (2.15). Choosing now
x e )rco, we have by (2.15) and the equality ,r. X I, 2*2x r. X. x x,
which concludes the proof of (v).

Next, by a standard theorem, (see [6, p. 133]), NxS, )?)rco. However, (ii)
yields, due to closedness of Na, 2)rc N Nn which proves (vi).

Finally, let us prove (vii). To this end, observe first that J?* maps )re2 onto
)rco. This follows readily from (2.14), which means that 8 is a right inverse of 8".

Next, let Q .)rc2 )re2 be defined by Q 22"; then we have by (2.14),
Q2 2’2* 2* Q. Also, Q* (*)* * Q. Hence, Q is an

orthogonal projection. Now, we are going to show that Q)rC Na. Indeed, if
x Q)rCz, then x 22*y for some y )rc2. By (iii), however, fix 2(2*y) 0,
i.e., x e Na; hence Q)rC Na. Conversely, let x e Na; then x Xy for some

y e )rico according to (ii). However, since )* is onto )rico, there exists some

z e )rc2 such that y 2*z; consequently, x 22*z Qx, i.e., Na c Q)rC.
Hence, Q is the orthogonal projection of gc onto Na, and the proof is complete.

Note that Lemma 2.2 can also be proved by using results on matrix representa-
tion of linear operators defined on a separable Hilbert space. (See [10, p. 48].)

Returning to the definition of a classical solution, we can state the following

proposition.
LEMMA 2.3. Let tit? be a Hilbert network and let e e )rc2; then )rc2 is a

classical solution of A/ corresponding to e iff

(2.24) Zi e N,, Na.

Proof If e)rc2 is a classical solution, then, by KI, 9r. u 0 for every
7 e Na, where u 2i e. Since each column {i of X is in Ne, we have Xr. u 0.
Consequently, by Lemma 2.2 (v), 2*u 0, i.e., u e N** and (2.24) holds.

Conversely, let (2.24) hold; then by Lemma 2.2 (v), r. u 0. Now, if

7 e Ne, i.e., 7 e lC and a. 7 0, then by Lemma 2.1 (a), there exists r/e c such that
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7 X.rl. Thus, we have 0 fl7".(7". u) (X. q)’. u pr. u;hence, K- holds
and our lemma is proved.

Using Lemma 2.2 (vi) and combining Lemma 2.3 with Definition 1, we get
immediately the following important result.

THEOREM 2.1. For any Hilbert network ,A/’, the solution and classical solution
coincide.

A comment on the significance of this theorem is in order. The relations
K +1 and K defining the classical solution are clearly straightforward extensions
of classical Kirchhoff’s laws, i.e., in the case of a finite network, K[ and K-
coincide with the loop and node law, respectively. Thus the classical solution
appears to be the most natural concept of a solution. Since by Theorem 2.1 the
classical solution of a Hilbert network coincides with the solution of the
associated abstract network, the transparent theory developed in the first section
applies to Hilbert networks.

Now we are ready to state theorems on regularity of Hilbert networks.
THEOREM 2.2. Let ? (2, G) be a Hilbert network and let have the meaning

defined above. Then is regular iff the operator ,,.o to possesses
an inverse. In this case, the admittance operator A’ of U is given by

(2.25) A f:(Y:*2f:)-

i.e., i= Ae is the unique solution of t? corresponding to e /gc2. If, in addition,
t? is linear, then A is linear, and A [,, ,vg:] provided 2 [2/g,

Proof. Recalling Theorem 1.1, is regular iff the operator P’N N
possesses an inverse, where Z is the restriction of Z to N and P is the projection of
ocgc: onto Na.

Assume first that X*ZX has an inverse. In agreement with Lemma 2.2 (ii),
let Ye INa, o] be the inverse of e [dcgc, N]. Then 2" 2 *2Yis one-to-
one from Na onto ,co, and consequently, XX*Z is one-to-one from Na onto Na.
By Lemma 2.2 (vii), however, )73?*2 P2; hence, (P2)- exists and 17 is regular.

Conversely, if .A/ is regular, then reversing the above argument we conclude
that 2"23 possesses an inverse.

To show that the admittance operator A of is given by (2.25), choose some
ee and put i= 37(J?*22)-lJ*e. Then from Lemma 2.2 (iii) it follows
immediately that N. Moreover, 37"(2i e) 2"22(’2"2)-2*e 2*e

0, i.e. 2i- e e NX,, N+/- Hence, is the solution of I? corresponding to e
and consequently, A is the admittance operator of

The last assertion concerning a linear network is an immediate consequence
of Theorem 1.1.

