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CONTROLLABILITY OF NONLINEAR SYSTEMS
ON COMPACT MANIFOLDS*

C. LOBRYYt

Abstract. It is proved that a nonlinear conservative control system on a compact manifold is
controllable if (and only if in the analytical case) a certain condition expressed in terms of the “Taylor
expansion of the system” at each point is satisfied.

1. Introduction. This paper is a self-contained version of a result in the
author’s thesis [8]. The general background for this work is developed in papers
[3],[6], [10] and [12], and applications to optimal control problems are proposed
in [2], [3], [6], [7], [10] and [12].

Denote by N the set of natural numbers, R the set of real numbers and by R*
the set of positive real numbers.

We define a dynamical polysystem (abbreviated DP) as a collection of complete
vector fields on a smooth, connected, paracompact manifold of dimension n.
We denote this collection by (X?),.; and by

(x, 1) > Xi(x),

the dynamical system generated by X'. The orbit of a point x under the action of
the DP is the collection of all the points of the form Xzo---o Xjio--o Xji(x),
with i;e I, t;e R, pe N. We denote this orbit by (X');.;x. The positive orbit of a
point x is defined in the same way as the orbit, but we are restricted to positive
t;; we denote

(X)iox = {Xjpo- o Xlio--w0 Xi(x), i;e ], ;e R* , pe N}.

DEFINITION. A DP is controllable if for every point x in the manifold M, the
positive orbit of x is the whole manifold.

For general results on orbits, positive orbits and controllability, one can see
the references listed above. In a recent paper, V. Jurdjevic [4] proved necessary
and sufficient conditions for controllability of an analytical, right invariant dynami-
cal polysystem defined on a compact Lie group. He asked to what extent this result
is true for a general compact manifold. The proposition and example of the present
paper are partial answers.

2. Definitions and preliminary results. Consider the smallest family of
vector fields on M containing the DP (X),.; closed under the Jacobi bracket
operation. At each point of M, the values of the elements of this family are vectors
in the tangent space to M which generate a certain linear subspace ; we define the
rank at a given point of the DP as the dimension of this subspace. The following
is proven in [6] as a slight generalization of Chow’s result [1] and R. Hermann’s
ideas [3].

* Received by the editors February 22, 1973.
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THEOREM 1. If (and only if in the analytical case) the rank of the DP is equal
to n (nis the dimension of manifold M) at every point of M, then for every point x in
M, the orbit (X');.;x of x is the whole manifold M.

The following theorem is proven in [8] (see also [5] for a shorter proof and
other related topics) and by H. Sussmann and V. Jurdjevic (see [11]) for the
analytical case.

THEOREM 2. If (and only if in the analytical case) the rank of the DP is equal to
n at every point of the manifold M, then for every point x in M, the interior points
of the positive orbit (X');-,x are dense in the positive orbit.

Now, let M be a compact Riemannian manifold ; a conservative vector field is
a vector field for which the natural measure in M is invariant under the action of
the dynamical system associated to it. The well-known theorem below is the main
trick in the proof of Proposition 1.

THEOREM (Poincaré). The Poisson stable points of a dynamical system generated
by a conservative vector field are dense.

Recall that a point is Poisson stable if and only if for every neighborhood ¥
of x and every positive T, there exist t; and t,, greater than T, such that X, (x)
and X _ (x)arein¥ .

We say that the DP(X?),_, is conservative if every X' is a conservative vector
field on M.

3. A controllability result.

PROPOSITION 1. Let (X'),.; be a conservative DP on a compact Riemannian
manifold M of dimension n. If (and only if in the analytical case) the rank of (X'),.,
is n at every point of m, the DP is controllable.

Proof. The “only if”’ in the analytical case is a trivial consequence of the fact
that the positive orbit is included in the orbit and of Theorem 1. Let us prove now
the “if.”” Let x and y be two points in M. We have to prove that there exist some

iy,iyy oy iy, dpand ty,ty, -+, t;, -+, t,in R" such that

y = Xigooo Xifor oo Xiix).

Theorem 2 is true if we replace (X');,x by (X’);_;x (with obvious notation) ; choose
a point j in the interior of (X);_;y which is not empty by Theorem 2. Let 7; be an
open neighborhood of y contained in (X');,;y. By Theorem 1 there exist i; and t;,
not necessarily positive, such that

§ = Xigo oo Xiforoo Xi(0).

Suppose for simplicity (the general case goes by induction exactly in the same
way) that
y =Xz Xi(x),

where 7, is positive and t, is negative. Let p = X!'(x); then the set
v, = X2, (73

2,
is an open neighborhood of p, and it has a nonempty intersection with (X5, x

(using, again, Theorem 2); thus it contains a point z which is Poisson stable for
X". Let 7, be a neighborhood of z contained in ¥, N (X');.;x; by the definition of
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Poisson stable, there exists a real number ¢, greater than |z,|, such that the point
X2(x) belongs to ¥;. Then the following hold.

(i) The number ¢t + 7, is positive.

(ii) The point X% (z) belongs to 7;.

The point y is in the positive orbit of any point in (X%, (y), hence it belongs to
(Xi):re] firz(z)§
thus the proposition is proved.

4. Final comments.

Example. On the sphere S2, consider the DP generated by the two vector
fields X! and X2 whose trajectories are ‘“meridian’’ and “‘longitude” defined for
two different axes (see Fig. 1). These two vector fields are analytic ; one of them is
conservative. From Theorem 1, we see that the DP has rank 2 at every point because

FiG. 1

its orbits from every point are the whole S, as one sees easily on the picture.
Conversely, one can see that the positive orbit from the north pole is certainly
included in the north hemisphere.

Remark 1. This example shows that the assumption on the conservativeness
of the system is unremovable (we need at least that two vector fields of the family
are conservative and satisfy the rank assumption). On the other hand, by a slight
modification of the proofs in [6] (see also [7]), one can see that the rank assumption
is generic, ie., the set of conservative DP for which the rank assumption is
satisfied is an open dense subset of the set of conservative DP for a reasonable
topology.

Remark 2. The proof of the proposition of this paper also works for right
invariant vector fields on a compact Lie group as soon as we remark that trajec-
tories of such vector fields are certainly Poisson stable.

Acknowledgment. The result in this paper was suggested to me by Prof. L. W.
Markus; the proof is inspired by his paper [9]. I also thank him for many helpful
encouragements.
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REGULATION AND INTERNAL STABILIZATION
IN LINEAR MULTIVARIABLE SYSTEMS*

W. M. WONHAMT+ anp J. B. PEARSONt

Abstract. For the multivariable control system described by
X = Ax + Bu, y=Cx, z=Dx,

constructive necessary and sufficient conditions are given for the existence of state feedback u = Fx
such that (i) Ker F o Ker C (observability constraint), (ii) D exp [{(4 + BF)] - 0 as t - oo (output
regulation), and (iii) any unstable modes of A + BF are either uncontrollable or unobservable at y
(internal stability). It is assumed that Ker C is A-invariant, or equivalently that an observer or dynamic
compensator is utilized. A common application is treated, and sensitivity is considered for a simple
example.

1. Introduction. In this paper we continue the discussion in [1] on output
regulation for the system

(1) X(t) = Ax(t) + Bu(t),
= Cx(1),
2 (1) = Cx(1)
z(t) = Dx(t).

We refer to [1] for notation and a general description of the problem. As in [1],
we regard y(-) as the observed variable and z(-) as the variable to be regulated.
We assume that either a dynamic observer as in [1], or a dynamic compensator
as in [2], is utilized ; equivalently, writing 4" = Ker C, we have AN < A

For regulation of z( -), it is required to find a feedback map F:% — % such
that

(3) Z*(A + BF) « Ker D.
To respect the observability constraint, F must satisfy the condition
4 ' Ker F o 4.

Necessary and sufficient conditions for the existence of F subject to (3) and (4)
were given in [1].

In this paper we impose the additional requirement that F stabilize all the
unstable modes of 4 which are both controllable and observable. Precisely,
regard /.4 as the state space of the system (1), (2) made observable by reduction
mod .#". The controllable, observable subspace is then ((A#) + A")/A". We
require that the map induced on ((A#) + A')/A" by the closed loop system
map A + BF be stable. Equivalently, any observable, unstable modes of A + BF

* Received by the editors August 11, 1972, and in revised form March 13, 1973.
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must be uncontrollable ; that is,

%*(A+BF)+JVn<Aw>+M=

0.
N N

)

It is natural to call a system in which F has been chosen to satisfy (5) internally
stable. In this way we are led to formulate the following.

REGULATOR PROBLEM WITH INTERNAL STABILIZATION (RPIS). Given the maps
AX - % B:U—>X D:X - %, and a subspace N = X with AN < N, find
F: & — U such that

(6) Ker F o A,

(7) ZT(A+ BF) N (KAB) + ) = N,
and

(8) Z*(A + BF) < Ker D.

Here it is easily checked that (7) is equivalent to (5).

The “restricted regulator problem” (RRP) was defined in [1] and is identical
to RPIS except that the internal stability requirement (7) is dropped. We remark
that RRP may be solvable when RPIS is not: that is, internal stability need not
be compatible with output regulation, as shown by examples in [1] and [2].

In § 2 we provide a first set of necessary and sufficient conditions that RPIS
be solvable. While not constructive, they are exploited to show that in this problem,
dynamic compensation in the sense of [1] is redundant. In § 3 we give constructive
necessary and sufficient conditions in the case A" = 0, and in § 4 extend them to
the general case. An application is discussed in § 5. Finally, in § 6 we indicate
how to deal with the sensitivity problem which may arise when the map 4 is
subject to small perturbations.

2. Solution of RPIS: general considerations.
THEOREM 1. RPIS is solvable if and only if there exists a subspace V" < &
such that

9) v < KerDN ANV +9B),
(10) Y ANN + AV NNV,
(11) VN (KABY + N) = A,
and

(12) T*(A) < (AB> + V.

We observe that conditions (9), (10) and (12) are equivalent to solvability
of RRP, as shown by Theorem 1 of [1]; only condition (11) is new. The proof
follows exactly the same lines as in the theorem cited, and so need only be sketched.

Proof. Suppose RPISissolvableand put¥” = & *(4 + BF).Since AN = N
and Ker F o .4,'we have by Lemma 2 of [1],

T A+BRN N =2 (AN N
Then (9)—(11) follow immediately from (6)—8), and (12) follows from the general
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identity [1, Lemma 4],
(13) (ABY + X*(A) = CABY + X1 (A + BF).

Conversely, if (9) and (10) are true, there exists Fy:Z — % such that
Ker Fy, o A and (A + BF,)?" < ¥". Write A, = A + BF,. By (12) and (13),

(14) A+ (Ag) < {AB> + V.
Now
(15) XN AN)N N =ZT(ANN .

Just as in the proof of Theorem 1 of [1], (14) and (15) imply the existence of
F,:%& — % such that Ker F;, > & and (A, + BF,) = ¥". Then F = F, + F,
has all the properties required.

While Theorem 1 does not indicate how to find a suitable ¥~ if one exists,
it is well suited to showing that if RPIS is not solvable, then no solution can be
obtained by broadening the assumptions to include the possibility of state space
extension, that is, dynamic compensation. We may interpret this result as a
deterministic “separation theorem’ which asserts that, after insertion of a dynamic
observer, no further dynamic signal processing is required to achieve the stated
design objectives, if these objectives can be achieved at all.!

To be precise, introduce extended spaces and maps exactly as in [1, § 3].
In the notation used there, we now define the “‘extended regulator problem with
internal stabilization” (ERPIS) as that of finding suitable %, (that is, d(%,)) and
then F,: %, — 9%,, such that

Ker F, o A,

XS (A, + B.F) N ((AMB.> + N) = N,
and
XHA, + B,F,)c KerD @ Z,.

THEOREM 2. ERPIS is solvable only if RPIS is solvable.

Proof. If ERPIS is solvable, Theorem 1 implies the existence of ¥, = .,
such that

(16) Vo= (Ker D@ Z,) N A7 (¥, + B + B,),
(17) ZHA) NN + AN N) < 7,
(18) Ve N((ABY + X, + N) = N,
(19) ZI(A) = CABY + X, + V..

Here we have used the facts (cf. [1, §3]) that A4, = A", Ker D, = Ker D ® %,
and (A%,> = (A#) ® Z,,.

Let P:Z, > %, be the projection on 4 along %, and define ¥~ = P¥,. It is
enough to show that ¥~ has the properties (9)«12), and this requires only the

! 1t should, however, be borne in mind that in the present problem formulation, no explicit account
is taken of the sensitivity of the synthesis to parameter perturbations; and if this is done, additional
dynamic elements may sometimes be used to advantage (§ 6).
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application of P to both sides of the relations (16)+19). By definition of P and
A,, PA, = AP and A,|% = A. Using these facts and rewriting (16) as

v.cKerD® X, ASV.<V,+B + A,
there follows
v < KerD, AV < ¥ + A,
which is equivalent to (9). Next, the obvious relation
(20 ZS(A) = 27(A) D,

together with (19), establishes (12). To verify (11) from (18) we use the following
general result for a map P and subspaces %, & [3, Proposition A.5]:

(21 P(# N &) = (PR) N (PY)
if and only if
(22) Z+ S)NKerP=RNKerP + % KerP.

With KerP=%,, =7 and & = {4A#)> + Z, + A, (22) follows at once,
and then (21) applied to (18) yields (11). It remains to check (10) from (17). By
(20),

AN N =X A NN,

and so

(23) ZTANN <PY,=7".
Also, by (21), (22) we shall have

(24) PV, 0NN =¥ 0N,
provided

(25) Vet MNX, =7, N, +N&NNZ,.

As for (295), let

X,=v, + ne(¥, + /)N,
with v, € 7, and ne A". Then

v, =X, —ned, + N,
and by (18), v, € A4". Therefore x,e 4" N &, = 0, that is,
O+ A)=0,
proving (25). Then (24) is true, and (17) yields
(26) v > PA(V, N A) = A(¥ N N).
Finally, (10) results from (23) and (26).
3. Constructive solution of RPIS when 4" =0. We first recall from [3]

and [4] certain properties of (A, B)-invariant subspaces, that is, subspaces ¥~ < &
such that AY < ¥ + %. Let F(#") be the set of maps F:4 — % such that
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(A + BF)Y < v. Then F(v") # & if and only if ¥ is (A4, B)-invariant. We
denote by ¥"* the largest (in the sense of inclusion) (4, B)-invariant subspace
v < Ker D,

¥* =sup{¥:¥ = KerD N A~V +AB)};

and by #* the largest controllability subspace [4] contained in Ker D. Then
R* = v"* and F(¥'*) < F(#*). If FeF(¥'*) and Ap = A + BF, let Ay be the
map induced in 2/#* by Ap. Then the restriction Ag|(¥ */%*) is independent
of the choice of F € F(¥7*).

Let A7 <« 9 and AR = # = J . The subspace # decomposes I relative
to A if there exists a subspace % such that AY « L and 2P ¥ = 7. A con-
structive necessary and sufficient condition that # decompose 7 is given in the
Appendix ; it amounts to the well-known fact that decomposability is equivalent
to the existence of a solution to a simple linear matrix equation.

THEOREM 3. Let A" = 0. Then RPIS is solvable if and only if

27 XH(A) =<AB> + V7,
and in X/ R*, with F € F(¥"*), the subspace
(7> 027 (Ap) N CABY + R*)/R*
decomposes the subspace
(V* N X1 (Ap) + RB*)/R*

relative to the map induced by Ag in V" *|R*.

It is clear that this solvability criterion is constructive, as ¥"*, #* are com-
putable by simple algorithms [4]; an (arbitrary) F € F(¥"*) is readily constructed
[4] and decomposability is verifiable by a transformation of basis and rank checks
(Appendix).

Proof. (If). Let F € E(¥"*). By (27) and Lemma 4 of [1],

XY (Ap) < CABY + v+
As the subspace on the right is Ag-invariant, we have
(28) X (Ap) = CABY N X (Ap) + 7* N XL H(Ap).

Also, by the assumption of decomposability, there exists a subspace # < &
such that

(29) AW < W,
(30) RE W <N XT(Ap) + R,
and

Y*ENXHAp) + R* VN ABY N X H(Ap) + B* W

R* - R* ® o
We remark that with ¥~ fixed, (29)«31) hold for all F € F(¥"*). By (31),
(32) YH*NXH A <V * NCABY N X (Ap) + W,

(1)
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and by (28) and (32),

(33) X (Ap) € CABY + V* N X (Ap) = KABY + W".
Clearly,

(34) W < v

Also, by (31),

W/R* N CABY/R* = 0,
so that
(35) W N {ABY = R*.

Finally, let Ay denote the map induced by Ay in 2/#*, and choose F € F(¥7*)
such that

o(AFR*) N o(A(W|R*) = B

Then #* decomposes # relative to Ag; that is, there exists ¥~ < #” (depending
on F) such that

(36) AV <V
and
(37) R*DYV =W.

From (33)-(37), we conclude that
¥ < KerD N A~V + B),
v N (AB) =0,
XH(A) = {AB> + 7,

and it follows by Theorem 1 that RPIS is solvable.
(Only if). If RPIS is solvable, Theorem 1 supplies a subspace ¥~ such that

v < KerDN A YV +B)
and
(38) XA < {AB> D V.

Since ¥" N (A#B> = 0 we have ¥ | #* = 0, so that ¥ * > £* @ ¥ . From this
it is clear that Fe F(¥") N F(¥*) can be chosen such that Az|#* is stable. By
(38) and Lemma 4 of 1] we have

Xt (Ap) c {AB> @ v = {AB> + ¥V '*.
Since all the subspaces here are Ag-invariant there follows
X1 (Ap) < CABY N XA @V N X (Ap)

c (ABY N XH(Ap) + v* N X1 (Ap) = X7 (Ap),
and therefore

V*NXH(Ap) = <ABY N T (Ap) @ v N X F(Ap).
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Intersecting both sides with ¥"* and using ¥"* > ¥~, we obtain
V*NXY(Ap) = AB> N T A N ¥V *D v N X" (Ap)
=9 @®7J,say.

Let P:Z — %&/#&* be the canonical projection. By the stability of Ag|%*,
we have

(39)

(®IT)NKerP =(F @T)N R*

< (AR N #*
=0
=%NKerP® 7 N KerP,

and therefore

(40) (PYN(PT)=P&¥ NT)=0.

By (39) and (40) we have, finally,

P[v* N X" (Ap)] = P[KABY N 7 (4p) N ¥*1@ P[Y" N X7 (4p)],

a decomposition of the type required.
Remark. The foregoing proof of sufficiency made no essential use of the fact
that ¥7* is actually the supremal element of the family of subspaces

V=¥ cKerDN AV +B)}.

The sole reason for stating Theorem 3 in terms of ¥™* is that this element of ¥~
is readily computable algorithmically, and so the obtained conditions are con-
structive. It is clear from the proof that the conclusion of Theorem 3 is valid
provided the stated conditions hold for some element Ve ¥, with #* replaced
by the largest controllability subspace (c.s.) # = ¥.

4. Constructive solution of RPIS for arbitrary.4". It is not difficult to extend
Theorem 3 to the general case. Suppose first that RPIS is solvable with the map F.
Since Ker F > A", we have by Lemma 2 of [11] that

41) ZANN =ZYA+BF)N AN
is (A + BF)-invariant. Let

P - =2/[7%4) N N]

be the canonical projection, and let bars designate the maps induced in Z. As
Ker F o Ker P, F:Z — % exists uniquely such that FP = F, and it is easily seen
that P Ker F = Ker F. Similarly, by (8) and (41), D:Z — & exists uniquely such
that DP = D, and P Ker D = Ker D. Finally, define B:% — Z by B = PB.

Now A + BF = A + BF so (by [5, Lemma 2]),

PZ*(A + BF) = Z (A + BF).
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Also
[Z%(A + BF) + {A®> + #] N Ker P
=2 A NN
=2%(4 + BF) N Ker P + (<A#) + A4°) N Ker P.
With these observations, we may project both sides of (6)~8) to obtain

(42) Ker F o A,

43) Z*(A + BF) N\ KAB)Y + N) < N,
(44) Z*(A + BF) = Ker D.
Automatically

ZHA) NN =0,
or equivalently,
(45) N < X (A).
_ We have shown that if RPIS is solvable, so is the reduced problem (42)—(44)
in Z, and (45) is true as well. Conversely, suppose

(46) (A N N < KerD,

and that F :Z — % exists such that (42)—(44) are true. Define F = FP. By reversing
the steps which led to (42)(44), one can routinely verify that (6)—«8) are true,
i.e,, that RPIS is solvable. We therefore have the following.

LeEMMA 1. RPIS is solvable if and only if the reduced problem (42)H44) is
solvable under assumption (46).

Next we show that in (43) we may set A~ = 0.

LEMMA 2. If (42)H46) are true, then

(47) Z*(A + BF) N <4®) = 0.

Conversely, if (46) and (47) hold, so does (43).
Proof. By (43),

ZHA+ BF) N\ KAB> + &) <

Conversely, the left side of (43) can be written

T A+ BF)N[KAB> N Z*(A+ BF) + {AB> N Z (A + BF) + /' N Z ~(A)]
=7* (A+ BF) N (AB>
=0.

By Lemmas 1 and 2, the solvability of RPIS is equivalent to solvability of the
reduced problem (42), (44), (47) under assumption (46). Our next result implies
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that condition (42) is redundant. For simplicity of notation, we temporarily drop
bars.
LEMMA 3. Let Fy: 2 — U be such that

21 (A + BF,) N <AB) = 0.
There exists F, : 2 — 9 such that
(48) Ker F, o 2 (A),
(49) Z*(A + BF,) = £*(A + BF,).

Proof. In this proof, primes are used as indices. The lemma will be proved
in three steps. First, let P* :{A#> — (A®) be the projection on (AB> N X *(A)
along (A|#> N X~ (A), and write A* = A|[<A|B> N 7 (A)],BT = P*B. Since

CAB) N Z7(A) = P*CAB) = CA™B™),

we have that (4%, B™) is controllable, so there exists F* :Z4*(A4) — % such that
A* + B*F* is stable. Choose &~ such that

AB> N2~ (A @ S =27(4),

and then & such that ¥ > %~ and (AB> @ ¥ = Z. Now define Fo: & —» U
according to

ol[<AB> N X*(A)] = F*,
FollAp)> N 27 (4) & &1 = 0.
Write Ay = A + BFy and Fy = F, — Fy. It is then clear that
(50) Ker Fy o 7 (A),
X (40) N CAB) =0,
¥ (Ao + BFg) N CAB) = 0.
As the second step, we claim there exists an F} : % — % such that
(51) Ker F| o> (A&,
(52) XY (Ay + BFy) = Z*(Ay + BF)) (= Z%(A + BF)).
For this let
1KAB> = 0,
Fy|\% " (Ay + BF() = FglZ *(Ay + BFy),

and let F|7 be defined arbitrarily on some complement 7 of % ¥ (4, + BFg)
+{(ABY (= Z*(A) + (AB)) in Z. Write

Al = Ay + BF,, A, = Ay + BF}.
Since 4 *(A43) is Ag-invariant, and

AT (AG) = A2 (A7),
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there follows by Lemma 2 of [1],
XT(AY N XH(Ag) = X (A,

so that
(53) X (Ag) = 27 (AY).
Similarly, we have

X7 (Ay) N AR = 27 (4p) N (AB) = 0.
By Lemma 4 of [1], there results
(54) CABY @ X" (Ag) = <AB) @ 27 (4)),

and (52) follows at once from (53) and (54).
As the last step, we prove the existence of F{:% — % such that

(55) Ker F| o 2 (A4) + (AR,
(56) X*(Ay + BF}) = (4, + BF}).

A bar will denote a subspace or induced map in Z = 2/{AB). Let P-4 >
be the canonical projection. We have Z = 7 *(4) ® Z ~(4),and by (51), F; = F{P
for some F,:Z — %. Define F; = F|P, where

Then

PKer F| = Ker F|{ o Z~(4),
so that

X (A) = Ker F| + (A#> = Ker F1,

and (55) is true. Also if xe ¥ (A, + BF') then Pxe Z *(A4), so

Fi{x = F{Px = F\Px = Fx;
therefore

(A + BF))|Z*(Ay + BF)) = (4Ay + BF')| 2 * (A, + BFY),

and there follows
(57) Z*(Ay + BFY) > 2 (4, + BFY)).
Similarly,

(Ao + BF))KA#) = (Ap + BFY)|[KAB),
and so

ZT(Ay + BF)) N <AB)Y = I * (A, + BF}) N (AB) = 0.
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This means

X*(Ay + BFY) ~ Z (A, + BFY)
Z*(A, + BF))
~ X (A, + BF)),

(38)

and (56) follows by (57) and (58).
It remains only to define
Fl = Flo + Fll, .
Then (48) follows by (50) and (55); statement (49) follows by (52) and (56).
It is now easy to prove our main result. For this we revert to the notation

introduced at the beginning of this section.
THEOREM 4. In the general case & # 0, RPIS is solvable if and only if (i)

(59) 2%(A) N A < Ker D,

and (ii),
in the factor spaceiﬂ_’ = X/[XF(A) N N], the reduced problem is solvable,
that is, there exists Fo:Z — U such that

(60) Z*(A + BF,) c KerD
and
(61) Z*(A + BF,)) N <A%> = 0.

Of course, the reduced problem (ii) is formally identical to that of Theorem 3.
Proof. (If). Suppose the reduced problem (RP) defined by (60) and (61) is
solvable. Lemma 3 applied to RP yields a map F:Z — % such that

Ker F o Z(A),

and F satisfies (44) and (47). Since Z ~(A) o A4 we are assured that (42) is true
as well. As already noted, Lemmas 1 and 2 now imply that RPIS is solvable.

(Only if). The necessity of (59) is immediate from (9) and (10); the necessity
of (60) and (61) follows by Lemmas 1 and 2.

S. Application: regulation in the presence of step disturbances. As a simple
application of Theorem 3, consider the system
Xy = Ayx; + Asx, + B,u,
X2 = 0,
zZ = Dlxl + D2X2.
We assume that y = x and (A, B,) is controllable. The equations represent a
controllable plant subjected to step disturbances which enter both dynamically
and directly at the regulated output, a situation common in industrial process

control.
In basis-free terms, our assumptions amount to the following:

(62) N =0,
(63) Im A c (AB.
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We now have our next theorem.
THEOREM 5. Subject to the assumptitons (62) and (63) RPIS is solvable if and

only if

(64) (ABY + Ker DN A" 'B =&
Proof. (If). Exploiting the remark after the proof of Theorem 3, let
(65) ¥ =KerDN A™'A.

From (64) it is clear, first, that
AH(A) < CABY + V.

Also, as AV < 2B, there exists an F eE(V ) such that AF‘V’~ =0, where
Ap = A + BF. Then

¥ < Ker Ap = ' (Ap),
SO

V NXH(A) N CABY =+ N (AB).
According to Theorem 4.3 of [4], the supremal c.s. # in v is given by
AB={ABNV>=BNYV.

The second condition of Theorem 3 (with ¥, Z in place of ¥"*, #£*) will thus be
satisfied if (¥ N <A/ N ¥ decomposes VBNV relatlve to the map
induced by Az in¥ /@ N ¥). Since Ag|¥" = 0 this is trivial, and the result follows.

(Only if). Let Z = 2/{A#), and now use bars for subspaces and induced
maps in Z. By (63), 4 = 0. Suppose RPIS is solvable by the map F. Since A, = 4
for all F, and since 2" (AF) N (AB> = 0, we know that Z*(4y) = Ker Ap.
Now Ker A = A '% for any F, so

X (Ap) = KerD N A™'4.
By Lemma 3 of [1], there results
X*(A) = (ABY + KerD N A~ 'a,

and therefore
X = <AB> + X (A)

= {A®B> + KerD N A™'#
c Z.

6. Dynamic compensation and sensitivity. Even if RPIS is solved, it need not
be true that output regulation is maintained if internal parameters deviate slightly
from their nominal values. However, it is often possible to achieve insensitivity
by application of the theory to a suitably augmented version of the original
problem. We illustrate the method by a trivial example, deferring a general
treatment to a future article. Consider

X1=ax1+u, X2=07

y=(x1ax2)/a zZ =Xy — X,
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where x,, x, are scalars. RPIS is solvable with u = f;x; + f,x,, where

fi+a<0, fo= -+ f).

If a changes to a + ¢, with (f}, f>) fixed, the condition f; + a + ¢ < 0 for internal
stability is preserved for small ¢, but

2(0) = —(a + ¢ + f;) ex,(0+),

so output regulation fails.

Heuristically, replace ¢x, by a new variable x; with x; = 0. That is, x 3 should
satisfy the unstable differential equation induced in Z/{ A% ; since only A|<A%>
is assumed to change, this equation does not depend on &. Now consider RPIS
for the augmented system

X, = ax; + x3 + u,
X, =X3 =0,
y = (xq1,X,), Z=X; — X,.
Here the pair (C, A4) is observable; an observer for w = x; — x5 is given by
(66) W= —w+(a+ 1)y, +u.
Also, RPIS is solvable ; one solution is u = f’x, with
fi=—-1-—a, fa=1, fi=—1;
this can be implemented as
(67) u=—2+ay;, +y, +w.
Returning to the original perturbed system,
Xy =(a+ &xy + u,
utilize (66) and (67) to find the transfer function
3(s)/%a(s) = —s(s + 1 — g)/[(s + 1)* — &s].

With £,(s) = x,(0+)/s, clearly z(t) — 0 as t — oo for all sufficiently small e.
To summarize, parametric insensitivity is achieved by additional integrators,
associated with an observer for suitably chosen fictitious external disturbances.

Appendix: on decomposability relative to a given subspace.” We assume
that subspaces #,7 < % are given, with A7 <« J and AR < Z < 7. By
restricting 4 to J, we can and do assume that 7 = Z.

Let J:Z# — & be the natural injection, 1, the identity on %, and A4 = A|Z.
It is a standard fact that # decomposes & relative to A if and only if there exists
amap Q:%4 — Z such that

(A1) QJ = g,
(A2) 04 = A4,0.

2 While no originality is claimed for the following discussion, it seems not to be explicit in most
textbooks on linear algebra.
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Indeed, if (A.1) and (A.2) hold, set & =Ker Q. Then if xe Z, x =JQ0x + (1
—JQ)x; since Q(1 — JQ)x = 0, we have xe Z + &, so that Z + & = Z. Also,
xeZ N implies x = lgx = QJx =0, hence N & = 0. Finally, Ox =0
implies QAx = A;Q0x = 0,50 AY < &.Converselyif 2 @ & = F with AY < &,
let Q be the natural projection on £ along &.

Now let 2@ & = %, where Z is an arbitrary complement of # in Z'.
In a compatible basis, A and J have matrices

(A.3) A~ [Al A3], J ~ [1]
0 A4, 0

By (A.3), the relations (A.1) and (A.2) are equivalent to
0~ Q]

and

(A4 A0, — 0,4, — A; = 0.

Thus to check whether £ decomposes &, it is enough to verify whether the linear
matrix equation (A.4) has a solution Q,, a computational problem which in
principle is straightforward.

Of greater theoretical interest is the following result, which can be inferred
from [6, p. 199, Theorem 13] together with [7, p. 97, Ex. 6].

PROPOSITION. # decomposes X if and only if the elementary divisors of A%,
together with those of the induced map A in Z/R, give all the elementary divisors
of A.

In (A.3), A, is the matrix of A|Z and 4, that of A. The proposition thus solves
the existence problem for (A.4). As a well-known special case, (A.4) has a solution
(which is even unique) if the spectra of A; and A4, are disjoint.
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FINDING THE POINT OF A POLYHEDRON CLOSEST TO THE
ORIGIN*

B. F. MITCHELL, V. F. DEM’YANOV anp V. N. MALOZEMOV

Abstract. An algorithm is given for finding the point of a convex polyhedron in an n-dimensional
Euclidean space which is closest to the origin. It is assumed that the convex polyhedron is defined as
the convex hull of a given finite set of points. This problem arises when one wishes to determine the
direction of steepest descent for certain minimax problems.

1. Letafinitesetof points H = {z,;};_ | be given in an n-dimensional Euclidean

i=1

space E,. We denote by L the convex hull of the points z;:

L={Z= Zaizilaigo’zaizl}'

i=1 i=1
Obviously, L is a bounded closed convex set. We shall denote by z* the point of
L which is closest to the origin

(z*, z¥) = min (z, z).
zelL

Our goal is to describe a new method of successive approximations for find-
ing the point z*.

2. Itis not difficult to show that the point z* exists and is unique. Moreover,
the following inequality holds for any z € L (see, e.g., [1]):
(1) (z,2%) 2 (z*, 2%).
We set

8z) = (z,2) — mlin (z;, 2).
ie[1:s]

Since

(2) (U, Z) g min (Zi’ Z)
ie[1:s]
for any v, ze L, we have d(z) = 0 if ze L.

The following lemma also follows immediately from (1) and (2).
LEMMA 1. The inequality

©) Iz — 2 = min {{/(2), ||z] }

holds for any z € L.
COROLLARY 1. If a sequence of points vieL, k=0,1,2,---, is such that
6(vk)m 0, then
v, — z*.

k—

* Originally published in Vestnik Leningrad Univ., 19 (1971), pp. 38—45. Submitted December 30,
1969. This translation into English has been prepared by K. Makowski.
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COROLLARY 2. If a sequence of points v,eL, k =0,1,2,---, is such that
v+ 1]l < llvell, and if there exists a subsequence {v, .} for which d(v,)— 0, then
k q k; W e

Uy z*,
k= o0

The following theorem holds.

THEOREM 1. For a point zZ € L to be the point of L closest to the origin, it is neces-
sary and sufficient that 6(z) = O.

Proof. The sufficiency follows from (3). The necessity. Let z = z*. Then, first,
4(z*) = 0. On the other hand, we have by virtue of (1), (z;, z*) = (z*, z*) for any
i€[1:s], because z;€ H — L. Hence, min,.4(z;, z*) = (z*, z*) or, which is the
same, d(z*) < 0. Therefore, (z*) = 0. The theorem has been proved.

3. We denote by = the set of vectors 4 of the form

0, Y oy=1.
i=1

v

A=(ot1,---,ocs), o
We set

2A) = ) oz
@ S
A(A) = max (z;,z(A)) — min (z;, z(4)).
{ia;> 0} ie[1:s]

We denote by i’ = i'(4) a subscript at which the maximum in the right-hand side
of (4) is attained (if there are several such subscripts, then we take any one of
them). Thus, a;; > 0 and (z;, z(4)) = max,,> o) (2;, 2(A4)).

LEMMA 2. The inequalities o, A(A) £ d(v) £ A(A) hold for any vector v = z(A),
A€k&

Proof. We note that

(U, U) = Z ai(zi’ Z(A)) é Ilna); (Zi’ Z(A))
i=1 {i]ai > 0}
Hence, the inequality d(v) < A(A4) follows. We denote by z,., i” = i"(A), the point
of the set H for which
(207, 2(4)) = min (z;, 2(4)).

ie[1:s]

In this case

(5 A(A4) = (zy — z;, 2(A)).
We set A = {&,, -, & € E, where
o; fori#i,i",
o = 0 fori=7",

.7

oy + oy fori=i".
Obviously,
(6) 2(A) = 2(A) + alzir — zp).
Since z(A) € L, we have by virtue of (2)
(M (2(4), 2(A)) = 12[1111:] (2, 2(A)).
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Taking into account (7), (6), and (5), we obtain d(z(4)) = «;A(4). The lemma has
been proved.

THEOREM 2. For a point v = z(A), A€ E, to be the point of L closest to the
origin, it is necessary and sufficient that A(A) = 0.

The proof follows in an obvious way from Lemma 2 and Theorem 1.

4. We shall now describe the method of successive approximations for find-
ing the point z*. We choose a vector A, €E in an arbitrary way, and we set
vo = 2(Ay). Assume that the kth approximation v, eL:v, = z(4,), A,
= (o, -+, a®) e E, has already been found. We describe the construction of
Uk+1-

First of all, we find vectors z;; and z;; of H such that

(zi,v) = max (z;,z(4y),
{ilat) > 0)

(2> ) = min (z;, 2(A4y)).
ie[1:s]
In this case,

def

(8) Ak = A(Ak) = (Zil'( —_ Ziif’ Uk).
We consider the interval

Let t, with 0 < t, < 1 be determined by the relation

(0lty), vi(ty)) = orsntisn1 (v(1), V().

FiG. 1

We set v, ; = v,(t,) (see Fig. 1). It is not difficult to verify that v, = z(4;4,),
where

k+1 k+1 =
Ak+1=(a(1 )""’ag ))6:’,



22 B. F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV
o™ for i # iy, iy,
(k+1) __ (k k o
o = a) — ot fori=1i,
o) + ol for i =iy

For the sake of simplicity, we shall subsequently make use of the following

notation: o = o, z; = z;,Z, = z;.

Continuing the process described, we obtain the sequence of points v, € L,
k=0,12,---,with

(10) lves 1 = llogll-
LEMMA 3. The following limit relation holds

(11) lim oA, = 0.

k—

Proof. First, we note that by virtue of (8) and (9),
(12) (), (1) = (v, 0)) — 2t + 2 (o4il|Z, — zi))*

Assume that the assertion of the lemma is false. Then there exists a subsequence
{vkj} for which o A, = & > 0. By virtue of (12) we have, for all t€[0, 1] and
uniformly with respect to k;,

(04(1), v, (0) £ (v, 03) — 216 + 2d?,
where d = max; ,(;.q 1z, — z,]| > 0. Hence, it follows that the following in-
equality holds for t, = min {¢/d*, 1} (obviously, 0 < t, < 1):
(vi(to), v, (t0)) = (v, vi) — ok

Taking into account that, by definition, (v, 1 1, U+ 1) = (vx,(t0), v(to)), We obtain

(Vij4 15 Uiy o 1) = (05 0) — Lot

uniformly with respect to k;.

The number of such reductions in the monotonically nonincreasing sequence
(v, vy) 18 infinite, which contradicts the fact that all the (v,, v,) are nonnegative.
The lemma has been proved.

LEMMA 4. The limit relation

(13) lim A, =0
k—
holds.
Proof. Assume the contrary: lim,_, , A, = A" > 0. Then we have
(14) A2 A2
for numbers k = k,, sufficiently large. Taking into account (11), we conclude that
(15) o ——0.

We also note that, by virtue of (12) and (14),
(16) v 1l < Nl
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for k = k,. We denote by i, the point at which (v,(t), v,(t)) attains its global mini-
mum. Obviously (see (12)),

i, = A )

A

By virtue of (14) and (15), &, > c. Hence, it follows that for numbers k = k,
= k, sufficiently large, the minimum of (v,(t), v,(¢)) on the interval 0 < ¢ < 1 is
attained for ¢, = 1. Therefore, for these k,

(17) Vg1 = U+ olZ — 2i)-

However, the sequence of points v, , v, 11,0, 42, **, Which are connected by
relation (17), can contain only a finite number of mutually distinct elements,’
which contradicts (16). The lemma has been proved.

THEOREM 3. The sequence {v,} constructed above converges to the point z*.

The proof follows from Lemmas 4 and 2 and from Corollary 2 to Lemma 1
in an obvious way.

Remark. If it turns out that, for some k, A, = 0, ie., that v, = z*, then v, ,
= z¥for all j = 1,2, --- . This fact follows from (12).

5. We note certain peculiarities of the method of successive approximations
described in the preceding section. We introduce the hyperplane

G = {zl(z, z*) = (z*, z%)}.

THEOREM 4. If z* # 0, i.e., if the origin does not belong to L, then, beginning
with some number, v, € G.
Proof. We note that, by virtue of Theorem 1,

min (z;, z*) = (z*, z%).
ie[1:s]

We set
H, = {z;€ H|(z;, z*) = (z*,2z%)}; H, = H\H, = {z;€ H|(z;, z*) > (z*, z*)}.