Remark 5. Let us caution the reader about the following fact. Suppose that
the operator 2 is described by a matrix [Zik], Zik’ ---, dog, i.e., 2 is defined by
(2.7) and maps o#2 into itself. If the Zfs are nonlinear, then the operator
considered in Theorem 2.2 clearly need not be equal to the operator described by
the matrix ’. [Z] X even in the case ofa finite network. However, if all operators
Zi are linear, then such a representation is true.

THEOREM 2.3. Let .A# (Z, G) be a Hilbert network, let X have the meaning

de.fined above and let W 2*’ut /go. Assume that there exists a number
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la # 0 and a real 2 with 0 < 2 < such that

(2.26) I pW e Lipx [jgco, co].

Then .IV" is regular and the admittance operator A of . is in

Lip [,], where fl (1 2)-.

Proof. Referring to Theorem 1.2, we are going to show that condition (1.6) is
satisfied for the abstract network (2, fi) associated with ’. Choose x, x2 e Na;
by Lemma 2.2 (ii) there exist y, Y2 G co such that x Xy and x2 Xy2.
Then we have by Lemma 2.2 (vii), (iv), (v) and (2.26),

[Ix1 X2 P(2Xl- 2xz)llz lIP{x1 x2 M(2x 2x2)}] cz

(2.27) II*{y Y2 (2yl 2y2)}11

yl y2 u(wy, wy2)llo

21yl Y2 co"

However, by Lemma 2.2 (iv), I[x x2[[e (y Y2)[Ic [Y Y2[[o,
which together with (2.27) shows that I P2 e Lipa [Na, Na] hence, the prooE

TnzozR 2.4. Let (2, G) be a Hilbert network, let have the meaning

defined above and let W *.o o. Assume that there exist constants

7 > O and 2 > O such that

(2.28) Re (Wx Wx2 x X2)co > x x2
2
0

for all x x2 o, and

(2.29) We Lip o, o].

Then is regular and the admittance operator A of is in

Lipa [,] with 6 (72)- x(2 + 22 72).

Proof. Referring to Theorem 1.3,choosex, x2 e Na;thenx Xy, x2 Xy2
for some y, Y2 co, and we have by (2.28),

Re (2x 2Xz,X x2) Re (2y 2yz,(y Y2))
Re (*2y ’2y2, Yl Y2)co
Re (Wyl Wyz,y Y2)o

> vlly- yleco"
However, by Lemma 2.2 (iv), y- Y2[lco [lxl- Xzllcz, and consequently,
(i) in Theorem 1.3 is satisfied.
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Also, as before we have by (2.29),

2"2yl 2"22y11o
WYl WyNllco f4l Yl Y211co

f4 x x2 cx.

Thus, the assumptions of Theorem 1.3 are satisfied and consequently, " is regular.
THORN 2.5. Let ," (Z, G) be a Hilbert network and let X have the meaning

defined above. Assume that 2 2 + 22, where 2 e[,], and denote

W ’2, W 2"22. g
(a) inf sup ]<Wx,y)col=Y>O,

Ilxll Ilyll
co co

inf sup I(Wx,Y)o[ > 0,
Co Co

(b) there exists 2 > 0 such that W2 e Lipa [o, o],

(c) 7-2 < 1,

then . is regular and the admittance operator A of is in Lipa [, 2], where
6 ( 2)-1.

Proof. Choose x, yeNa; then x 2x’ and y y’ for some x’,y’
consequently,

Since the spaces Na and o are in a one-to-one correspondence by Lemma 2.2
(ii), conditions (a) imply conditions (i) in Theorem 1.4. Moreover, as in the proof
of Theorem 2.4 we confi easily that (b) implies (ii) in Theorem 1.4; also,
(iii) (c), which concludes the proof.

CooeeaY 2.1. Let (2, G) be a Hilbert network, let 2e[2,
and let W *(a) U W satisfies conditions (a) in Theorem 2.5, then . is regular.

(b) U there exists a 7 > 0 such that

[(Wx X)ol > 7 xl 2
C0

for all x e o, then ." is regular. In either case, the admittance operator A of
is in [,] and lAll Y-1.

The proof follows immediately from Corollary 1.1.
By applying Theorem 1.6 we can establish another necessary and sufficient

condition for regularity of a Hilbert network;since the application is straight-
forward, we omit the details.