If H, is an empty set, then v, € G forall k = 0, 1,2, - - - . Therefore, we henceforth
assume that H, is a nonempty set. We introduce the notation

T = min (z,, z*) — (z*,2z*) > 0.
zieHy

Since v,——z , WE have
k
k— o0

max |(z;, v,) — (z;, 2% < 7/4
ie[1:s]

for numbers k > k,, sufficiently large. It is not difficult to show that the following
relations hold for the same numbers k = k,:

(z;,v) S (z*,z%) + /4 ifz;€eH,;

(z;,v) = (2%, 2%) + 314 ifz;€e H,.

! This remark is due to M. S. Al’'tmark.
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Hence, it follows that

(18) min (z;, v,) = min (z;, V).
ie[1:s] zieH,

Further, if a point z; € H, enters the representation of v, k = k,, with a nonzero
coefficient, then

(19) A= 1/2,
where

(20) ool < lloell-
Let

= (k (k)
=3 oz + Y oz
(ilzieH 1) (ilzieH2)

By virtue of the definitions of H, and T,

(v —z*,2% = Y oz, —z*,z% 21 ) o
{ilzieH 2} {ilzieH?2}

Since the left-hand side of this inequality tends to zero as k — oo,

T ——0.
lilzichy) K7

We choose a large k; = k, such that the following inequality holds for k > k, :
(1) Yy o<

= 5 2°
{ilzieH2} 2d

where d = max, y, e, 12; — 25l > 0. We denote by i, the point at which
(v(8), v(t)) attains its global minimum. If z; € H, enters the representation of v,
k = k,, with a nonzero coefficient, then we obtain by virtue of (19) and (21)

A, T
= 112 g (k)
oz — zll 2 (Z(ilziellz) o) d

f, = 5= 1.

Hence, it follows that

(22) U1 = U + 02 — Z).
We assume that points z; € H, enter the representations of all vectors

(23) Ukys Uky+15 Uy 425

with nonzero coefficients. By virtue of (22), sequence (23) contains only a finite
number of mutually distinct elements. However, this contradicts (20). Therefore,
there exists a point vg, k = k,, which has the following representation :
=3 dz; «Px0, Yoo =1.
{i|zieH1)} {ilzieH 1}

By virtue of (18), all the v, with k = k have similar representations. In particu-
lar, we have by definition of H,, for k = k, that (v, z¥) = (z*, z¥), ie., v,€G.
The theorem has been proved.
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THEOREM 5. The limit relation

liIIl Z&k = 0
k— o0
holds.
Proof. If z* = 0, then the assertion of the theorem follows from the definition
of A, and from the fact that |v,| b—@*O. Therefore, we assume that z* # 0. By
virtue of Theorem 4, we have for k = k,

Ay = max (z;,v) — min (z,v).
{ilzieH1} {ilzieH1}

According to the definition of H, the right-hand side of this inequality tends to
zero as k — oo. Therefore, Ak—’(: 0 also, since A, = 0. The theorem has been
proved.

6. We set
Ay = AJlo?, k=0,1,2,--.

If v, = 0, then we set by definition A, = oo.
THEOREM 6. For the origin to belong to the set L, it is necessary and sufficient
that the following inequality hold for all k = 0,1,2, --- :

(24) A, =1.

Proof. The necessity. We have z* = 0. Taking into account that v, € L, we
obtain on the basis of Lemmas 1 and 2

A Ay > o(vy) >

k= T2 =02 =
loel® = flol®

The sufficiency. Assume that z* # 0. Then A, < A/||z*|%. By virtue of
Theorem 5, we obtain Akmo, which contradicts (24). The theorem has been
proved.

Thus, if z* = 0, then ||v,| -;::0 and, for all k =0, 1,2, - - -, the inequality
A, = 1 holds. If z* # 0, then |v,]| = |z*| and Zkro,

If the inequality A, < 1 holds for some k, then, by virtue of Theorem 6, the
origin does not belong to the set L. Moreover, it is not difficult to prove that, in
this case, the hyperplane (v, z) — (v, z,) = O strictly separates the origin from L.

7. We remind the reader that v, = z(4,), A, € E. We set I, = {ija® > 0} and
introduce the set

Bk = {Z = ZiO + Z O(i(Zi - Zi0)|06i6(—00, OO)} .
%

1.

Here, i, is an arbitrary subscript of I,. We denote by 3, the vector of B, with the
smallest norm: ||| = min,p |z|. We note that the point #, € B, is unique,
although its representation in the form
O = z;p + ), Gz — 2;)
iely
. i#io
may not be unique.
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It is not difficult to show that the numbers &, constitute the solution of the
following linear system:

(25) Zig+ 2oz —z),z;— zi, | =0, jel, j#io.
%t
THEOREM 7. There exists an infinite subsequence of vectors {T;kj} such that
Uy, = z* for all k;.
Proof. We shall assume that z* # 0 (if z* = 0, then the proof is only simplified).
First, we separate a subsequence {v,,} such that

(i) i —— X, ie[1:s], in this case,
J— 0

—_— gk %, .
Ukj jo o = igl %' Zis
(i1) vy, € G (see Theorem 4).
We set I* = {ilo} > 0}. Obviously, we have for k; sufficiently large

(26) e,

Henceforth, we consider only such k;. We denote by L* the convex hull of the
points z;, i€ I*. Obviously, z* € L*. We denote by L, the convex hull of the
points z;, i € I, . By virtue of (ii), (26), and of the definition of the set B, we have

L*< L, < By, = G.

Further, ||z¥|| = min,|z] £ minzeBkj lzll. Since z*eL*, z*€ B,,. Therefore,
2] = min..p, |21,

Taking into account that the point of By, with the smallest norm is unique,
we obtain ;= z*. The theorem has been proved.

On the basis of this theorem, one can assert that finding z* reduces to solving
a finite number of systems of linear equations of form (25). We note that it is
purposeful to solve these systems only for the k for which either ||v,| or A, is
sufficiently small.

Regarding other methods of finding the point of a polyhedron which is closest
to the origin, see [2]-[4].
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EXISTENCE AND LOWER CLOSURE THEOREMS
FOR ABSTRACT CONTROL PROBLEMS*

LEONARD D. BERKOVITZt

Abstract. A general control problem that includes, among others, the distributed control problem
and the optimal control problem for systems governed by ordinary differential equations is considered.
Two lower closure theorems and an existence theorem with hypotheses corresponding to those of
the lower closure theorems are proved. The first lower closure theorem was first proved by Cesari.
The present proof is different and simpler. The second lower closure theorem dispenses with Cesari’s
property (Q), but requires a generalized Lipschitz condition to hold.

1. Introduction. In [7] L. Cesari formulated a general control problem and
proved lower closure theorems and existence theorems for this problem. Cesari’s
earlier results [4] on the existence of optimal controls in distributed control
problems are special cases of these theorems, as are certain semicontinuity and
existence theorems of Morrey [15] and Fichera [10]. Existence theorems for
many other control problems and problems in the calculus of variations can
also be obtained as special cases of these theorems. For details see § 9 of [7].

In § 5 of this paper we shall present a different and simpler proof of Cesari’s
results. Although our results will be slightly more general than Cesari’s in one
small point, the principal contribution of this work is in the simplification of the
proof. Our method is also applicable to problems in which Cesari’s property
(Q) is not assumed. In § 6 we prove a lower closure theorem in which property
(Q) is replaced by a generalized Lipschitz condition. The usual convexity assump-
tions, of course, are retained. The methods and results presented in this paper were
developed in [1] and [2] for control problems governed by systems of ordinary
differential equations.

2. Notation and formulation of problem. We shall use single letters to denote
vectors, we shall use subscripts to distinguish vectors, and we shall use superscripts
to denote components of vectors. The letter ¢t will denote a vector (t', - -, ),
in real Euclidean space R, v = 1, the letter x will denote a vector (x!, --- , x") in
real Euclidean space R", n = 1, and the letter wa vector in R”, m = 1. The Euclidean
norm of a vector x will be denoted by |x|. The inner product of two vectors x,
and x, will be written as {x,, x,>. Thus |x| = {x, x)!/2

Let f2:(t, x, w) —» fO(t, x, w)bea real-valued function defined on R x R" x R™
and let f:(t, x, w) > f(t, x, w) be a vector-valued function defined on R* x R" x R™
with range in R". Let G be a bounded region of the t-space R”, and let X be a region
of the x-space R". Let # denote the Cartesian product G x X, where G denotes
the closure of G and X denotes the closure of X. Let Q be a mapping that assigns to
each point (¢, x) in £ a subset Q(t, x) of the w-space R™.
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28 LEONARD D. BERKOVITZ

Asusual,let L, (G), p; 2 1,denote the Banach space of real-valued measurable
functions z' defined on G such that [ |2'[?*dt < oo, and let

i ) 1/pi
12411 ={f |zP dt} , piz 1.
G

Let % and & denote the following Banach spaces:

@ = 1_[ LQi(G)’ ,OZ = l_[ Lp,(G) qia pi g 1
i=1 i=1
The norm of an element z = (z!, - -+, z") in Z is given by

n . 1/2
Izl = { > IIZ'IIZf} .
i=1

A similar formula gives the norm of an element y = (y!, ---, y") in %.

Let # be a Banach space and let the norm of an element ¢ in # be denoted
by ||¢]|. Let M be a mapping from & to & and let N be a mapping from % to %.
Thus the image under N of an element ¢ in # isanelement N = y = (', ---, )"
in %, where each ' is in L,(G). Similarly the image under M of an element ¢
in & is an element M¢ = z = (z!, - -+, z") in &, where each Z' is in L,(G). Note
that N and M need not be linear.

Let .# denote the set of all measurable functions u defined on G with range
in R™. Thus ifue ./, then u = (u!, - -, u™), u' real-valued and measurable in G.

To motivate the formulation of the abstract optimal control problem to be
given below we recall the formulation of the optimal control problem for systems
governed by ordinary differential equations and the formulation of the optimal
control problem for distributed parameter systems.

Let t be a scalar (v = 1) and let G = (a, b). One of the important optimal
control problems for systems governed by ordinary differential equations can be
stated somewhat imprecisely as follows. Minimize

f 0, (), u(t) di

subjectto ¢'(t) = f(t, ¢(t), u(t)) and u(t) € Q(t, ¢(t)). For the problem to make sense,
the functions ¢ must be absolutely continuous. Since v = 1, the functions ¢ that
are under consideration can be considered to be elements of the Sobolev space
HI(G). Let # = HY(G). For any set %, let [#]* denote the k-fold Cartesian
product of . with itself. Since the functions ¢’ are in [L,(G)]", the differentiation
operator, which we henceforth write as N, is a mapping from & into [L,(G)]".
The function ¢, in addition to being an element of £, is also an element of [L,(G)]".
Let M denote the mapping that imbeds H}(G) in [L,(G)]"; thus (M¢)(t) = ¢(t),
with ¢ in H}(G) and M¢ € [L,(G)]". The control problem can now be stated.
Minimize

b
f (e, (M$)(0), u(t) di

subject to (N¢g)(t) = f(t, (M)(t), u(t)) and u(t) € Q(t, (M p)(t)).
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The use of Sobolev spaces to formulate the optimal control problem for
systems governed by ordinary differential equations may seem somewhat preten-
tious. For distributed parameter systems (v > 1), however, Sobolev spaces must
be introduced. As we shall see, the Sobolev space formulation of the ordinary
control problem carries over to the distributed parameter systems.

Let o = (oY, - -, &™) denote a generic multi-index and let |o] = ) «¥. Let

D* = 9l /oxa™ ..
One of the optimal control problems for distributed parameter systems is the
following. Minimize

‘Lf%uuw@ux¢mnm»m
subject to
(D*D)(1) = £t (DPB)(1). (1) u(t)

and u(t) € Q(t, ¢(t)), where « ranges over multi-indices with |« = s and f ranges
over multi-indices with | §| < s. From experience with partial differential equations
and multidimensional variational problems without side conditions (e.g., mini-
mizef of O(t, ®(t), (Vo)(t)) dt we know that to establish a reasonably general exis-
tence theorem we must take the functions ¢ to be elements of an appropriate
Sobolev space. Since the highest order derivative appearing is s, we take ¢ to be in
H3(G) for some p = 1. Let # = H;(G). We can write N = D*. The differential
operator D maps ¢ into D?@, an element of [L,(G)), for appropriate y. The
function ¢ itself also belongs to [L,(G)]". Therefore, we may define a mapping M
from % to [L,(G)]’*" as follows: M :¢ — (D¢, $). In this notation the optimal
control problem for distributed parameter systems becomes : Minimize

Lf%memmmMr

subject to (N¢)(t) = f(t,(M)(t),u(t)) and u(t) e Q(t,(M¢)(t)). Formally, the
distributed parameter problem now has the same format as the problem in which
the state is governed by a system of ordinary differential equations.

The motivation for the following definition and problem formulation should
now be clear.

DEFINITION 2.1. An element ¢ in & is said to be an admissible trajectory if
there is a function u in .# such that the following hold:

1) (t, Mp)(t)eRae. inG,
(i) (N)(®) = f(t,(M)(t),u(t)) ae. in G,
(iii) u() e Qt,(M)() ae. in G,
(iv) the mapping t — fO(t,(M®)(t), u(t)) is in L,(G).

The function u is said to be an admissible control and the pair (¢, u) is said to be an
admissible pair. The set of all admissible pairs will be denoted by .«7.
The optimal control problem is to minimize the functional

2.1)

22 J(@,u) = L fOe, (M)(1), u(t)) dt
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in a given class &/, & . of admissible pairs. That is, we are to find a (¢*, u*) in
o, such that J(¢*, u*) < J(¢, u) for all (¢, u) in o7,. Such a pair (¢*, u*) is called
an optimal pair. The element ¢* is called an optimal trajectory ; the element u* is
called an optimal control.

We have already shown how a distributed control problem and a control
problem governed by ordinary differential equations can be obtained as special
cases of the general problem just formulated. To obtain the classical multi-
dimensional variational problem we take # = H(G), N =V, f = w, and take
M to be the identity map that assigns to ¢ in H1(G) the same function considered
as an element in [L(G)]". For other problems covered by the general formulation,
the reader is again referred to §9 of [7].

3. Outline of proof of existence. The proof of the existence of an optimal pair
in a class ./, & &/ proceeds in general as follows.
Let

3.1 u = inf {J(¢p, u):(¢, u) € <} .

If 4 = + 00, there is nothing to prove. If 4 < oo, then there exists a minimizing
sequence such that J(¢,, u,) — u. Conditions are then placed on the problem to
ensure that 4 > — oo. Additional conditions are placed on the problem to ensure
that the sequence of trajectories {¢,} is conditionally compact in some sense.
From experience in less abstract problems we know that conditional weak com-
pactness of the minimizing sequence will suffice.

Having guaranteed the weak compactness of {¢,} we select a subsequence,
again labeled {¢,}, that converges weakly to an element ¢* in #. Any boundary
conditions or other conditions on the trajectories ¢ that are used to define the
subclass ., must be such that if ¢, - ¢* weakly, then ¢* must satisfy these
conditions.

At this point a “lower closure” theorem is used. This theorem states that,
under appropriate hypotheses, if ¢f — ¢ weakly in &, then there is a u* in A4
such that (¢*, u*) is admissible and

(3.2) J(¢*, u*) < lim inf J(¢y, up).

If we can also show that (¢ *, u*) € ./, then J(¢*, u*) = u. On the other hand for the
minimizing sequence, and hence for the subsequence with weakly convergent
trajectories, we have

lim inf J(¢,, ) = lim J(¢,,u,) = p.

Combining this with (3.2) and J(¢*, u*) = u gives J(¢*, u*) = u. Hence (¢*, u*)
is an optimal pair.

The difficult step in the existence proof is the proof of the lower closure
theorem. The next three sections will be devoted to two lower closure theorems.
We shall return to the existence question in § 7.

4. Assumptions. In this section we discuss a set of assumptions that will
be in force for all of our theorems. For ease of reference we shall label this set,
Assumption A.
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One of the statements in A requires the introduction of a function Q* that
assigns to each pointin Z = G x X a subset Q (¢, x) of R"* ! as follows:

Q+(t’ X) = {(’7’ 5)’7 g fo(ta X, W), é = f(ta X, W)’ w GQ(I, X)} )

where 7 is a scalar and ¢ is an r-vector.

Assumption A. (i) If {¢,} is a sequence of elements in & that converges weakly
to an element ¢ in &, then N¢, —» N¢ weakly in % and M¢p, —» M ¢ strongly in
Z. (i1) For each (t, x) in # the set

9D = {(t,x, w):(t, x) € B, we Qt, x)}
is closed. (iii) For each (¢, x) in # the set Q*(t, x) is closed and convex. (iv) There
exists a real-valued function  in L,(G) such that y(t) = 0 on G, and a constant
r-vector b such that

St x,w) = (b, f(t,x, W)y Z = (1)
for all (¢, x, w) in 9.

Assumption A(i) is fulfilled in many important problems. In the control
problem governed by ordinary differential equations, v =1 and G = [a,b].
Admissible trajectories are in the Sobolev space H}(G), which we take to be &
in the present case. The weak convergence of a sequence {¢,} in Hi(G) implies the
convergence in [L,(G)]" of {¢,} = {M¢,} and the weak convergence in [L,(G)]"
of the sequence {N¢,} = {¢;}. The weak convergence in L, of the {¢;} implies
the equiabsolute continuity of the {¢,} . Since v = 1 and G = [a, b], we even have
the stronger result that the sequence {¢,} is uniformly convergent (i.e., converges in
Cla, b]). Conversely, a uniformly convergent sequence {¢,} that is equiabsolutely
continuous converges weakly in # = H}(G).

In distributed control problems (v > 1), the functions ‘¢ are in a Sobolev
space H;(G) or in the Cartesian product of Sobolev spaces H}(G) (see [5], [7]).
It is a standard result [16, Thm. 3.4.4, p. 75] that if ¢, — ¢ weakly in H}(G), then
¢, — ¢ strongly in H;‘I(G), provided the boundary of G is sufficiently regular.
Thus, since N is a differential operator of order s and M is defined by the relation
M@ = (D¢, ¢) with |B| < s, Assumption 1 is fulfilled, provided we assume that
the boundary of G is sufficiently regular.

Assumption A(ii) is equivalent to the assumption that Q is upper semi-
continuous on Z in the sense of Kuratowski [13, pp. 32-34]. Assumption A(iii)
was introduced by Cesari in [3].

In [7] Cesari assumes that for every point ¢’ in G there is a neighborhood
N,(t') of ', a nonnegative function y in L (N,(t')) and a vector b such that the in-
equality in Assumption A(iv) holds for all ¢t in N(t'), all x in X, and w e Q(t, x).
Note that ¢ and b depend on the neighborhood. It is easy to see that as a con-
sequence of the compactness of G it suffices to consider Assumption A(iv) as
stated here.

5. First lower closure theorem. One of the assumptions in the first lower
closure theorem involves a slight generalization of Cesari’s property (Q). Criteria
for property (Q) and a discussion of the relationship of property (Q) to various
growth conditions and other assumptions used in the calculus of variations and
in optimal control theory are given by Cesari in § 6 of [8].
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Let 6 > 0, let (ty, Xo) € # and let N (to, Xo, 0) denote the set of points (o, x)
in # such that |[x — x,| < 6. Let

O* (N (to,Xo,90) = U{Q"(tg,x):(te,x) € N\(tg, X, 9)}.

For a set 4 let cl co A denote the closure of the convex hull of A. The mapping Q*
is said to satisfy the weak Cesari property (Q*) at (¢, Xo) if

0% (to, xo) = 600 clco Q*(N (tg, X, 0)).

It is readily verified that if property (Q) holds at a point then so does property
(Q*). Note that if the sets Q" (¢, x) are independent of x, then the weak property
(Q*) holds.

THEOREM 1. Let Assumption A hold. Let the function f° be lower semicontinuous
and let the function f be continuous. Let the mapping Q* satisfy property (Q*) at all
points of A with the possible exception of a set of points whose t-coordinates lie in a
set of measure zero in G. Let {(¢y, u,)} be a sequence of admissible pairs such that the
sequences of trajectories {¢,} converges weakly in F to an element ¢. Let
lim inf J(@,, u,) < +co0. Then there exists a function u in A such that (¢, u) is
admissible and

(5.1) J(¢, u) < lim inf J(y, uy).

This theorem, with the assumption that property (Q) holds instead of (Q*),
is due to Cesari [5], [7].

Remark. Theorem 1 remains true if we replace the assumptions on f° and
f by the following weaker assumption.

Assumption B. For each t in G, the function F = (f°, f) is a continuous func-
tion of (x, w) on R"*™ and for each (x, w) in R"*™ the function F is measurable
with respect to ¢ in G.

At the appropriate place in the proof of Theorem 1, we shall indicate the
modifications that must be made to accommodate the weakened hypotheses.

Our proof of Theorem 1 is different from Cesari’s and will exploit Mazur’s
theorem which states that a strongly closed convex set in a Banach space is weakly
closed. Thus, our proof essentially exploits the Hahn-Banach theorem. In the
proof we shall select subsequences of various sequences. Unless stated otherwise,
we shall relabel the subsequence with the labeling of the original sequence.

Let {¢,} and ¢ be as in the hypotheses of the theorem. Let

Y = N¢k’ y = N¢’

zy=M¢,, z=Méo.
For the value of y, at t we write y,(t); thus y(t) = (N¢,)(t). Similar notation will
hold for y, z, and z. '

We break the proof up into several steps.
Step 1. Let

(5.2) y = lim inf J(¢,, uy).

Then y is finite.
Since by hypothesis y < + oo, we need only show thaty > —oo.
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From Assumption A(iv) and (2.1) (ii) we get that for a.e. t in G,
It z0), ud) = — () + <b, (¢, 2(0), u)>
= —yY(t) + <b, (1)

From A(i) and the hypothesis that ¢, — ¢ weakly, we get that y, converges weakly
toy = N¢in%.Hence {|y,| } is bounded, say by a constant B > 0. From this and
from the inequality

(5.3)

f hoy0 dt | < Clul,
G

where C is an appropriate constant, it follows that the integrals | {b, y,(t)) dt
are bounded. Integration of (5.3) now shows that the sequence J(¢,, 1) is bounded
below. Hence y > — 0.

Before presenting the rest of the proof we outline the idea of the proof. Since
v, — y weakly in %, there is a sequence {{;} of convex combinations of the y,
that converges strongly to y in %. Hence there is a subsequence of the {i;} that
converges a.e. to y. We then use the same convex combinations of the functions
t— fOt, yi(t), u,(t)) as were used to define the Y¥; to define a sequence {1;}. We
then show that the function A = liminf4; is integrable and that [s4dr <.
Property (Q*) enables us to also show that for a.e. t in G, (A1), y(t)) € Q* (¢, z(¢)).
Thus there is a function v:G — R™ such that y(t) = f(t, z(t), v(t)) and A(f)
= @1, z(t), v(t)). We then use the McShane-Warfield extension of Filippov’s
lemma to show that we can replace v by a measurable function u. Thus, (¢, u) is
admissible and A(t) = f°(t, z(t), u(t)). Integration of the last inequality and the
previously established relation [ ;4 dt < y then give the theorem.

Step 2. There exists a real-valued function A that is integrable on G such that

(5.4) f Adt =y
G

and such that (A(z), y(t)) € Q" (¢, z(t)) a.e. in G.
We first select a subsequence {(¢,, u,)} such that

(5.5) lim J(¢y, ) = y.

For this subsequence we still have ¢, — ¢ weakly in #. Therefore, {z,} = {M¢,}
converges strongly in %. From the definition of & in § 2, it follows that the se-
quences of components {zj},i=1,---, n, converge in L,(G) to z' = (M¢).
Hence there is a subsequence of {(¢,, u,)} such that z,(tr) - z(¢) a.c. in G. We now
select this subsequence.

Since we still have ¢, - ¢ weakly in &, we have that y, - y weakly in %.
Therefore, from Mazur’s theorem (e.g., [11, Cor., Thm. 2.9.3, p. 36]) we obtain the
following statement. For each integer j there exists an integer n;, a set of integers
i=1,---,k, where k = k(j) depends on j, and a set of numbers o;;, -, o;
satisfying

k
(5.6) 0;20, i=1-,k Y =1,
i=1
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such that n; ., > n; + k(j) and

k
1
(5.7) y=2 LiiVnyi || =
i=1 J
Let
k
‘pj = Z %iiVnj+i-
i=1
From (2.1) (ii) we have that for a.e. t in G,
k
(58) ‘//j(t) = Z Ocijf(t’ an+i(t)’unj+i(t))'

i=1

In terms of ¥, (5.7) says that y; — y in the norm topology of %. From the
definition of % in § 2, it follows that each component ¥}, i =1, -, r, of y; con-
verges to y' in L,(G). Hence there exists a subsequence {/,} such that

(5.9) Yit) > y(t) ae inG.

We note for future reference that since G is bounded, this subsequence also con-
verges to y in [L(G)]".
We now suppose that (5.8) is the subsequence for which (5.9) holds. Cor-
responding to (5.8) we define a sequence {4;} as follows:
k

(5.10) 2{0) = Y i f O 2 {0), 1 (1),
i=1
where for each j the numbers o
Uy, 4;are asin (5.8).
Define

(5.11) A(t) = lim inf A (t).
From (5.8), (5.10), Assumption A(iv) and (5.6) we get
Aft) = <b, ¥ 1))

k

=2 O‘ij(fo(ta Zny+ ) U1 (1) — b, S (8, 2,1 £0), 4 (1))

i=1
k

= Z o (—y(t) = —(t).

i=1

ij» the indices n;,; and the functions z, ., and

Hence we may apply Fatou’s lemma and (5.9) and (5.11) to obtain

lim infj (A — <boy ) de gj lim inf (4, — <boy,)) de
G G
(5.12)
=f (3 — <b,yy) di
G

and

(5.13) Aty = —y(t) + <by(t))  ae.
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We noted in the sentence after (5.9) that y; — y in [L,(G)]". From this observation
and from (5.12) we therefore get

(5.14) f Adt < lim inff Ajdt.
G G

But from (5.10), (5.5) and (5.6) we get
k
lim inff A;jdt = lim inf ) oc,-jf foa, Zn, + (1), Uy, 1 (1)) dt
G i=1 G

k
= liminf ) i J (P4 i Unj4) = 7.
i=1
If we combine this result with (5.14) and note (5.13) which shows that 1 is bounded
from below by an integrable function, we see that A is integrable and that (5.4)
holds. Note that A must be finite almost everywhere in G.

We next show that (A(t), y(¢)) € Q * (¢, z(t)). Let G, denote the set of points in G
at which A(t) is finite, y;(t) = (1), z,(t) = z(t), and at which property (Q*) holds.
Then meas G, = meas G. For each integer k define a set E, as follows:
E, = {te G:ut) ¢ Q(t, z,(t))} . Then by (2.1)(iii), meas E, = 0. Let E denote the
union of the sets E, and let G, denote the points in G that are not in E. Let
G = G, N G,. Clearly, meas G’ = meas G.

Let t be a point in G'. There exists a subsequence {4(t)}, which depends on t,
such that A(t) — A(t). For the corresponding subsequence y (t) we have, by (5.9),
Y {t) = y(t). Since z,(t) — z(t) it follows that for each J > 0 there exists an integer
ko depending on ¢ such that if k > k then |z,(t) — z(t)] < 6. Hence for k > k,,
(t, z(t)) € N (t, z(¢),0). Therefore, for j sufficiently large,

(,V,?jn(t)a ynj+i(t))e Q+(Nx(ta Z(t)a 5))5

where yp?,-+i(t) = 1@, an+i(t)7 ”n,-+i(t)) and Yy +ill) = A an-H(t)a unj+i(t))‘ There-
fore, by (5.8), (5.10) and (5.6),

(2(0), Y1) € co Q (N (1, z(1), 8)),

where co A denotes the convex hull of 4. Since A{t) — A(t) and ¥ (t) — y(t), we
have

(A1), ¥(1) € cl co QT (N (t, z(t), 9)).

Since § > 0 is arbitrary, (A(r), y(t)) is in clco QF (N (¢, z(t), ) for every 6 > O,
and hence in the intersection of these sets. Therefore, by property (Q*), we get that
(At), y(t)) e Q (¢, z(t)). Since t was an arbitrary point in G', the proof of Step 2 is
complete.

Step 3. There exists a measurable function u = (u!, ---, u™) defined on G
such that for almost all ¢t in G:(i) y(t) = f(t, z(t), u(r)); (i1) u(t)e Q(t, z(t)); (ii1)
M) Z £, 2(1), u(t)).

The existence of a function v satisfying the conclusion of Step 3 is a restate-
ment of (A(t), y(t)) e Q*(t, z(t)). We show that there is a measurable function u
with this property. Let T = {t:(A(t), y(t)) € Q*(t, z(t))},let Z = R* x R" x R™ x R!
and let D = {(t, x,w,n):(t,x,w) € Z, n = f°(t, x,w)}. The functions y and A are
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measurable. Clearly, T is measurable and Z is Hausdorff. Since by Assumption
A(ii), 2 is closed, and since f° is lower semicontinuous, the set D is closed and
hence can be written as the union of a countable number of compact sets. Let
D:t > (t, z(t), Y(t), Mt)); thus ® is a measurable map from T to Z. Let
I:(tx,w,n) —(tx,f(tx,w),n). Then T is a continuous map from D to Z and
®(T) = I'(D). Thus, the hypotheses of the McShane-Warfield extension of
Filippov’s lemma (see [14]) are satisfied. Hence there exists a measurable mapping
w:T — D, such that p:t — (z(t), x(t), u(t), n(t)) and such that I'(u(t)) = ®(t). Hence,

(x(®), x(1), f (x(2), x(2), (1)), n(2)) = (z, 2(t), y(1), A1)

for all t in T. From this, Step 3 follows.

If we replace the continuity assumptions on F by Assumption B, then by a
well-known theorem ([19, Thm. 18.2, p. 142] or [18]) there exists for each ¢ > 0
an open set E = G such that meas(E) < ¢ and such that F is continuous on
(G—E) x R" x R" We proceed as above to obtain a measurbale # on
T — (E N T). Since ¢ is arbitrary we obtain the desired result. For details see
[12] or [17].

Step 4. Completion of proof.

We first show that (¢, u) is admissible, where u is the function obtained in
Step 3.

Statements (i) and (ii) of Step 3 assert that (¢, u) satisfies (2.1)(ii) and (iii). For
almost all t in G, z(t) = lim z,(t) = lim (M ¢,)(t). Since # = G x X is closed and
since for each k, (¢, z(t)) € # for almost all ¢ in G, it follows that (¢, z(t))
= (t,(M@)(t) e #, ae. in G. Thus (¢, u) satisfies (i) of (2.1). Since z and u are
measurable and f° is either lower semicontinuous or satisfies Assumption B, it
follows that the function y° defined by y°(t) = f°(t, z(t), u(t)) is measurable.
From (iii) of Step 3 we see that y° is bounded above by an integrable function.
From Assumption A(iv) we have

YA Z = (o) + <b, f(t, z(1), u(t),

and so y° is bounded below by an integrable function. Hence y° is integrable and
(2.1)(iv) holds. Thus (¢, u) is admissible.

From (iii) of Step 3, (5.4) and (5.2), we obtain (5.1) and thereby complete the
proof of Theorem 1.

6. Second lower closure theorem. Let p,, i =1, .-, n, be as in the third
paragraph of §2. Let p = min {p;:i = 1, ---, n}. Since G is bounded, all com-
ponents of functions z = M¢, where ¢ is an element of % are in L,. Moreover
any sequence {z,} that converges strongly in £ convergesin L,.If p > 1,let q be
defined by the relationship 1/p + 1/g = 1;ifp = 1,let ¢ = + 0.

We next list a set of hypotheses about the data of the problem that will be in
effect for Theorem 2.

Assumption C. (i) The function F = (f°, f) is continuous. (ii) The sets Q(t, x)
are independent of x ; i.e., for a given t in G, Q(t, x) = Q(t, x) for all x and x” in X.
(iii) There exist a nondecreasing function u defined on [0, c0) and a nonnegative
function H defined on G x R™ such that the following hold. (a) lim,_, u(8) = 0.
(b) There exists a d, > 0 such that for 6 > Jd,, u(d) = o. (c) For all (¢, x, w) and
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(t,x',w)in 9,
(6.1) |F(t, x, w) — F(t,x",w)| < u(lx — X)) {H(t, w) + K|x — x|?71},

where K is a nonnegative constant.

Note that if F is uniformly continuous on 2, which occurs if & is compact,
then (6.1) holds with H = 1 and u the modulus of continuity, suitably defined
for large values of 9. If F is Lipschitz in x, then (6.1) holds with u(é) = 6,p = 1and
H equal to the Lipschitz constant.

In the linear plant with quadratic criterion problem, we have

f(t, x,w) = A(t)x + B(t)w
and

FOtx,w) = (x, Qx> + <x, P(w) + <w, R(t)w),

where the matrix functions A and B have entries in L,(G) and the matrix functions
Q, P, R have entries that are bounded and measurable. The matrices Q(t) and
R(t) are also symmetric. It is easily verified that (6.1) holds in this problem.

THEOREM 2. Let Assumptions A and C hold. Let {(¢,,u,)} be a sequence of
admissible pairs such that the sequence of trajectories {¢,} converges weakly in F
to an element ¢. Let lim inf J(¢,, u,) < co. Let there exist a constant A such that
for all k

(6.2) [Hill, < 4,

where H\(t) = H(t,u(1)) and | - - - ||, denotes the L -norm, 1 < q < oo. Then there
exists a function u in M such that (¢, u) is admissible and (5.1) holds.

The special case in which v = 1 and the control system is governed by or-
dinary differential equations was treated by usin [2].In [2] we also gave an example
wherein Theorem 2 was applicable, while Theorem 1 was not.

Note that if F is Lipschitz in x, or if & is compact, then (6.2) always holds. In
the linear plant quadratic criterion problem, if all of the controls u, lie in a ball in
[L,(G)]™, then (6.2) holds. Under suitable hypotheses on the matrices P, Q, R,
this will be true whenever {(¢,u,)} is a minimizing sequence. One such set of
hypotheses is that P and Q are positive semidefinite on G and that R is continuous
and positive definite on G.

The proof of Theorem 2 proceeds just as the proof of Theorem 1 does up to
and including the definition of 4;in (5.10). The argument in Step 2 following (5.10)
is different from that of Step 2 in Theorem 1. The reader is cautioned to keep in
mind the order in which various subsequences are chosen.

Define functions ¢; and w; corresponding to y; and 4; as follows:

k

aj(t) = Z o‘ijf(t‘) Z(t)a unj+i(t))a
i=1

(6.3)

k

w}(t) = Z O(ij. O(I’ Z(t)7unj+i(t))'

i=1

The functions o; and w; are measurable. Let fit) = f(t, z(t), u(r)) and f(r)
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= f(t, z{t), u(t)). Then using (6.3), (5.8) and (6.1) we may write

[1o-vjas y i
G

(6.4)

IIA

”M*‘ qu

jﬁm—"m
fa%ﬂ — 2(t))

AH, . {t) + K|z, {t) — 20|~ '} dt.
We next show that there exist subsequences such that

(6.5) o) =) =0, oft)—A)—>0 ae.

We henceforth take the functions in (5.8), (5.10), and (6.3) to be the functions in
these subsequences.

Let ¢ > 0 be given. Since ||H,|, < A for all k, it follows from Holder’s in-
equality when g < oo and from the definition of | - ||, when g = oo, that there
exists an n > 0 and <¢ such that for every measurable subset G' = G with
meas G’ < #,

(6.6) f H,dt <.
.

Since z,(t) — z(t) almost everywhere in G, it follows from Egoroff’s theorem
that there is a measurable set G, = G with meas G, < # such that z, — z uni-
formly on G, = G — G,. Since u(6) — 0 as § — 0, it follows that for k sufficiently
large and all t in G,

(6.7) mlzie) — (1)) < ¢

where ¢ is as in the preceding paragraph.

Let G, = {t:teG,|z(t) — z(t) < do} and let G, = {t:t€ Gy,|z,(t) — z(t)|
> 8o}, where J, is as in Assumption C(iii)(b). Then by Assumption C(iii),
w(zi(t) — z())) < w(d,) forte Gy,
H(zt) — 2(0) = |z(0) — (1) for t€ G,

(6.8)

Since G is the union of the sets G,, G, G, and these sets are pairwise disjoint, it
follows from (6.6)(6.8), and the convergence of z, to z in L, that for j sufficiently
large,

meﬁwmﬁm—amw
G

<o [ Hyeided 00) [ Hyerdi+ [ o =2 de
Gs3

G>
é S{IIHnj+i”q(meaS G)I/p + #(50)} + ”an-!-i - Z”pI|Hnj+i||q
< g[A(1 + (meas G)'?) + u(d,)].
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It also follows that for j sufficiently large,

f Wiz i — iz i — 277 de
G

<o [ Jonuim A0 e 00 [ ey — el
Gy Gj

(6.10) + f |2y, +; — 27 dt
Gy

< e{e?” ' meas (G) + w(do)38™ '} + (I2n,+: — 2I,)°
< e[e?” ! meas (G) + w(5y)85~ " + 1],

where we recall that meas (G;) < < e.

Combining (6.9) and (6.10) with (6.4) we get that for j sufficiently large 6; — ¥;
isin L,(G) and that o; — ; = Oin L(G). We apply similar arguments to w; — 4;
and obtain the existence of subsequences for which (6.5) holds.

We now define a function A by (5.11) as in the proof of Theorem 1. The same
argument that was used in the proof of Theorem 1 shows that A is integrable, that
(5.4) holds, and that 4 is finite almost everywhere.

We now show that (4(t), y(t)) € Q * (¢, z(t)) for a.e. t. Let the set G’ be as in the
proof of Theorem 1. Let G” denote the set of points in G’ at which (6.5) holds.
Clearly, meas G” = meas G.

Let t be an arbitrary point in G”. Since ¥ (t) — y(t), it follows from (6.5) that
o(t) = y(t). From the definition of 1 it follows that there is a subsequence {4 (t)}
which will in general depend on ¢ such that A(t) — A(t). By virtue of (6.5), w(t)
— At). For the corresponding subsequence {a(t)} we still have a(t) — y(t). From
the definition of G”, it follows that for all j and i,

“n,~+i(t) e Q(t, an+i(t)) = Qt, (1)),
the last equality being a consequence of Assumption C(ii). Hence,
(f 08, 2(2), tn, 1 1), £ (2, 2(2), 1 (D) € Q* (2, 2(0)).

Since Q*(t, z(t)) is convex, the points (w (1), o)) belong to Q*(t, z(1)). Since
Q7 (t, z(1)) is closed and (w (1), a (1)) — (A(t), ¥(t)), we get that (A(1), y(t)) € Q * (¢, z(1)).
Since t was an arbitrary point of G”, it follows that (A(z), y(t)) € O *(t, z(t)) a.e.

From this point onward, the proof of Theorem 2 is the same as the proof of
Theorem 1.

We note that if we have z, — z in L, then the argument to establish the
existence of subsequences for which (6.5) holds can be simplified as follows.

If z, - zin L, then since u is nondecreasing we can continue the chain of
inequalities in (6.4) and get

k
[lo,=wiar = Y agptlzg i = 210 (4 + K meas (@)zy . — 2057},
G i=1

Thus o; — ; is in L(G). Since ||z, +; — zll, > 0 and u(d) - 0 as & — 0 we get
that ¢; — ; » 0 in L(G). A similar argument shows that w; — 4; is in L,(G)
and that w; — 4; - 0 in L,(G). Hence there exist subsequences such that (6.5)
holds.
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7. The existence theorem. From the discussion in § 3, it is apparent that in order
to formulate an existence theorem, hypotheses must be made to ensure that a
lower closure theorem holds, that minimizing sequences are conditionally weakly
compact, and that if ¢, — ¢ weakly in &, where {(¢,, u,)} € &, then (¢, u) is in
</, as well as in .o/.

The specification of a subclass .o, involves conditions in addition to (2.1),
such as boundary conditions. Because of the variety of conditions used to define
subclasses .o/, and the variety of special problems and classes of problems, it is
not feasible to formulate one set of hypotheses that will guarantee that (¢, u) is
always in o/ ,. It is also not advisable to formulate a different theorem for each
individual subclass .27, . Instead, the notion of a closed subclass .« is used and the
general existence theorem is stated in terms of this notion, which will be defined
presently. The verification in a particular problem that .2/, is a closed subclass is
to be carried out when the general theorem is applied to that problem.