Let us now discuss some specific examples of networks.
Example 1. Let be the complex plane C and let G be an oriented graph

with the set of branches having cardinal c2 N No. For each of indices i,k,
let Zi e C . Assume that 2 e [1, 1], where 2 is defined by 2v [Z]. [v],
and consider the network . (2, G). Obviously, . can be interpreted as an
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R, L, C-network with constant elements in frequency domain when the frequency
has some fixed value COo. In this case, o# is just the space for any c < No. Con-
sequently, the operators fi and fi coincide, and the same is true for X and X.
Thus, referring to Theorem 2.2 and Remark 6, our network Y will be regular
precisely if the matrix r. [Zik]. X is invertible. In this case the admittance
operator A of,A? is bounded and described by the matrix X. (’. [Zik] X)- .

Example 2. Let ocg be a fixed (complex or real) Hilbert space, let G be an
oriented graph and let Z be a (not necessarily linear) operator from ocg into itself
such that ZiO 0. Let the operator 2 on oeg2 be defined by

(2.30) 2u diag(Z,Z2, Z3, .). [Uk] [Zul, Z2u2,Z3//3,...IT,
and let ,A? (2, G)" thus, a Hilbert network without mutual couplings is under
consideration. Moreover, assume that there exist constants a 1, a2 > 0 such that

(2.31) Re (Zix Zixz,x x2) >- allXl Xzll 2

for all x, x2 ff and all i, and

(2.32) Z e Lipa2 [vg, ]

for every i. We are going to show that A/" is regular and its admittance operator A
is in Lips [, c] with (ala2)-(a2 4- x//a a2).

Indeed, if u, v ec and m > 0 is an integer, we have by (2.32),

2(2.33) Zui- zv <__ a u- v c.
i=1

However, (2.33) shows that, due to condition ZiO O, 2u e )(g whenever u
i.e., 2"ogc /gc also, we have 2 e LiPa [gc,

Similarly, (2.31) implies that
2(2.34) Re (Zu Zv, u v) >= al u- v c.

Thus, recalling Remark 1, assumptions of Theorem 1.3 are satisfied and conse-

quently, the abstract network (2, ) is regular" hence, A? is regular, which is what
we wanted to show.

Note that ifl? is a finite network, i.e., c2 < No, then the assumption Z0 0
is not necessary.

Before we consider the next example, let us make the following observation.
A c x c matrix M [mk], c =< No, will be called a ribbon matrix if there

exists an integer p => such that mk 0 whenever li kl => p.
LEMMA 2.4. Let be a Hilbert space and let Y [Y/k] be a c x c matrix

(c =< N0) whose elements Yik are operators from of’ into itselJ If
(a) Y is a ribbon matrix,
(b) there exists an a > 0 such that Yik Lipa [0(#, OfF] for all i, k,
(c) Yk0 0 for all i, k,

then the operator Y defined on )ffc by Yx Y [xk] is in Lipa, ,0(,#] with
a’ =(2p + 1)a.

If, in addition, c < No, the assumption (c) can be dropped.
Proof. First, observe that due to (a) the sum ,, Yux, involves at most 2p +

nonzero terms for any i. Choosing u, v e ovg and denoting u [Yk], fv
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we have by Schwartz’s inequality and (b),

i=1 i=1

(2.35)

C

[la il <= p

< c2(2p+ 1)
Ila-il<_p

<= c2(2p / 1)211u- 11.

Up

However, (2.35) shows that, due to (c), [Yk] e yfc, i.e., f" maps Yfc into itself;
moreover, (2.35) implie,s that YeLipq[Yf,ocfc] with q =c(2p + 1), which
concludes the proof.

Example 3. Let G be an oriented graph having the set of branches #3 with
cardinal c2 < No, and let Yf be the real Hilbert space L2[0, r], r > 0. For every
index i, let ri(0.) be a real function on (-oe, oe) satisfying the condition ri(O O,
and, for every pair i, k, let Sik(t) be a real function having a bounded derivative
Si(t) on [0, r]. Moreover, assume that the following conditions are satisfied"

(i) there exist constants 0 < a _< b such that

(2.36) a(0.1 02)2 (ri(0.1)- ri(a2))(0.1 0.2) b(0.1 0.2)2

for all and 0.1,0.2 t oo, oo)
(ii) there exists a constant d > 0 such that

(2.37) ISik(t)l d

for all i, k and e [0, r]
(iii) the c2 x c2 matrices S(t) [Sik(t)] and -S’(t) [-S’ik(t)] are symmetric

positive semidefinite ribbon matrices on [0, z]. (By saying that a c x c matrix
A(t) is positive semidefinite on [0, z], we mean that for any real c-vector e
and e [0, r] we have (r. A(t). 0.)