DEFINITION. A sequence of admissible pairs {(¢,,u,)} is said to be weakly
lower closed in & with respect to J, or simply weakly lower closed, whenever the
following holds. If ¢, — ¢ weakly in &, then there exists a measurable function
u:G — R™ such that (¢, u) is admissible and
(7.1 liin inf J(¢py, u,) = J(d, u),
where J is defined by (2.2).

Theorems 1 and 2 give sufficient conditions for a sequence to be weakly
lower closed with respect to J.

DEFINITION. A subclass o7, of admissible pairs is said to be closed whenever
the following holds. If {(¢,,u,)} is a sequence of admissible pairs in .2/, that is
weakly lower closed and ¢, — ¢ weakly in &, then for at least one u such that
(¢, u) is admissible and (7.1) holds it is also true that (¢, u) € .o7,.

In control problems governed by systems of ordinary differential equations,
the subclasses ./, are often determined by imposing conditions on the trajectories
such as the following. The graphs of all trajectories are required to lie in a certain
compact set. All trajectories are required to have at least one point in a preassigned
compact set. The endpoints of all trajectories are required to lie in a given com-
pact set. As noted in the discussion following Assumption A, the weak convergence
in # of {¢,} in this case implies the uniform convergence of the ¢, in [a, b]. Thus if
o/, is defined by any of the conditions listed above, then ./, will be a closed sub-
class.

For different special classes of problems, different Banach spaces &% are
appropriate. Therefore, in stating the general existence theorem it is not possible
to impose a usable condition that will ensure conditional weak compactness of
minimizing sequences. Specific conditions will be left to specific applications.
We will, however, discuss briefly two important special problems after the state-
ment of the theorem.

If .o/, is a subclass of admissible pairs (¢, u), then .o/, will designate the set
of trajectories ¢ such that (¢, u) € &7, for some u.

We now state our general existence theorem.

THEOREM 3. Let o/, be a closed subclass of admissible pairs such that Z,;
is weakly sequentially compact in & . Let any minimizing sequence in .o/, with weakly
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convergent trajectories be weakly lower closed with respect to J. Then J attains its
minimum on 4.

Proof. The proof of Theorem 3 proceeds as outlined in § 3. Note that for a
minimizing sequence, the number u defined in (3.1) is equal to y defined in (5.2),
so that y is finite.

Theorem 3isa “do it yourself theorem’ in the sense that we have not specified
conditions for .o, to be a closed subclass or for .7, to be weakly sequentially
compact. As already noted, the present problem is too general for this to be done
in a sensible manner. These conditions must therefore be supplied when problems
that are more specialized are attacked. Theorems 1 and 2, however, do give usable
and verifiable sufficient conditions for minimizing sequences with weakly con-
vergent trajectories to be weakly lower closed. These theorems constitute the
principal contribution of this paper.

We now discuss criteria for weak sequential compactness of .7, in problems
governed by systems of ordinary differential equations and in distributed param-
eter systems.

First consider control problems governed by systems of ordinary differential
equations. Here v = 1 and the appropriate space & is H}(G) = H}([a, b]), where
we take each equivalence class of functions in H}(G) to be represented by its
absolutely continuous member. As usually stated, existence theorems for such
problems involve a “growth condition’ that ensures the conditional compact-
ness in C([a, b]) of any minimizing sequence of trajectories {¢,}. Actually, the
growth conditions imply the equiabsolute continuity of the sequence of integrals
{[£ ¢rdt} . Sincev = 1, this implies that the sequence {¢,} is conditionally compact
in C([a, b]). The equiabsolute continuity of the integrals j £ Pi dt, however, also
implies the conditional weak compactness in H]([a, b]) of the sequence {¢,}.
In [6] Cesari introduced the following condition guaranteeing the equiabsolute
continuity of the sequence {¢,}. It is assumed that f° = 0. For every ¢ > 0 there
exists a nonnegative integrable function , on [a, b] such that | f(t, x, w)] < Y (1)
+ £Ot, x, w) for all (t, x, w) in 2. For generalizations and further discussions of this
condition see [6] and [9].

In distributed control problems it is appropriate to consider functions ¢
in H;(G) or functions whose components ¢' are in HY(G), i =1,---,j. Thus
F = H}(G)or # = {= L H3(G). If all p; > 1, the conditional weak compactness
in # of {¢,} is ensured merely by requiring that the sequence {||¢,||} be bounded.
(Recall that || - || denotes the norm in £#.) If for some index i we have p; = 1, then
to ensure conditional weak compactness we need to assume that the various
integrals

fD“¢;;dt, 0| <s, EcG
E
are equiabsolutely continuous. For those indices i such that p; > 1, the bounded-
ness of the sequence of norms {||¢||;} is required, where || - ||; denotes the norm in
H3(G). For further details see [S] and [7].

Throughout this paper we have assumed that the sets Q *(t, x) are convex.
If the sets Q*(t, x) are not convex, one can replace the original problem with a
“relaxed problem’ in which the vectors (N¢)(t) lie in co Q7 (¢, x). The relaxed
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problem is cast as a new control problem in which the set that plays the role of
Q7 (t,x) is convex. An existence theorem for the relaxed problem is then easily
obtained. For details see [6] and [7].
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A GENERALIZATION OF CHOW’S THEOREM AND THE
BANG-BANG THEOREM TO NONLINEAR CONTROL PROBLEMS*

ARTHUR J. KRENERY

Abstract. The main results of this paper are two-fold. The first, Theorem 1, is a generalization of the
work of Chow and others concerning the set of locally accessible points of a nonlinear control system. It
is shown that under quite general conditions, this set lies on a surface in state space and has a nonempty
interior in the relative topology of that surface.

The second result, Theorem 3, generalizes the bang-bang theorem to nonlinear control systems
using higher order control variations as developed by Kelley and others. As a corollary we obtain
Halkin’s bang-bang theorem for a linear piecewise analytic control system.

1. Introduction. Consider the control system

(1 X = f(x(0),ur), x(0)=x°  ur)eQ,
where x = (x,, ---, x,) are coordinates of the state space, M is a paracompact
n-dimensional manifold, u = (u,, ---, ) is the control, x° = (x9,---, x?) is

the initial state, Q < R*is the set of admissible controls, and f is an n-vector-valued
function. We assume that x; = t so that the first coordinate of f is identically 1;
also we assume that f'is C* with respect to x,, - -+, x,, 4, - - - , 4, and piecewise
C* with respect to x,. We require that u(t) be a piecewise C*-function of t = x,.
The requirement of C* differentiability is not essential, it is only to avoid counting
the degree of differentiability required in any argument. The tangent space to M
at x is denoted by M ... A control u(t) defines a vector field, f,(x) = f(x, u(x,)) on M ;

and given two controls u(t), v(t), we can define a new vector field by means of the
Lie bracket,

@) 9,

U i) = Lo 10~ &

.
0x
where (0f,/0x)(x) is an n x n matrix of partial derivatives at x.

A slight problem arises since f,, f, are only piecewise C*-functions of x,,
but at those values of x; we can consider (2) as either undefined or as double-
valued by taking left and right limits. Since the difficulties that arise because of this
can be dealt with by simple but lengthy arguments, we shall ignore them.

() fu(x),

2. Integrability and semi-integrability. The set, V(M), of all C®-vector
fields on M is a module over the ring, C(M), of all C*-real-valued functions with
domain M, with addition and multiplication defined pointwise. With the definition
of the bracket (2), V(M) becomes a Lie algebra of infinite dimension over the field,
R. Suppose H is a submodule of V(M). We define H, = {f(x):f e H}. Let U be
an open subset of M and L a submanifold of U . L is an integral manifold of H in
U if L is connected and H, = L, for all xe L (L, is the tangent space to L at x).
An integral manifold of H in U is always contained in a maximal integral manifold
of Hin U. H is integrable on U if there exists a partition of U by maximal integral
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manifolds of H in U. For H to be integrable on U a necessary condition is that H
restricted to U be a subalgebra of V(U). If, in addition, H satisfies one of the follow-
ing then H is integrable on U;

(i) Frobenius. The dimension of H, is constant for all xe U.

(i) Hermann [9]. H 1is locally finitely generated, that is, for all x € U, there
exists a neighborhood ¥ < U of x such that H restricted to V'is the C(V) span of a
finite number of vector fields of H. (Lobry [14] has a slightly weaker form of this
condition.)

(i) Nagano [16]. M is a real analytic manifold and H is a subalgebra of the
Lie algebra of real analytic vector fields on U.

If H is a submodule but not a subalgebra, then there exists a smallest sub-
algebra containing H, which we denote by DH. We can construct DH as follows.
We define D°H = H and D*H = D*"'H + [H, D*"'H]. For example, D'H is
the submodule of all linear combinations of vector fields of H and Lie brackets of
vector fields of H with coefficients from C(M). DH is the union of this ascending
sequence of submodules.

Suppose U is an open neighborhood of x° = (x9, ---, x2). Then we split U
into two open halves,

Ut ={xeU:x; >x}} and U~ ={xeU:x, <x}}.

The control system (1) is locally semi-integrable if for all x° € M, there exists an
open neighborhood U of x° and submodules H*, H™ of V(M) such that

(i) HY =span{f(x,u):ueQ} =< M, for all xe U*,

H; =span{f(x,u):ueQ} < M, for all xe U~.

(i) DH* and DH ™ are integrable on U with maximal integrable manifolds
L* and L~ in U containing x°.

Suppose u(t) is an admissible control and y,(s)x is the family of integral curves
of the vector field f,(x), that is, y,(0)x = x and (d/ds)y,(s)x = f,(y.(s)x). We define
the set /(x°, U) of all points accessible from x° in U as {y,(s)x°:s = 0, u(t)e Q,
and y,(r)x° e U for all r € [0, s]} and the set €(x°, U) of all points controllable to x°
in U as {y,(s)x°:s < 0, u(t) e Q, and y,(r)x° € U for all re [s, 0]}.

If (1)is locally semi-integrable in U, then it is easily shown that «/(x°, U) < L*
and 4(x°, U) < L~.

We now raise the question whether o/(x°, U) is “thick” in L™, i.e., whether
#/(x° U) has any interior as a subset of L*. The answer is affirmative as the
following generalization of the work of Chow [2], Lobry [14], and Sussmann and
Jurdjevic [19] shows.

THEOREM 1. Assume (1) is a locally semi-integrable control system and x°,
U,L" and L™ are as above. Then the L*-interior of o(x°, U) and the L~ -interior
of €(x°, U) are nonempty.

Proof. In theorems of this type we shall only prove one assertion since the proof
of the other is identical. We construct inductively a sequence of maps ¢;: V"’
— o/(x° U) € L* defined on a sequence of open sets ¥/ = R/ such that the
image N’ = ¢ (V) is a submanifold of dimension j. We continue until j equals the
dimension of L*.

Choose any control, say u'(t) = (ul(t), -- -, u}(t)), and let f,(x) be the vector
field fi(x) = f(x,u'(x,)). Let 6 > 0 such that the integral curve s;+ y,(s,)x°
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of f; is C® for s, €(0,8). Let V! =(0,8) and ¢,(s;) = 7,(s;)x°. Since the first
coordinate of f; is identically 1, the image N! = ¢ (V') is a one-dimensional
submanifold of L*.

Suppose we have constructed N'~' = ¢;_(V/™') and j < dimension of
L*. Choose xe N’ ! and a control u/ such that fj(x) = f(x,u/(x,)) ¢Ni™', the
tangent space to N~ ! at x. This can always be done, for if not, then for all xe N/~ !
and for all ue Q, f,(x) e NS~ '. This implies that H, < N~ ! for all xe N'~!, and
the set of vector fields on N'~!, V(N7 !), is an algebra ; therefore DH restricted to
N’~'is contained in V(N’~'). But this implies that j £ dimension of L* = dimen-
sion DH, < dimension of Ni™! =j — 1.

By passing to a smaller ¥/~ ' and N~ ! we can assume that f{(x) ¢ N~ ' for all
x e N/~ ! and also for some & > 0, the integral curve of f; starting at x satisfies
yis)xe U for all xe N'" ' and 0 < s; < 8. We define ¢(s,, -+, 5;) = 7,(5)0;_,
(g, 5 8j-1), VI=V/"1x(0,8) and N/ = @ (V') = «(x° U). The Jacobian
(0@;/0s)(sy, -+, 5j—1,0) is nonsingular for every (s, -+, s;_;) € Vi~1 and hence
for 6 sufficiently small ¢;:V/ — N/ is a difffomorphism. Q.E.D.

Example 1. Suppose M = R? and consider the control system %, = 1,
X, = u-g(xy), |lu £1, where g(x,) is a C*-(or pwC®)-function satisfying g(x,)
= 0if x;, < 0 and g(x,) > 0 if x, > 0. The system is locally semi-integrable ; for
example, if x° = (0,0), then we take U = M, H* = DH" = V(M), L* = M,

A(x°,U) = {(xuxz):)ﬁ 2 0,[x, = f g(xy) dxl}a
0

I (1™
H =DH™ = {( 0 ):h(x)eC(M)},

L™ ={(x,,0):x,eR} and %(x°, U)= {(x,,0):x; <0}.

The system x; = 1, X, = u- g(x,) is not locally semi-integrable.

Example 2. Suppose M = R* and %, = 1, X, = ux,, |u| < 1. The submodule
H = {(h,(x), x,h,(x)):h(x)e C(M)} is an integrable subalgebra and carries the
system everywhere; that is, for each xe M, H, = span {f(x,u):|x] < 1}. It
partitions M into 3 integral manifolds:

L' = {(xy, x,):x, > 0}, L? = {(x;,X,):x, = 0}
and

L3 = {(x;,x,):x, < 0}.

Suppose x° = (0,1)eL'. Then U=M,H* =DH*=H =DH =H,L"
=L =LY o(x%U) = {(x;,x):x; 2 0,e ™ < x, £ e} and €(x°, U) = {(x,,
X;):x; £0, e Sx,<e ™} If x°=(0,00eL? then U=M, H" = DH*
=H =DH =H,L" =L =L* o4(x°U) = {(x;,0):x; =0} and C(x°, U)
= {(x;,0):x, < 0}.

Example 3. Suppose M = R® and %, = 1, X, = u, X3 = ux,, [ul < 1. Let
f1(x), f_(x) be the vector fields corresponding to the constant controls u = +1.
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Let H be the submodule which is the C(M) span of f, and f_, . There is one linearly
independent bracket

0

fif=1](x) = 0],
-2

soDH is spanned by f1, /-4 and Ufisf-11 The integrable manifold of DH through
any point x°is M. The sets A(x°% M) = {y,(s 1(s2)71(s1)x%:s; = 0} and €(x°, M)
= {pi(s3)y_ 1(s2)y1(s)x :s; < 0} both have nonempty interior.

3. The bang-bang theorem. Henceforth we shall consider the system

3)
X(O) = xO, ui(t) g Oa Zui(t) =

where a,, - - -, g, are vector-valued functions C* with respect to x,, ---, x, and
piecewise C* with respect to x; = t. The controls, u(t), are piecewise C*-functions
of t = x,, lying in the compact convex set Q = {u:u; 20, Y u; = 1}. We let E
denote the set of extreme points of Q. E is the set of unit vectors, (0, ---, 0, 1,0, -- -,
0), in R*. We call Q the set of admissible controls and E the set of bang-bang
controls. We alter our notation to distinguish between the set of points, .o7(x°
U, Q), accessible in U from x° by admissible controls, and the set of points, .oZ(x°,
U, E), accessible in U from x° by bang-bang controls. We adopt a similar conven-
tion regarding %(x° U, Q) and %(x° U, E). The bang-bang question is, under
what conditions is it true that «/(x°, U, E) = «/(x°, U, Q) and 4(x°, U, E) = (x°,
U, Q). It is well known that &(x° U, E) < #(x° U, Q) < closure #/(x° U, E)
and 4(x°, U, E) < 4(x° u, Q) < closure €(x°, U, E).

THEOREM 2. Suppose (3) is locally semi-integrable and U, L*, L™ are as above.
Then L*-interior 2/(x° U, E) = L*-interior &/(x°, U, Q) and L™ -interior %(x°
U, E) = L™ -interior €(x°, U, Q).

Proof. To simplify the proof we restrict (3) to a control system on the manifold
L™, in other words we take M = L™*. Clearly interior «/(x°, U, E) < interior
A (x° U,Q). To show the opposite inclusion we let x e interior 2/(x°, U, Q).
We choose an open connected neighborhood V of x such that V < interior .«/(x°,
U, Q). The set of vector fields {f,:ue Q} and {f,:ue E} generate the same sub-
module H and hence by Theorem 1, %(x, V, E) has a nonempty interior. Let y €
interior 4(x, V,E) < V < (x° U, Q) < closure /(x° U, E). Then there is a
sequence y™ e .«/(x°, U, E), such that y™ converges to y. For m sufficiently large,
y™ e interior %(x, V, E), so y™ is bang-bang accessible from x° and bang-bang
controllable to x. This implies x € #(x° U, E). Q.E.D.

From Theorem 2 it is clear that «/(x°, U, E) will equal «/(x°, U, Q) if every
admissible trajectory which does not come from a bang-bang control goes to
an interior point of /(x° U, Q). To decide when this will happen we study the
effect of control variations.
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Let w/(x,) be an admissible control, fi(x) = ) ul(x)a(x) and y(s)x be the
family of integral curves of fj(x) for j = 0, 1. Suppose as we approach x = y,(s)x°
e A(x°, U, Q) using the control u°, we replace u® with u' for r units of time. The
result is a trajectory whose endpoint is y,(r)yo(s — rx® = y(r)yo(—r)x. If we
vary r through small nonnegative values, we obtain a C*-curve q(r) = y,(r)yo(—r)x
satisfying ¢(0) = x. To compute the derivative from the right at 0, we define

qro,ry) = y1(r)yo(—ro)x. Then

dg(0,) _ 04(0)  dq(0)

dr — or, ary = f1(x) — fo(x).

If we continue to x' = y,(s,)x° e . (x°, U, Q) using the control u°, we can
define a new curve q(r) = yo(s; — s)p(r)yo(—r)x. This is also C* for small non-
negative r and ¢(0) = x!. The derivative from the right at 0 is

dq(0.,)

(4) o = Tols = 9),(i(x) = folx)),

where yo(s; — s),, is the tangent space map induced by the map x+ yq(s; — s)x.
If fo(x) and f,(x) are C* in a neighborhood of the trajectory joining x and x', then
(4) can be expressed ina Taylor series,

dq & m et
Z ad (Jo)(f1 = fo(x1) + Us = s)

m=

)

where
ad®(fo)(f1 = fo)(x') = fi(x") — fo(x1),
ad™(fo)(f1 = fo)(x") = [fo. ad™ (fo)(fi = f))(x")

and O(s — s,)"* ! is an error term of order (s — s,)"* 1.

The second type of control variation is similar to the one introduced by

Kelley [11].

Suppose u®,u',u? u® are admissible controls such that u® = Qu' + u?
+ u?)/4. Then fo = (2f, x)+f2(x)+f;(x )/4 For ease of notatlon we
introduce another control ut =u' so u® = Q1 w4 folx) = Qo fix)/4

0

Consider the control modification p(r) made at x + y(s)x”, where p(r) = y,(r)

<3(r)y2(r)y 1 (F)y o — 4r)x.
To compute the first two derivatives of this curve, we introduce new variables
ro = —4r,ry =r, = ry = r, = r and use the chain rule

dP(O ) _ idr p(0)

/Vi

= [1(x) + f5(x) + f3(x) + falx) — 4fo(x) = O,

d’p(0.) _ i dr;\ ?2*p(0) + 5 dr; dr; *p(0)
dr? Lo \dr)  or? o<iTjca dr dr Ordr;

42y dndn g

Ox - o<icjca dr dr 0x -

filx)
(25 /3] ().
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Since dp(0,)/dr = 0, the curve q(r) defined for small nonnegative r by ¢(r?/2)
= p(r) is C' and dq(0,)/dr = d*p(0,)/dr*. We can pull this control modification
along to x' = y,(s,)x° as before and obtain

h
(6) yolsy — 9),[fa, f3](x Z dm(fo)[fz,fs](x )+ Os — s, "1

Notice that if we reverse u? and u® in defining p(r), we obtain y,(s — 8)Lf3,
S21(x) = —volsy — 8).[f2, f31(x).

The last type of control modification which we consider is to stop short of x'
or continue on past x'. These lead to curves q(r) = y4(x; + r)x° = yo(+r)x?,
whose derivatives are

dr

Let K be the convex cone in L}, generated by the vectors of the form (4),
(6)and (7), for all 0 < s < s, and admissible controls u/(t), i = 1,2,3. We say the
trajectory of u® between x° and x' is singular if K . is a proper subset of L};. This
definition is different from the usual one stated in terms of the maximal principle
(see Gabasov and Kirillova [6] and Hermes [20]). Since t = x,, the usual one is
equivalent to the following: the trajectory is singular if the cone generated by the
vectors of the form (4) and (7) is a proper subset of M,.. There are of course less
singular controls under our definition. It can be shown, using the standard methods
(implicit function or fixed point theorem), that if K ., = L}, then x* € L* -interior
2(x°, U, Q) and so is bang-bang accessible. It follows then that .o7(x°, U, E) will
equal =/(x° U, Q) if the only singular trajectories are bang-bang. Consider the
following examples.

Example 4. Let M = R* and X = ua, + (1 — u)a,,0 < u < 1, where

=+ folx").

1 1
a;(x) =11 and a,(x) = [—1
X2 — X2

H is the C(M) span of a, and a, and since [a,,a,] = 0, DH = H. The integral
manifold of H through x° = (0,0,0) is L = {(x,, x,, x3):x3 = (x,)?}. Let u°()
= 1/2 and x! = yy(s,)x° = (s,,0,0). The cone K., generated by +(1/2)(a,(x")
+ ay(x1), (ay(x') = ag(x"), and (a,(x") — ao(x')) = (ag(x") — a,(x")) equals L,
so the trajectory is not singular in our sense. However, K, is a proper subset of
M ., and so the trajectory is singular in the usual sense. Notice that x' is bang-bang
accessible, x! = y,(s,/2)y,(s,/2)x° or any other bang-bang trajectory that uses a,
and a, each a total of 5,/2 units of time.

Example 5. Let M = R* and X% = u,a,(x) + uya,(x) + usas(x), u; =0,
Y u; = 1, where

1 1 1
—1/2 1 0
al(x) = . 1/2 > az(x) = 0 > a3(x) = 1 B

—X,/2 0 X,
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0 0 0
0

la;,a,](x) = 0 ,» lag,a3](x) = 0 , lay,as3](x) = 0 >
1/2 —1/2 1

and all other brackets are zero.

DH is of dimension 4 everywhere so the integral manifold of DH through
x% = (0,0,0,0) is exactly M. The control u® = (1/2, 1/4, 1/4) gives rise to the
vector field

Jolx) =

(=Nl -]

and [ fy,a;] = 0.If x* = y,(s,)x° = (s,, 0,0, 0), then the cone generated by control
variations of type (4) and (7) is a linear space of dimension 3, since the trajectory
is singular in the usual sense. If we add the variations of type (6), we see K. = L,
= M, and so is not singular in our sense. Notice that x' is bang-bang accessible,

x! = V3(51/8)V2(51/8)?’1(51/2)V2(51/8)V3(51/8)X0~

A subsystem of (3) is a system obtained by restricting the control u(t) to lie on
one of the faces of Q, that is, if I is a subset of {1, - - -, k} the subsystem specified by I
is given by requiring u,(t) = 0 for i ¢ I. We consider Q a face of Q, so that (3) is a
subsystem of itself.

THEOREM 3. Suppose for every subset I of {1,---, k}, the subsystem specified
by I is locally semi-integrable. Let U be a neighborhood of x° and H* and L™ be the
submodule and integral manifold which carry the subsystem specified by 1 on U™.
If there exists h > 0 such that

(i) D"H} = DH] forall xeL*,
(ii) givenanyijel,j=1,---,4,and anym,1 < m < h, there exists a function
u(x) = 0 such that for all xe L™ either

ad™(a;,)[a;,, a;,)(x) = p(x)ad™(a;,)[a;,, a;,](x) mod D"H

i %y

or

ad"(a;)[a;,, a,)(x) = p(x)ad™(a,)[a;,  ,)(x) mod D"H,

iy ¥y

then o/(x°, U, E) = o (x°, U, Q).

Proof. Let I = {1,---, k} and u'(t), ---, u™(t), v'(t), ---, v"™(t) be controls
lying in the interior of Q, thatis, 0 < ul(t) < 1and 0 < vi(t) < 1 forj=1,---,m,
i=1,--, kLetf{x) = Y¥_  wix)afx)and gx) = )¥_, vl(x;)a(x). By induction
onm < h, we show there exists a A(x) > O such that

[y Unlasa]) - 100 = AX)[gy - [gnlay,» )] -+ J(x) mod D"H .

It is trivial for m = 0 and it follows immediately from (ii) for 1 < m < h.
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Thereforeifu®(t)liesin the interior of Qinsome neighborhood of x! = y,(s,)x°,
then D"H, is spanned by the vectors

a{(x"), [a;, a;](x"), ad'(fo)la;, a)(x"), -+, ad" ™ (fo)las, a;](x"),

for 1 £1i,j < k. But the cone K, contains + fy(x'), a(x"') — fo(x"), and

h—1 m

y O el + s - 5
forall 1 £i,j < k and small s — s; < 0. Hence, K. equals D"H/, = DH},. This
implies x' € #(x°, U, E).

If u®(t) is not interior to Q at x! but is interior to some face of Q of dimension
=1, then we repeat the above argument for the subsystem generated by that face.
The controls that lie on faces of dimension 0 are bang-bang controls. Q.E.D.

There is a bang-bang controllability version of Theorem 3 that assumes the
same hypothesis except H™ and L~ replace H* and L* in (i) and (ii). Together
they yield a global result.

COROLLARY 4. Suppose for all xe M, there exists a neighborhood U of x such
that o/(x,U,E) = o(x,U,Q) and ¥(x,U, E) = %(x,U,Q). Then «(x°, M, E)
= A(x°, M, Q) and €(x°, M, E) = ¥(x°, M, Q).

Proof. Suppose u°(t) is an admissible control. We must show y,(s)x° e «/(x°,
M, E) for all s 2 0. Let s = inf{r = 0:y0(s)x° ¢.24(x°, M, E)} and x = y4(s)x°.
If x e /(x° M, E), then by hypothesis there existsan ¢ > Osuch thatforallr e [0, ¢),
Por)x = po(r + s)x° € #(x, M, E) = o4(x°, M, E). This contradicts the definition
of s. If x¢ 2/(x° M, E), then there exists ¢ > 0 such that for all r € (—e, 0], y,(r)x
= 7,(r + s)x° € €(x, M, E). By the definition of s, for small r, y,(r + s)x° € .o#(x°,
M, E) so x € /(x° M, E). This is a contradiction.

CoRrOLLARY 5 (Halkin—Levinson). Consider the linear control system defined
on M = R" by

(8) X = F(t)x + G(t)v + h(t),

where F(t), G(t) are matrices, h(t) is a vector of piecewise analytic functions and
the control v(t) = (v(t), -+, v,(t)) is a piecewise analytic function satisfying
lvft)] £ 1. If x is accessible from x° by an admissible control, then x is accessible
from x° by a piecewise analytic bang-bang control v(t), where |v(t)| = 1.

Proof. Let a,(x), ---, a,(x) be the right side of (8) for the finite number of
constant controls satisfying |v,(t)] = 1. Then (8) can be put in the form (3) and
each of the ax) is piecewise analytic. It follows that every subsystem of (3) is
locally semi-integrable. By direct computation it is easy to show

ad™a;,)[a;,,a;,](x) = ad™a;,)[a;,,a;,](x) forallm=1,2,3,---,

and for any x° there always exists a neighborhood, U, of x° and h > 0 such that
D'"H! = DH} forall xe U* and D"H, for all xe U™, so the result follows from
Theorem 3 and Corollary 4. Q.E.D.

Notice that Examples 4 and 5 satisfy the conditions of Theorem 3. As a
counterexample, consider this one taken from Filippov [5] as modified by Lobry
[14].
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Example 6. Let M = R, X = ua, + (1 — w)a, and 0 < u < 1, where

1 1
a(x)= |1 —x3|, ay(x) = |1 — x3|,
1 —1
0 0
lay,a2](x) = |=4x5|,  [aylay, a,]](x) = [aza;,a,]](x) = (-4
0 0

Condition (ii) of Theorem 3 fails and the point (1, 1, 0) is accessible from (0, 0, 0)
by the singular control u = 1/2, but is not bang-bang accessible (see Filippov [5]).

Acknowledgment. The author wishes to acknowledge many fruitful conversa-
tions with Professors S. P. Diliberto and H. J. Sussmann, and also the many helpful
suggestions of the referee.
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SOME RESULTS ON MAX-MIN PURSUIT*

JAMES FLYNN¥}

Abstract. A pursuer P and an evader E are confined to a subset # of the Euclidean plane. E whose
speed is bounded by w > 1 wants to maintain the greatest possible distance between himself and P
whose speed is bounded by 1. We will show that if . is a half-plane or a circle, then E can prevent the
distance | PE| from falling below its initial value only if he has a strategy under which | PE| stays constant
whenever P moves at maximum speed along a polygonal path. We use this result to characterize d*,
the least upper bound on the values of |PE| that E can maintain for the case of pursuit in the circle.

Introduction. A pursuer P wants to get close to an evader E, who wants to
stay away. The players are confined to a subset .# of two-dimensional Euclidean
space, P moving with speed bounded by 1 and E moving with speed bounded by
w = 1. P is required to select his trajectory before play begins, while E is allowed
to use a strategy; that is, E can continuously observe P and select his trajectory
as a function of his observations. However, E is required to tell P his strategy, and
P can use this information in selecting his trajectory. We are faced with the follow-
ing question. Given a specific starting position, what is the largest value of | PE|
that can be maintained by E? We attempt to answer that question by considering
the following one. Under what conditions can E prevent the distance |PE| from
decreasing?

We obtain the following result when % is a half-plane.

(A) If E can keep | PE| from falling below its initial value whenever P moves
at maximum speed along a polygonal path, then E can do so by using an isometric
strategy ; that is, a strategy under which E keeps the distance | PE| constant until
an escape position is reached.

(The fact that condition (A) deals only with the case where P is restricted to
trajectories in which he travels at maximum speed along a polygonal path involves
no essential loss of generality (see Remark 2).)

In a sense, the arguments which we use to establish (A) for the half-plane are
unnecessarily long. One can, in fact, use the results of Isaacs [5, §9.5.2] to develop
shorter ones. Unfortunately, the shorter arguments do not work for the circle. Since
our main interest is in the circle, we prefer longer arguments which are more
general.

To describe our results for the circle, we need the notion of stable position.
Let O denote the center of the circle. Any position where P lies on the radius
through E and satisfies |OP| = (1/w)|OE| is said to be stable. The main reason for
the importance of such positions is that P can always force the play into a position
which is approximately stable (see Remark 7).

We show that (A) holds for stable starting positions when % is a circle. We
use this result to characterize d*, the least upper bound on the values of | PE| that E

* Received by the editors July 21, 1972, and in revised form December 12, 1972.

+ University of Chicago Graduate School of Business, Chicago, Illinois 60637. This research was
supported in part by the Office of Naval Research under Contract N00014-67-A-0112-0053 (NR-042-
267) at the Statistics Department, Stanford University.
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can maintain. One can use our characterization to obtain numerical values for d*.
We use it to obtain bounds (see Theorem 4).

We wish to thank L. Dubins and D. Blackwell for introducing us to these
problems. A version of the problem of pursuit in the half-plane appears in Isaacs
[5, pp. 260--265]. Apparently Isaacs was the first to suggest that the problem be
generalized to a circle [5, pp. 265,270]. Our results, however, owe more to the work
of Gerald J. Smith [8] which dealt with the problem of pursuit in the circle. Smith
attempted to establish result (A) for the circle. He also used (A) to characterize d*.
Some of our arguments are borrowed from him. Other results on pursuit in the
half-plane and pursuit in the circle appear in Flynn [2], [3].

1. Formulation. Let R represent the real numbers and let R? represent the
space R x R with the metric determined by the norm | - ||, where ||(r;,r,)]|
= (r] + r3)!2. Denote the time axis [0, ©0) by T. Define

P(p) = {plp:T > #,p0) = p and |[jp(t) — p(t")]| = [t = ¢"|
forall¢t" ET} forpe?,
E(e) = {ele:T - &,e(0) = ¢ and |le(t') — e(t")] < wllt' — "]

(1) forallt',t"eT} foree?,
P= U P(p), E= U Ee)
pes ced
and

P(e,p) = inf |e(t) — p(t)] for(e,p)eE x P.
teT

P(p) and E(e) are the sets of pursuit and evasion trajectories, respectively, originat-
ing from the positions p and e, while Z(e, p) is the payoff from P to E when P
follows p and E follows e.

We define strategy as in Ryll-Nardzewski [7, pp. 113-126]. Let (e, p)e & x &.
A mapping :P(p) — E(e) is an evasion strategy at (e, p) if it satisfies the information
constraint: If p’, p” € P(p) satisfy p'(t) = p"(¢t) for 0 < t < t, then 5(p')(¢) = n(p")(t)
for 0 =t = t'. Denote by Hf(e, p) the set of all evasion strategies at (e, p). Define

) V(e,p) = sup inf 2(1(p),p).
neH(e,p) peP(p)
We call V(e, p) the max—min value at (e, p).

Remark 1. As stated in the Introduction (see paragraph 1), we want to deter-

mine when the following situations arise :
(I) V(e’p) = ”e - p”a

(5 V(e,p) < lle — pl.

(Observe that V(e, p) < |le — p| always holds.)

In this paper we shall have occasion to refer to the derivatives of various
quantities with respect to time. We will always have in mind the forward or right-
hand time derivative. Whenever such a derivative exists we will represent it by the
usual “dot’ notation. An object’s speed will, of course, always refer to the norm
of its right-hand velocity vector. Define
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(3a) P*(p) = {p € P(p)|p is piecewise linear and |p(t)|| = 1,te T} forpe¥
and

(3b) Px= U P(p).
pes
P*is the set of pursuit trajectories under which P travels at maximum speed along
a piecewise linear path. Remark 2 tells us that P* is almost as good as P.
Let pe . One can show that for every positive integer n, there exists an
approximation mapping o" from P(p) to P*(p) satisfying

4) sup sup [[o"(p)(t) — p(1)| = 1/n,
peP(p) teT
such that if p’, p” € P(p) and p'(¢) = p"(¢) for 0 < ¢t < ¢, then o (p')(t) = «"(p")(1)
for0<t =t
Remark 2. If the strategy n* € H(e, p) satisfies

) P*(p),p) = lle — pll,  peP*(p),

then the strategy defined by the composition of n* and the approximation mapping
o satisfies

(6) Pn*(«'(p).p) Z lle — pll —1/n,  pe P(p),

for n=1,2,.--. It follows that the existence of such an #* is sufficient for (I)
(see Remark 1).

The above remark justifies the following assumption.

Assumption 1. P is restricted to p e P*.

2. The half-plane. In this section we consider the case where . is a closed
half-plane # in R? with the line %, in R? as its boundary. After determining
conditions under which (I) and (IT) hold (see Remark 1), we will establish result (A).

Let &, be a line perpendicular to %, at some arbitrary point O. Set up a
rectangular coordinate system where O is the origin, the coordinate axes are
&, and ¥, and # coincides with the first and second quadrants. Positions of
P and E are represented by points p = (p,, p,) and e = (e,, e,), respectively (see
Fig. 1).

Let s, —m < s < =, denote the angle that PE makes with %, (we give s
the same sign as e; — p;). Whenever P’s and E’s right-hand velocity vectors
exist, let ¢ and  denote the respective angles which these vectors make away from
thedirection PE, — 7 < ¢,y < n.Theseanglesare positive when they are measured
in a counterclockwise arc, e.g., all the angles are positive in Fig. 1. Evidently,
whenever P and E travel at maximum speeds, we have

P, = sin(s + ¢), p, = —cos(s + ¢),

€ =wsin(s + ), &, = —wcos(s + ¥).

)

Assumption 2. We will always assume that play starts in a position (e, p)
eAH x H,where |p — e|| > 0, and s = 0. There is, of course, no loss of gener-
ality in making such an assumption. We will also assume that w > 1. (The case
w = 1 is left as an exercise for the reader.)
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(e, .e;) e,
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Define

@®) B = arcsin (1/w).
We say that P corners E whenever the game is in a position where e, = 0 and
|s| < B. The reader should verify that whenever P corners E, P can force a decrease
in | PE| by heading directly towards E (see Isaacs [5, pp. 260-264]). Hence (II) holds
at any position where P corners E.

We are going to show that (I) is equivalent to the existence of an isometric
strategy for E, that is, a strategy under which | PE| stays constant until an “‘escape”
position is reached whenever P uses a trajectory in P*. Formally, an isometric
strategy is any evasion strategy under which E follows the isometric rule (described
below). We define the isometric rule by describing its consequences. For the
present we do not worry about whether it is a valid rule, e.g., whether it satisfies
the information constraint (see paragraph 2 of § 1).

The isometric ruleis that method of play for E under which the following holds
when P selects p e P*: E travels at maximum speed along a path with a piecewise
continuous derivative, such that if

[s@)] = B,
we have
e,(t) = wsgn(s(r)), e,(t) =0,

while if

9) e)t) >0, [s() < B,

we have

cos Y(t) = (1/w) cos ¢(t),

(10)

>0 ifs(t) =0,
'/’(t){ <0 ifs(t) <0.
The next lemma follows from the arguments of Isaacs [5, pp. 261-264].
LemMa 1. If E follows the isometric rule, then as long as (9) holds we have

Ip(t) — e@®)l = lp — ell,
(11) é,(t) = (w? — cos? @(t))*/* sin s(t) — cos ¢(t) cos s(t),
$(t) = [(w? — cos® ¢(1))'/* — sin ¢(t))/[[p — e|| > 0.
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Also if for some t,,
s(to) Z B,
then
p(t) —e®ll = llp —ell, t2¢.

(Observe that || p(t) — e(t)|| approaches oo in this case.)

Remark 3. At first it appears that the isometric rule is not allowable. Certainly
we cannot define a strategy directly by rule (10) without violating the information
constraint. Fortunately, we can get around this problem by exploiting the fact
that (10) is required to hold only when p € P* (see Assumption 1). The proof of the
next lemma is left to the reader.

LEMMA 2. E can follow the isometric rule.

Given that E follows the isometric rule, P’s objective is to select a p e P*
which corners E. We have the following lemma.

LemMA 3. If E follows the isometric rule, then P can corner E only if he can do
so with a trajectory p which satisfies

(12) 0 < ¢(t) < arc cos (w sin s(t))

until cornering takes place.
Proof. By Lemma 1, $(t) > 0. Hence we want a p for which é,(t) = 0. This
gives us the condition

(13) |p(t)] < arccos (wsins(t)) < n/2.

Consider any ¢(t) < 0 which satisfies (13). Lemma 1 implies that — ¢(t) is better
since it gives the same value of é,(t) and a smaller value of $(¢). The result follows.

Now we need a notion of convexity. We say thata pursuit trajectoryp = (py,p,)
is convex on an interval T, = T if (a) p,(-) is a monotone function on T,, and
(b) the set U,r {(p,(t), p2)lp2 = Po(1)} is convex. A similar definition holds for
evasion trajectories. (We will omit any specific reference to T, whenever its identity
is clear from the context.)

Lemma 3 implies that P can limit himself to trajectories which satisfy (a)
above. That P can restrict himself to convex pursuit trajectories is more difficult
to establish. The proof of the next lemma takes up § 3.

LeEMMA 4. If E follows the isometric rule, then P can corner E only if he can do
so with a convex p which satisfies (12) until cornering takes place.

We need one more lemma.