For every pair i, k, let Zik:L2[O, z] --, L2[0, r] be defined by

(2.38) (Zikx)(t)

where rii r for all and rik 0 for - k. Furthermore, define the operator Z
on Lz[0, r] by.

(2.39) Zy [Z]. [y],

and consider the network ,A? (2, G). Obviously, A? can be interpreted as an
R, C-network with nonlinear resistors and time-varying capacitors. We are going
to show that, under the assumptions made, ,A is regular and its /dmittance

operator A is in Lip [L, Lz] for some e > 0.
To this end, define operators Rik Uik on L2[0, "c] by

(2.40) (Rikx)(t) ri(x(t)), (Uix)(t) Si(t)
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and operators R, U on L2[0, z] by

(2.41) Ry IRaqi. [y], Uy [U]-EY].

Then 2 / + ; moreover, it is easy to verify that Rik6Lipb[Lz,L2],
Uik Lipd[Lz,L2] and RikO UikO 0. Hence, by Lemma 2.4, , , and
consequently, 2 too, are in Lip [L, L] for some > 0.

On the other hand, (2.36) implies by an easy calculation that

(2.42) allx X2[[ 2
c2

for all x 1, x2 6 L. Moreover, observe that by the dominated convergence theorem
L[0, r], 1, 2,we have for any X [Xk(t)] e

k 0

o
x(a)x(a) d

o
x(a), x2(ff rift.

Thus, if x [x(t)3 e L and y(t) x() do, we get by integrating by parts,

(x, x) xr(t) S(t) x(a) da dt
0

y"()-s(). y(r) y(), s’(), y()da 0.
0

Combining this with (2.42), it follows that

a x, xl 2 <
c2

for all X l,X2 L. Thus, recalling Remark 1, it follows immediately that our
network is regular.

Note also the fact that assumption (iii) may be replaced by the weaker require-
ment that matrices XT. S(t). X and -Xr. S’(t). X are symmetric positive semi-
definite ribbon matrices on [0,

In order to formulate the approximation theorem for infinite networks,
let us introduce some further concepts and notation.

Let (2, G) be an infinite Hilbert network (c2 No), and let (b,
b2, b, ...) be the sequence of all branches of G. If n is an integer, let G, be the
restriction of the mapping G to the set , (b, b2, "", b,); then G, is again a
(finite) oriented graph.

Next, if x [x] is an No-Vector, let (x), signify the n-vector [x ,x2 ,x... ,x,T"

similarly, if y [y] is an n-vector, let y’ stand for the No-vector [y, Y2,’",
y,, 0, 0,.-.it. An No-vector x will be called simple if all but finitely many of its
components are zero.

Finally, let 2,, be the operator from " into itself defined by

(2.43) Z,,x (Zx’),,,

and let (2,,, G,,); thus, is a finite subnetwork of. Of course, if e,, e ",
we will look for a solution of corresponding to e,, in the same space ".
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Note that if in particular the operator Z is described by a matrix [Zik and
defined by (2.7), then 2, is described by the n x n submatrix of [Zik standing in
the upper left corner.

THEOIM 2.6. LetU (Z, G) be an infinite Hilbert network, let W X*ZX ygco
d and let have the meaning defined above. Assume that the following con-

ditions are satisfied"
(i) there exist constants 7,2 > 0 such that

> llx x2
2(2.44) Re ( Wx Wx2 x x2)o

for all x l, x2 e o, and

(2.45) 2 e Lip [o, o].
(ii) the set S of all simple vectors in Na is dense in Na.

Then
(a) and each is regular,
(b) eo is the solution of corresponding to e o and i, " is

the solution of corresponding to (e), ", then i’, in o.
ff; in addition, " is linear, then conditions (2.44), (2.45) may be replaced

by the requirements

I(Wx X)ol > xll CO

for all x o, and .o, o].
Proof. For each n l, let ’’= {x"x"}; then 1, 2,
o. Let P,’ ’ be defined by Px {(x)}’; then P, is clearly

the orthogonal projection from o onto ’.
Next, let d, be the incidence matrix of G,,, i.e., d, is defined by (Z3). From the

definition of the graph it follows that if x " satisfies the equation dr. x 0,
then d,,’+ (x’)+ 0 and a. x’ 0. Thus, letting

Na2 {x’x*",d[.x O} and N} {x"x6Na},
we have

(2.46) NS c "’, N c NS;, = Na.