LEMMA 5. If P uses a convex p for which ¢(t) = 0, t € T, while E follows the
isometric rule, then E’s trajectory e is convex on the interval [0, t,] where t, denotes
the first time that condition (9) fails.

Proof. We assume that P’s trajectory passes through the polygonal line
segment joining P, to P, and P, to P, as illustrated in Fig. 2. Let €® = (9, 3),
e! = (el,e)) and e* = (€2, €3) denote E’s positions when P reaches P, P, and P,,
respectively. Let r, denote the angle that the line P P, makes with the &,;-axis
and let r, denote the angle that the line P, P, makes with the %, -axis. As usual,
we take these angles as positive when we measure them in a counterclockwise
direction.
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Now (10), (12), Lemma 1 and the assumption that s(0) = O imply that &,(¢)
is strictly positive. Hence, we can define the real-valued function A(-) on the set
(€7, en)U(el, ef) by

(14) Ale, (1) = e,(1)/€,(1).

We will establish the convexity of e by showing that A(- ) is an increasing function
on (e}, er)U(e;, e}).

Using a simple geometric argument one can show that
ri —m/2 fore(t) € (e], ei),

(15) s(t) + ¢(1) = {

r, — /2 fore,(t)e(el,e?).
Consequently, (7) and (15) give us

tan [Y(1) — p(t) + r,] for e (t) € (e, e}),
tan [Y(e) — ¢(t) + r,] fore (t) (e, e}).
Let e,(t) e (e9, e!). Since Lemma 1 implies that s(t) is increasing, (15) implies that
¢(t) is decreasing. Now using (10), one can verify that y — ¢ is a decreasing func-

tion of ¢. It follows that A increases on (e, e}). A similar argument establishes the
same result on (e}, e?). All we have to do is show that

(16) Aley(r) = {

(17) Alel — 0) £ Ale} + 0).
Let t, denote the time that P reaches P;. By (16) we have
Ale} — 0) = tan [Y(t, — 0) — ¢(t; — 0) + r,],

18

(18) Alet + 0) = tan [Y(t, + 0) — &(t, + 0) + r,].
Now (15) implies

(19) Pty —0) —ry = Plt; +0) —r,.

But (12) and the fact that p e P* imply

w2 <r, <r,<m.
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Thus (19) implies

ot + 0) > ¢(t;, — 0).
Hence,
(20) Yty — 0) < y(t, + 0)

holds. Evidently (17) follows directly from (18), (19), and (20).

Now we have our first main result (see Remark 1).

THEOREM 1. Let (e,p)e # x H be an initial position with |p — e| > 0 and
let V(e, p) be defined by (5). Then

(I Vie,p) < |le — pl

holds if and only if P can corner E with a p € P* whenever E uses the isometric rule.
Furthermore, whenever (Il) fails to hold, we have

U] Vie,p) = |le — pll.

The following corollary follows immediately from Theorem 1.

COROLLARY 1. (A) holds for the half-plane.

Proof of Theorem 1. The second claim and the “only if”” part of the first claim
follow directly from Remark 2. The only thing left to show is the “if*” part of the
first claim. Clearly we can assume without loss of generality that s(0) = 0. Also

we can show that there is no loss of generality in restricting E to strategies for
which

(21) s(t) = 0, teT,

whenever P uses a trajectory in P*,

Suppose that P can corner E with a p e P* whenever E follows the isometric
rule. It follows from Lemma 4 that P can also corner E with a convex p e P* for
which (12) holds. Lemma 5 implies that whenever P uses P, the trajectory &, which
E follows under the isometric rule, is also convex. The reader should verify that
to establish the theorem we need only show that the convexity of & implies that
there does not exist an evasion trajectory e satisfying

(22) Ip@) —e@®] = llp —el, teT,
for which (21) holds.

Observe that (21) is equivalent to
(23) e, () —p)=20, teT.

Assume that there exists a trajectory e satisfying (22) and (23). We will show that
this leads to a contradiction. Let ¢, denote the time at which cornering takes place
when P uses p and E uses & (see Fig. 3). Using (22) and (23) one can show that there
exists a £, € (0, t,) such that the trajectory e reaches the point &(t,) strictly before
time t,. Using (22) one can also show that during the time interval [0, t,], e(¢) must
lie below the curve generated by the trajectory e. Now the convexity of & implies
that the arc spanned by € between time 0 and time ¢, is the shortest arc joining
€(0) and &(t,) which lies below the curve generated by €. By (3) and the definition
of isometric rule, E travels at maximum speed when he uses & Hence e cannot
reach the point &(t,) strictly before time t,. This contradiction finishes our proof.
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Remark 4. The above proof borrows heavily from Gerald Smith [8]. In
particular the idea that we can assume that E restricts himself to strategies for
which (21) holds is his. Smith also uses a similar convexity argument.

3. Proof of Lemma 4. Suppose that P has a p € P*(p) which corners E. By
Lemma 3 we can assume that (12) holds when P uses p. Now (12) implies that p
satisfies part (a) of the definition of convexity. Suppose that p violates part (b) of
that definition. We want to show that P can do better by replacing p by a convex
trajectory. Specifically, we will show that any nonconvex polygonal path segment
P,P, P, which satisfies (12) is dominated by a convex polygonal path segment
P, P, which also satisfies (12) (see Fig. 4). This result gives us a step-by-step pro-
cedure for replacing a nonconvex p € P* with a better convex trajectory.

Examine Fig. 5. Wehavea rectangular coordinatesystem in which P, coincides
with the origin, P, lies on the positive Y-axis, P, lies in the second quadrant and
E, lies in the first. Let d denote the distance |PyP,|, xd the distance |PyP;| and
p the distance |PyE,|. Let o, denote the angle that P E, makes with the X-axis,
let u denote the angle that PyP, makes with the Y-axis and let y(u, x) satisfy

24) p(u, x) = arcsin (x sin u/(1 — 2x cosu + x?)/?).
Since s(0) = 0, we have ¢, > 0. Also, condition (12) implies that s < n/2,u = 0,
x=0andd = 0.

Suppose that P moves at full speed along P, P, . Let o(t) denote the angle that

the line through PE makes with the Y-axis at time ¢. Using Lemma 1, one can show
that o(z) satisfies the differential equation

25) do /w? —sin’ ¢ — cos @
dt P

and using (25), one can show that the value of ¢ when P reaches P, is equal to

I~ Yd + I(o,)), where I is the elliptic integral

(26) I(o) = P ja («/w? —sin?t + cost)dt
0

w2 —1

2
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and I~ ! denotes the inverse of I.

Another possible trajectory arises when P moves at full speed along the poly-
gonal line PyP, P, . Let Q(u, x) denote the value of the angle ¢ when P reaches P,
under this trajectory. Clearly,

Q(0,0) = I~ 1(d + I(ay)).

More generally, one can show that

(27) Q(u, x) = C(u, x) — y(u, x),
y
P, |
T lu,x)
P d
E
dx m / o
i
o, <
Po
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where

C(u,x) = I '[d(1 — 2x cosu + x?)''? + I(B(u, x))],
(28) B(u, x) = y(u, x) + u + A(u, x),

A(u, x) = I~ (xd + I(c, — u)),
and y(u, x) satisfies (24). The reader should verify that (12) implies
(29) 0<o0—u=<Au,x) < Bu,x) < Cu,x) <mn/.

In order to show that the nonconvex polygonal path PP, P, is dominated by
the convex PyP,, we must demonstrate that

(30) Q(u, x) =z Q(0,0)

holds whenever (29) does. To that end, we will establish the following result.
If condition

(31) Osd/p=s(w—-1/w+1)

holds, then (29) implies (30). By repeated application of that result and a uniform

convergence argument, one can show that (29) by itself is enough to guarantee (30).

Note that condition (31) is only a device introduced to simplify the proof.
Assume that (31) holds. Consider any fixed x = 0. We will show that

20w, _
ox ~

whenever u satisfies (29). (We assume that there is a u satisfying (29), since other-
wise the lemma is trivial.) Straightforward calculations give

0Qu, x)  N(u, x)

(32)

(33) ox  D(u, x)
where
D(u, x) = I'(C(u, x)) > 0,
N(u,x) = N,(u,x) + N,(u, x) + N;(u, x),
(34) _ sin u , ,
Ny(u, x) = (1 = 2xcosu + xz)(l (B(u, x)) — I'(C(u, x))),
_ d(x — cosu)
Na(u, x) = (1 — 2xcosu + x*)V?’
and

N;(u, x) = dI'(B(u, x))/I'(C(u, x)).

(As usual the “prime”’ notation refers to the first derivative.) Define the function R
by

(35) R(z) = I'U" Y(2)).
The reader should verify that
(36) R'(z) = —sin I~ Yz)/(w? — sin? [~ (z))"/%.



RESULTS ON MAX-MIN PURSUIT 63

By (28), (29), (34), (35), and the mean value theorem, we have
(37 N,(u,x) = N,(u,x) > 0,

where

(38) Nl(u, x) =

dsinu sin B(u, x)
(1 — 2xcosu + x2)'2] \(w? — sin? B(u, x))*/?|"

Also, using the definition of I, one can show that

(39) N, x) =2 dw — 1)/(w + 1) > 0.

Define

(40) N(u, x) = N,(u, x) + N,(u, x) + N;(u, x).

Because of (34) and (37),

(41) N(u,x) = 0

implies (32). Now, by (36), (37) and (39), we have (32) if u satisfies

(42) Ny(u,x) =2 —dw — 1)/(w + 1).

Hence, we need only show that (41) holds whenever u satisfies (29) and
(43) = 2iosous;j S >dw — Dfw+ 1).

Observe that the set of all points satisfying (43) is of the form {u|0 < u < k(x) < 7/2},
where k(x) is a constant depending on x.

We want to show that the set of points satisfying both (29) and (43) is an
interval containing 0. We will do this by showing that

0B(u, x)
ou

whenever u satisfies (43). It follows a fortiori that 0C(u, x)/0u is also positive.
Straightforward calculations give us

(44) >0

0B(u,x)  x(cosu — x) I'(c, — u)
ou 1 —2xcosu+ x2  I'(A(u,x)
(45)
R(dx + I(oy — u)) — R(I(6y, — u))

>x(w — 1/(w+ 1) + I'(A(u, x))

But by (31), (36), the mean value theorem, and the definition of I, we have

R(dx + I(6o — w) — R(I(gy — u)) _ —dx/(w? — )2
I'(A(u, x)) = p/wr =12

(46) = —x(w — 1)/(w + 1).

Define
F(x) = {u|N,(u,x) + N;(u, x) = 0and (29) holds},

47
@0 G(x) = {u|N,(u, x) + N;5(u, x) < 0 and (29) holds} .
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By (39),u € G(x)implies (43). And, more important, (37) tells us that u € F(x) implies
(41). We want to show that u € G(x) also implies (41). To accomplish this, we will
establish

ON(u, x)
0 G(x).
(48) F» > 0, ue G(x)
That (41) holds on F(x) U G(x) will follow from (48),
(49) N(©,x) =0,

and a continuity argument. We leave the details to the reader.
Let u € G(x). Straightforward calculations give

M = Nla(u’ X) + Nlb(u’ X),
ou
(50) ON,(u,x)  dsinu(l — X cos u)
ou (1 —2xcosu + x2)3%’
ON
(U, x) = Nay(u, x) + Ny, x),
ou
where

Ny, %) = — N, x)( 1 — xcosu )( sin B(u, x) ),

1 — 2xcosu + x?/\(w? — sin? B(u, x))!/?

dw? cos B(u, x) sin u 0B(u, x)
(w? — sin® B(u, x))?| \(1 — 2xcosu + x*)'*| ou

1 —xcosu sin B(u, x)
1 — 2xcosu + x?|\(w? — sin? B(u,x))!/?|’

R(I(oy — u)) sin B(u, x)
R(dx + I(o, — u)\(w? — sin® B(u, x))*/?

sin A(u, x)
(w? — sin? A(u, x))/?|"

Nlb(u7 X) = (

(51) N3a(u7x) = -N3(u’ X)(

N3y(u, x) = N3(u, x)

Now (43) implics
(52) 1 —xcosu>0,
while (29), (39), (44), (50), (51) and (52) imply

ON
(53) 0< Nlb(u,x),#,N%(u,x), ue G(x).
Also, (50), (51), (52) and the definition of G(x) can be used to establish
(54) 0 é Nla(u’ X) + N3a(“a x)a ue G(x)

Evidently (48) follows from (50), (53), and (54). We are done with Lemma 4.

4. The circle. In this section we consider the case where . is the closed unit
disc 2 in R? with the unit circle % in R? as its boundary. We will show that result
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(A) holds whenever play begins at a position which is stable (see paragraph 4 of
the Introduction for a definition of stable).

We represent positions of P and E by points p = (p,, p,) and e = (e, ;) in
9. Observe that the center O corresponds to the point (0,0) in R2. Let s,
—n < s £ 7, denote the angle that the directed line segment EP makes away
from the direction EO (see Fig. 6). Whenever P’s and E’s right-hand velocity
vectors exist, let ¢ and Y denote the respective angles which these vectors make
away from the direction PE, — 7 < ¢,y < 7. These angles are positive when they
are measured in a counterclockwise arc, e.g., all the angles are positive in Fig. 6.

FIG. 6

Assumption 3. We will always assume that play starts at a position (p,e)e 2 x &
which is stable (see the Introduction). We also assume that w > 1. (The case
w = 1is trivial.)

Whenever |le| = 1 and |s| < B where f§ satisfies (8), we say that P corners E.
The reader should verify that whenever P corners E, P can force a decrease in
|PE| by heading directly toward E. Basically, we are interested in whether P
can corner E at a position where |PE| < ||p — e|| (see paragraph 4 of § 2). We have
the following lemma.

LEMMA 6. If P can corner E at a position where |PE| < ||p — e|, P can do so
with a trajectory p which satisfies

(59) lp@I = llpll,  teT.

Proof. Assumption 3 implies that s(0) = 0. One can use the latter to show that
restriction (55) does not affect P’s ability to corner E.

Because of Lemma 6, we can make the following assumption.

Assumption 4. P is restricted to p € P* which satisfy (55).

As in § 2, we introduce the notion of an isometric rule by describing its con-
sequences. The isometric rule is that method of play for E under which the following
holds when P selects a p € P*(p) which satisfies (55). E travels at maximum speed
along a path with a piecewise continuous derivative ; and as long as

(S6a) le@l <1, [s@) < B
or

(56b) B=ls) <m
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holds, we have
(10a) cos Y(t) = (1/w) cos ¢(t)

and

>0 ifs(t) =0,
(10b) ¥(2) .
<0 ifs(t) <O.
The proof of the next lemma is essentially the same as the proof of Lemma 1.
We leave the details to the reader.

LeMMA 7. If E follows the isometric rule, then as long as (56) holds we have

(57a) [p(@) — e = [p — ell,
and
(57b) dle@l = cos ¢(t) cos s(t) — (w? — cos ¢(t))*/? sin |s(t).

dt

Also, if for some t €T,
Istoll = B,

then E can guarantee that

Ip(@) — el = [lp —el, t=to

Remark 5. Using the fact that (10) is required to hold only for pursuit trajec-
tories satisfying Assumption 4, one can show that the isometric rule is well-defined,
and satisfies the information constraint (see Remark 3).

The next lemma implies that given our assumptions, P can restrict himself
to trajectories p for which ||p(-)|| is an increasing function on T. (This is not true
in general. The critical assumption is that the initial value of s is 0.)

LemMa 8. If E follows the isometric rule and

(58) Ip(t2)l = [Ip(ty)l
holds for some t, > t; = O, then either

(59) s(t;) 2 s(ty) 2 0,
or

(60) min {s(t,), s(t,)} = B.

Proof. Let a, —n < o < =, denote the angle that the directed line segment
PO makes away from the direction PE. (Observe that we give o the same sign as s.)
We want to show that «(t) is a nonincreasing function. A simple geometric argument
establishes that as longas a > 0,

do sin[o(t) — ¢(t)] B [w sin ¥(t) — sin ¢(t)]

de p0l Ip — el
Hence (55) and (10) imply that
— 1 — 2 __ 2 1/2 :
c_iix_ < w—1—(w cos® ¢(t))!'* + sin ¢(¢) <o
dt Ip — el
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Suppose (58) holds for ¢, and t,, where ¢, > t; = 0. If s(t,) < 7/2, then the fact
oft,) < oft,) implies (59). Similarly, if s(¢,) = n/2, then the fact oft,) < oft,) implies
that s(t,) = m/2. The observation that § < 7/2 finishes the lemma.

LeMMA 9. If E follows the isometric rule, then P can corner E only if he can do

so with a trajectory p which satisfies
(12) 0 = ¢(t) = arccos (wsin s(t))

until cornering takes place.
Proof. Because of Lemma 8, P need only consider trajectories p for which
d|e(t)|/dt < 0. By Lemma 7, the latter condition implies that ¢(t) should satisfy

(13) |p(t) < arccos (wsins(t)) < n/2.

(Assumption 3 allows us to use s(t) instead of |s(t)| in the above formula.) The rest
is essentially the same as the proof of Lemma 3.

In order to state the analogues of Lemmas 4 and 5, we need another definition
of convexity for trajectories. Suppose that P selects a trajectory p which satisfies
(55). As the vector p(t) rotates about O it sweeps out a directed angle. (Following
the usual convention, we let positive angles correspond to counterclockwise
displacements.) We can represent this angle by a continuous function 6(-) on T,
where 0(t), — o0 < 0(t) < oo, isinterpreted as the directed angle generated between
time 0 and time t. We say that the pursuit trajectory p is convex on an interval
T, = Tif (") 0( - ) is a monotone function on T, and (b’) the set

U {peZ|p =kp(t) forsomekel0,1]}
toStsty
is convex whenever [0(t,) — O(t,) < mand [ty,t,] = Ty. A similar definition holds
for evasion trajectories. (As before (see the paragraph preceding Lemma 3), we
will omit any specific reference to T, whenever its identity is clear from the con-
text.)

LeEMMA 10. If E follows the isometric rule, then P can corner E only if he can do
so with a convex trajectory p which satisfies (12) until cornering takes place.

Proof. See the proof of Lemma 4.

LEMMA 11. If P uses a convex p for which ¢(t) = 0, t € T, while E follows the
isometric rule, then E’s trajectory e is convex on the interval [0, t,] , where t, denotes
the first time that condition (56) fails.

Proof. See the proof of Lemma 5.

Now we can state our second main result (see Remark 1).

THEOREM 2. Let the initial position (e,p)e 2 x 2 be stable and let Ve, p)
be defined by (5). Then

an Vie,p) < lle — pll

holds if and only if P can corner E with a p € P* whenever E uses the isometric rule.
Furthermore, whenever (11) fails to hold, we have

(I Vie,p) = lle — pl.

The next corollary follows immediately from Theorem 2.
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COROLLARY 2. (A) holds for stable starting positions in the unit circle.
Proof of Theorem 2. The theorem follows from Lemmas 6, 10 and 11 via the
arguments of Theorem 1.

5. Application. In this section we apply the results of the last section to the
problem of pursuit in the circle.

Given any d, 0 £d £ (W — 1)/w, let (¢%,p)€ 2 x 2 represent any stable
position for which |e? — p?|| = d. Define

(61) d* = sup {d|d = V(e*, p%)}.

The following result is essentially the same as one formulated earlier by Gerald
Smith [8].

THEOREM 3. V(e,p) < d*, (e,p) € 2 x 2.

Remark 6. Evidently d* is the least upper bound of the set of values of | PE]
that E can maintain from any starting position. One can—at least in principle—
use the characterization of d* implicit in Theorem 2 to obtain numerical values for
d*. In Theorem 4 we use that characterization to find an upper bound on d*.
The proofs of both of these theorems are deferred until the end of this section.

THEOREM 4. v* < d* < (W? — 1)/([w? + wE(1/w)]*> + (W + 1)*)Y/2, where

(62a) v* = (1/w)[(w? — 1)¥/? — arc cos (1/w)]
and
n/2
(62b) E(1/w) = f [1 — (sin w/w)*]!? du
0

is an elliptic integral of the second kind.
Some sample values are found in Table 1. The numbers are rounded off
to the nearest hundredth. :

TABLE 1
Tabled values of bounds on d*

Value of w 1.00 1.50 2.00 5.00 15.00 0
Upper bound .00 .25 .40 73 90 1.00
Lower bound .00 .18 .34 ! .90 1.00

As mentioned earlier, P can always force play into a position which is ap-
proximately stable. Specifically, one can show that given any ¢ > 0, any initial
position (e,p)e 2 x 2 and any evasion strategy n € H(e,p), P has a pursuit
trajectory p € P(p) which leads to a position in £ x 2 which is at a distance (in
the product norm) less than ¢ from some stable position. We will use this fact.