Define now the o x o matrices a, by

(2.47) a,,

where d is the o x o diagonal matrix

(2.48) d diag (1, , , ,...),
and let G e [So, So] be defined by ,x a. x. From (2.47) and (2.48) it follows
readily that Na. N5t, where Na. c So is the nullspace of a,. Hence, Na
and Na. c Na, , i.e., condition (ii) in Theorem 1.7 is satisfied.

Also, it is clear that assumption (ii) is exactly the condition (iii) in Theorem 1.7.
On the other hand, as we have seen in the proof of Theorem 2.4, condition

(2.44) is equivalent to condition

(2.49) Re <2y 2y2, y Y25so vlly yal o
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for all Y l, Y2 Na. Moreover, if P is the orthogonal projection of )(fo onto Na,
then we have by (2.4 5),

(2.50) PZ Lip [Na, Na].

Hence, by Theorem 1.3, the abstract network (2, ) over 0,o is regular, i.e., our
network V" is regular.

Next, we are going to show that each network ,, is regular. Indeed, if
ul, u2 Na. of)", we have by (2.49), (2.43) and the inclusion NS. N,

Re (2,ul 2,,u2, u u2)

(2.51) Re ((2u’1),,- (2u’),,,ul uz),, Re (2u’1 2U’z,U’1 u’2)o
=> llu’ ul o llua u2112..

Furthermore, if Q, is the orthogonal projection from ovg" onto Na. and u 1, u2 6 Nay,
then ul, u2 N and (2.45) yields

IlQ,(2,u, 2,,uz)]l, <= ll2,u, 2,u=ll,, ll(2uq),

(2.52) _-< l[2u’ 2u11 _-< 211u’1 u So

(2.52) Q,,z,, Lip [Nay, Nazi.
Thus, according to Theorem 1.3, (2.51) and (2.52) show that the abstract network
(Z,,," d,At) over " is regular, and consequently, ,, is regular.

Consider now the abstract network ,A, (2, ,) over o. Since
Na, we have readily from (2.49),

(2.53) Re <2yl 2y2, y Y2)o ->- 7]lYa Y2[[2o
for all y, Y2 e Na,. Similarly, if K, is the orthogonal projection from fffo onto
Na,, (2.45) implies as above that

(2.54) K,,Z e Lip [Na,,, Na,
Hence, (2.53), (2.54) show by Theorem 1.3 that is regular.

Finally, we are going to show that if i,, e " is the solution of corresponding
to (e). e ", then i’. e So is the solution of , corresponding to {(e).}’
Indeed, we have i, Na and

(2.55) (g, Z,i,, (e),), 0

for each ? e Ng. Denote J, eo the solution of corresponding to P,e" then
d, Na. and

(2.56) (c,2d, {(e),}’)So 0

for all c e Na.. However, due to definition (2.47) of a, it follows that there exists
I, d4 such that J, I’,, and by equality a,. J, 0 we necessarily have I, e Na..
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Thus, for any c + Na we have (c+) e Na, and (2.56) yields

0 {(c +)’, 21’, {(e)},}’)So {c+ (ZI,),^
c+,2,I, (e),,),,.

Comparing this with (2.54), we see that, due to regularity ofl, and V,, necessarily
i, I,; consequently, J, i, as desired.

Now, applying Theorem 1.7 to networks r and A/,,,, we conclude that
i’, - in jcgo and the proof is complete.

Recalling Theorem 1.8, we immediately obtain the following result.
THEOREM 2.7. Let l? (2, G) be a Hilbert network.
(a) Let h g/f be afixed element, and for every m >= let em gZfc: be such that

the m-th component of e,, is h and all others are zero; ifU has a solution [tk
corresponding to e,, and a solution [i,] 3t: corresponding to e,, then

(i, h) (i, h) provided is symmetric,

and

"’, h) ( i,’, h) provided 2 is self-adjoint.

(b) If is a positive operator, i.e., (Yx, x) >_ 0 for all x ,c2, and if 2
is a solution of corresponding to e 2, then ( i, e) >__ O.

Proof. The proof is obvious.
Concluding the paper, let us mention the fact that the Tellegen’s theorem

holds for Hilbert networks, too, and is an immediate consequence of Definitions 1,
2 and Theorem 2.1. Indeed, we have the following theorem.

THEOREM 2.8. Let t?,, (,,, G), m 1, 2, be Hilbert networks having the same
graph G, and let i,, [i’] be a solution oral?,, corresponding to em [e’] 6 Ag.
Then

(2.57) (u l, i2)c O,

i.e., (u,i) O, where u =[u]=21i-e1.

Proof. By K’, uIN-, and by K, il,i2Na" from this, (2.57) follows
immediately.
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