Remark 7. Following a suggestion given by L. Dubins, Gerald Smith [8]
established that for any ¢ > 0, P has a strategy which brings him to a point Q
on OM which satisfies |0Q| = (1/w)|OM| — ¢. The idea behind Smith’s strategy
is to have P go to the center and then move out along the radial line OM. We can
apply his results to our situation by having P select a trajectory which takes him
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to the center and then keeps him on the radial line passing through the position
which M occupied ¢/(w + 1) time units before. We leave the details to the reader.

We need the following lemma.

LEMMA 12. If V(e*2,p*?) =d, where d, # d,, thend, > d, and V(e*,p")=d,.
Furthermore V( -, -) is a continuous function on 9 x 9.

Proof. That d, > d, is immediate. Starting from the position (e*!, p*), let E
travel outward at maximum speed along the radius through e“. Clearly P’s best
trajectory follows E along this line. Observe that the distance | PE| remains greater
than d, until a position (%2, p*) is reached. Since by hypothesis V(e®2, p*?) = d,,
we have V(et, p?t) = d,. The proof of the continuity of V(-, -)is left to the reader.

Now we can prove Theorems 3 and 4.

Proof of Theorem 3. The continuity of V(-, -) and the remarks preceding
Remark 7 give us
(63) Ve s _swp  Vep).  (pe?x 9.

But the first part of Lemma 12 implies that the right-hand side of (63) is equal to
d*. The theorem follows.

Proof of Theorem 4. To get the lower bound we restrict E to the boundary .
That v* < d* follows from Theorem 2 of Flynn [2]. (Compare (62) above with
(2) of Flynn [2].) One can establish that strict inequality holds by showing that E
can do better by traveling along small chords than by staying on the circumference.
(This fact is established in [3].)

Now we justify the upper bound. Suppose play starts at (¢%, p?) and we restrict
P to straight-line paths which are perpendicular to the line joining p? to ¢ at p?.
One can show that if d is greater than the right-hand side of Theorem 4, then P
can force a decrease in | PE|. (See § 10 of Flynn [1] for details.) The theorem follows.
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NEUTRAL AUTONOMOUS FUNCTIONAL EQUATIONS WITH
QUADRATIC COST*

R. DATKOt

Abstract. In this paper a control problem for neutral functional equations with a quadratic cost
function is considered. It is shown that the optimal control is a feedback control. If the problem can be
optimized over the positive half-line, then the solution of the problem is obtained by solving a linear
homogeneous functional equation which possesses a type of exponential stability.

Introduction. In this paper we extend some of the results in [2] to a control
problem involving linear functional equations of neutral type. The problem is to
optimize a quadratic functional which has a constraint involving an n-dimensional
neutral functional equation. It is shown that the optimal solution is unique and
satisfies a linear feedback law. In addition, if the initial functions are continuously
differential, then the solution of the problem can be found among the solutions of a
2n-dimensional linear homogeneous differential-difference equation. In case the
problem can be optimized over the positive half-line, we demonstrate that the
optimal solution leads to an autonomous linear homogeneous functional equation
and the the spectrum of this equation lies in a half-plane Rez < —ay, a9 > 0.
This last result might lead one to expect that the solutions of the functional equation
are exponentially stable. However, we are unable to prove this. The best we can
do is to show that for initial conditions which are continuously differentiable,
a form of exponential stability holds. This is made precise by Theorem 4. The
problem discussed here is the most elementary of its kind, and the results of this
paper can be extended to more complex functional equations. The main reason
for not considering a more complex problem is that certain computational aspects,
particularly in § 2, are involved enough as it is and would soon get out of hand for
any significant extension of the problem.

The paper is divided into three parts. Section 1 sets down some conventions and
assumptions which will be used throughout the paper. Section 2 discusses the
control problem over finite intervals. In this section we compute, in a suitable
Hilbert space, the Fréchet derivative of the functional to be optimized, set it
equal to the zero vector, and from this obtain the characterization of the optimal
control and optimal trajectory. To be more explicit, we show, in Theorem 1, that
the point which minimizes the functional satisfies an n-dimensional linear
differential-difference equation. Section 3 deals with the problem over the infinite
interval, and the basic result, Theorem 3, is obtained as a limiting case of the
problem in § 2. General references for the functional equations considered in this
paper are [1] or [3] and a reference for the semigroups in § 3 is [4].

1. Preliminary notation.

1. We shall use standard vector and matrix notation. Unless otherwise
specified, all matrices and vectors are real. Vectors will be denoted by lower-case
letters and matrices by upper-caseletters. The complex inner product of two complex

* Received by the editors September 7, 1972.
+ Department of Mathematics, Georgetown University, Washington, D.C. 20007.
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vectors x and y of the same dimension will be denoted by (x, y). The norm of a
vector x in R" or C" will be denoted by |x|. The conjugate transpose of a matrix A
will be denoted by 4*.

2. The symbol C[—h, 0] will stand for the Banach space of all continuous
mappings from the closed interval [—h, 0] into R" or C" as the cases may be.
The norm of a point ¢ in C[—h,0] will be given by [¢| = sup_,<;<olP(s).
If ¢ € C[—h, 0] is continuously differentiable, then its C,-norm is given by

Ipll, = sup |d(s) + sup |(s).
—~h<s=<0 —h<s=<0

If t, =2 0, then ¢, (-) will denote a continuous mapping from [t, — h, t,] into
R™(C"). Clearly ¢, (-)is a point in C[—h, 0]. If g is a continuous linear functional
on C[—h, 0], its value at a point ¢ will be denoted by (g, ¢>.

3. L, will stand for the equivalence classes of all measurable square integrable
mappings from [0, c0) into R™(C™). This space is a Hilbert space with inner product
{o,uy = [ (0(t), u(r)) dt and norm [lu] = <{u,u)'’*>. We shall frequently consider
measurable mappings over intervals of the form I = [t,, T]. Clearly, if a mapping
is square integrable over I, then it is square integrable over [0, c0) if we extend it by
defining it to be the zero vector on the complement of I.

4. If ¢ is a continuous functional on L,, then ¢ is said to have a Fréchet
derivative ¢’ at a point u, in L, if there exists a point g in L, and a functional  on
L, such that

qu) = qluo) + <{g,u — Uy + ru),

—r@——»O as ||lu — ug| = 0.
lu — uo|
5. A, B and D will denote specific n x n real constant matrices and E will be
a specific real constant n x m matrix. W will be a real n X n symmetric positive
definite matrix and U will be a real m x m positive definite symmetric matrix.
The conditions on W and U imply that there exist positive constants w,, w,, u,
and u, such that

wilx1? < (Wx,x) S wylx1? and  uy|)* < (Uy,y) < uylyl?
for all n-vectors x and m-vectors y.
2. Statement of the basic problem and some of its properties. Let 0 < 7,

< T < oo and let ¢,, be in C[—h, 0]. The problem is to minimize the functional
on L, defined by the equation

T
(1) J, ¢y, 10, T) = f [(Wx,(0), x,(0)) + (Uu(t), u(t))] dt,
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where x,(t) satisfies the equation

$(to) — DP(to — h) + Dx,(t — h)
2 x,(t) = + Jt [Ax,(s) + Bx,(s — h) + Eu(s))ds ift = t,,

o(t) iftelty — h,ty).

It is shown in [3] that for any ¢, in C[—h, 0] and u € L,, there exists a unique
solution of (2) in C[—h, 0]. Furthermore, if ¢, is continuously differentiable on
[—h, 0], then (2) can be replaced by the differential equation

X(t) = Ax,(t) + Bx,(t — h) + Dx,(t — h) + Eu(t),
x,(t) = ¢(t) on[ty — h,t,].

Remark 1. We shall sometimes denote the dependence of x, on ¢ by x,(t, ¢)

or x,(-, ).

DEerINITION 1. Given ¢, in C[—h, 0] we define

(3) j(¢to’ to, T) = :&f J(u, d)to’ to, T).

If there exists u € L, for which the infimum in (3) is attained, this u will be called
an optimal control and denoted by u™(t, ¢,,, to, T) or by u™(t) if ¢,,, t, and T are
not important to the discussion at hand. The solution of (2) corresponding to an
optimal control is called an optimal trajectory and denoted by x™(t, ¢,,, to, T)
or simply by x™(t).

We shall now construct a variation of parameters formula for (2) or (2')
(see, e.g., [1, pp. 320-323]). The reason for rederiving the formula in [1] is that our
notation is somewhat different and we wish to emphasize the role played by the
initial function if it is differentiable.

Let S(t, «) denote the unique n x n matrix which satisfies the conditions

@)

(4a) g—i(t,oc) = —S(t,0)A — S(¢t,o + h)B + g(t,a + h)D
ifto<a<t, a#t—nh, n=0,1,2---,

(4b) S, t)y=1,

(4¢c) Stt,e) =0 ifa>t

and

(4d) S(t,o) — S(t,o0 + h)D

is continuous for all a in [¢,, t].

Remark 2. Hale and Meyer [3, p. 13] have shown that S(¢, ) is dependent
only on the difference ¢t — a. That is, S(t,«) = S(t — «, 0). This is a consequence
of the autonomy of (4a).

Let ¢,,€ C[—h, 0] be continuously differentiable and let ue L,. Let x(t) be
the solution of (2') for the given pair ¢, and u. Then if S(¢, o) satisfies (4), the following
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identity holds:

- ft [S(t,a)A + S(t, o + h)Blx(t) do

t

= — f S(t, o) Ax(o) dot -f S(t, a)Bx(a — h) do

o+h
= J:;a—i[S(t, o) — S(t, o + h)D]x(o) do
) = x(t) — [S(¢, to) — S(¢, to + h)DI(to)

- fS(t, o) [Ax(x) + Bx(aex — h) + Dx(o. — h) + Eu(o)] dot

to

t

+ f S(t, 0)Dx(o + h)do.
to+h

Comparing the extreme right-hand side of (5) and the terms in the second equality

from the left in (5) and making some obvious cancellations and rearrangements,

we obtain

x(t) = [S(t, to) — S(t,to + M)D]I(to)
(6) o , :
+ f S(t,o + h)[Bop(x) + Dp(e)] doe + f S(t, a)Eu(or) dot.
to—h to
If x(¢) is a solution of (2) for ¢,, and u = 0, then on the basis of (6) we can write
the solution of (2) for ¢, and u in the form

(7 x(t, @) = Xo(t) + f S(¢, o) Eu(er) dor.

Remark 3. 1f ¢, has a continuous derivative and u in L, is continuous on the
interval [t,, T] except possibly at the points t = nh + ty, n =0,1,2, ---, then
x(t, ¢,,,u) is differentiable on [t,, T] except possibly at the points {nh + t,}.
This is an immediate consequence of the representation given for the solution in
(6).

Let ¢,, € C[—h,0]andu, € L, be fixed,and leth € L, be arbitrary. Abbreviating
J(u, ¢y, to, T) to J(u) and setting

(®) yh,t) = ft S(t, o)Eh(a) dot,

0

we form the difference

J(uo + h) — J(up) = 2|jfT(qu0(t),y(h, 1) dt + J (Uuy(2), h(t)) dtil

to

T T
+f (Uh(t), h(¢)) dt +f (Wy(h,t), y(h,t))dt.
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Thus we see that the Fréchet derivative of J(u,) exists and is given by the expression

©) {J'(ug), h)y = 2f (Wxy (1), y(h, 1)) dt + ZJ (Uuy(t), h(t)) dt.

Making use of (8), we can explicitly compute J'(u,) for

T T pt
J (Wx, (1), y(h,t) dt = f f (Wx,(t), S(t, o) Eh(ar)) dot dt
° v
= f f (E*S*(t, )Wx, (1), h(x)) dt do

= f T{ f " Erse, o)W, (1) dt, h(a)}da.

Substitution of the above expression into (9) and observing that (9) holds for all i
in L,, we obtain

(10) J'(up)(a) = Z[Uuo(oc) + E* JT S*(t, 0)Wx, (1) dt].

The following two properties of J(u) will be needed in the sequel. Their proofs
are omitted since they have been given in [2].

Property 1. For ¢, fixed in C[—h,0], the infimum of J(u, ¢, ,to, T) is
uniquely attained and satisfies the condition J'(u™, ¢,,, ty, T) = 0. Thisisequivalent
to the relation

T
(11) u™(o) = —U_lE*f S*(t, ) Wx™(¢) dt.

Moreover, for each ¢, in L,, (11) has a unique solution.

Property 2. Let a and b be real scalars. If u™ and v™ are, respectively, optimal
controls for J(u, ¢, ,to, T) and J(u,y, , ty, T), then au™ 4 bv™ is the optimal
control for J(u, ag,,, +by, ,ty, T). In other words, the optimal control associated
with (1)—(2) induces a linear mapping from C[—h, 0] into L,.

On the basis of Property 2 and equation (11), we introduce the following
definition.

DerINITION 2. Let ¢, € C[—h,0], and let x™(t,$,,) denote the optimal
trajectory for the problem (1)~2). For each t € [ty, T], define the linear mapping
from C[—h, 0] into R" by the relation

T
(122) Lit, to, Ty, = f S*(a, OWx"(a, dy,) do
t
ifty<t<Tandift = Tby

(12b) L(t, to, ), = 0.

Remark 4. The linearity of L(t, t,, T) is a consequence of Property 2. For by
Property 1 and Definition 2,

(13) um(t, ) = —U'E*L(t, 1o, T),,.
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Hence, since equation (2) is linear in u, it follows from Property 2 that L(t, t,, T)
is linear in ¢, .
LEMMA 1. Let g:[ty, T] = R" be continuous and let

T
f S*(o,t)glo)do, to=t=T,
ey =< Ji

0 ift=>T.

Ift# T —nh,n=20,1,2,---, then on [ty, T], y(t) has a derivative which satisfies
the equation

L “Y(0) — B* (A0 + h)
E(t) = —g(t) — A*y(t) — B*y(t + h) + D 7 .

Proof. Assumet = T — nh — 1, where 0 < 7 < h. Then

n—1 pt+({+1)h T
MOESDY S*(o, t)g(c) do + f S*(a, t)g(o) do

i=0 Yt+ih t+nh
Notice, since 0 < 7 < h, that for sufficiently small changes in ¢, n in the above
expression does not vary. Moreover, since each term is differentiable, y(t) has a
derivative. By Remark 2, $*(o, t) = S*(¢ — t, 0). If we use the notation S*(ih~, 0)
= lim,_;,- $*(t,0) and S*(ih*,0) = lim,_;,+ $*(t,0), then the derivative of y(t)
is given by

WO = —g) + 3 [SHGh™,0) — S*Gh*, O)lg(t + ih)

i=1

+f —aT(a,t)g(a)da.

Since S(o, t) satisfies the relations in (4), we obtain from (14):

y(t) = —g(t) — A*y(t) — B*y(t + h)

i [S*(ih~,0) — S*(ih*, 0)]g(t + ih)

— D* i [S*((i — Dh™,0) — S*(i — 1)h*,0)]g(t + ih)
i=1

n

(15) + D* Z [S*((i — Dh~,0) — S*((i — Dh™,0)]g(t + ih)
n— t+(i+ 1)ha %
+ D* Z —(o,t + h)g(o)do
i=1 Je+in ot
T o8*
+ D*J ——(o,t + h)g(o)do.
t+nh 6t

Note that by (14), the last three terms in (15) can be replaced by D*y(t + h).
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Also by (4d), S*(¢,0) — D*S*(t — h,0) is continuous for all ¢. Thus (15) becomes
W) = —g(t) — A*y(t) — B*y(t + h) + D*y(t + h),
which proves the lemma.

THEOREM 1. Let ¢, be in C[—h, 0] and let L(t, t, T)¢,, be given by Definition 2.
Then, for t a.e. on [to, T, L(t, t,, T)$,, satisfies the differential equation

(16) W) = —Wx"(t, ¢,)) — A*Y(t) — B*y(t + h) + D*y(t + h).

Proof. Wx™(t, ¢,,) is continuous on [ty, T], hence L(t, ty, T)¢,, satisfies the
hypotheses of Lemma 1.

COROLLARY. If ¢, has a continuous derivative on [to — h, t,], then the solution
of the control problem (1)-(2) satisfies the 2n-th order system of differential-difference
equations given by

X(t) = Ax(t) + Bx(t — h) + Dx(t — h) — EU 'E*)(1),
P(t) = — Wx(t) — A*y(t) — B*y(t + h) + D*y(t + h).

The proof of the following property is straightforward but lengthy. It is
therefore omitted. The proof is similar to Lemma 3.1 in [2].

Property 3. If {¢} > ¢,, in C[—h, 0], then {u™(-, ¢} )} = u™(-,¢,) in L,,
and {x"(-, ¢})} = x(-, ¢,,) uniformly on [t,, T].

DEFINITION 3. Let ¢}, i = 1,2, be in C[—h,0], and let the pairs (x,,u,) and
(x,,u,) denote the optimal trajectory and optimal control corresponding
respectively to ¢} and ¢2. Let L(t, to, T) be abbreviated to L(r). We define the
bilinear form on C[—h,0] x C[—h, 0] given by

R(t,to, T) (s, d2) = (L1, Xat) — Dx,(t — h))

(17

+ " (Ll + WL, Bxy(a) do
t—h

(18) g
_ f (d—(L(a + h)pL), Dx, (@) dor.
t—h a
THEOREM 2. The bilinear form in Definition 3 satisfies the equation
R(tO’ tO bl T)(d)tlm d)?o) = R(tO ) tO’ T) (¢120a ¢t10)
(19)

= f [(Wx,(1), x2(0)) + (Uu, (1), ux(1))] dt.

Thus lf d)tlo = ¢t20’ R(IO’ tO’ T)(¢110’ ¢t10) = j(¢t10’ tO’ T)

Proof. Let ¢ and ¢ be in C[—h,0], and assume that ¢? is continuously
differentiable on [ty — h,t,]. Let L(t, to, T)$. = L(1)$;. = y,(t). By Remark 3
and equation (11), x,(¢) has a derivative a.e. on [t,, T]. A straightforward computa-
tion using (2") and (16) yields

d
2R to, T)(¢rgs D)) = — (W (1), x,(1)) + (E*y,(2), u(1))
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a.e.on [to, T]. Since — U~ 'E*y,(t) = u,(t), it follows that

R(ta tO’ T)(¢110» ¢120) = R(tO’ th T)(d)tlo’ ¢t20)
(20) ,
- f [(Wx,(5), x3(5) + (Uty(5), us(s)] ds.

However, R(T,to, T)(¢;,, ¢2) = 0 because L(t,ty, T) =0 for t = T Thus the
conclusion of the theorem holds if d)fo is continuously differentiable. Using
Property 3, the fact that the continuously differentiable mappings are dense in
C[—h,0], and that R(t,,t,, T) is continuous, we reach the conclusion that the
theorem holds for any ¢ in C[—h, 0].

COROLLARY 1. For any t€[ty, T] and ¢\ and ¢2 in C[—h,0],

21 R(t,to, T) (s, b2r) = j [(Wx(8), x5(1) + (Uuy (1), up(0)] dt.

Proof. This corollary is a consequence of Theorem 2 and the observation
that if x™ and u™ are optimal for J(u, ¢,,,t, T), then they are also optimal for
Jwu,x"t, T).

3. The case T = co. In this section, we shall consider the optimal control
problem posed by equations (1)-(2) when T = co. To consider this case, it is
necessary to make an additional assumption which will be given below. We shall
first consider some further properties of the problem in case T is finite. Property 4
is a consequence of Property 1.

Property 4. 1f u™(t, ty, T, ¢,,) is an optimal control for the problem (1)-(2),
then it is also optimal for the functional J(u, x}(¢,,), t, T).

The next property has been proven in [2, Property 4, § 3].

Property 5. If t, >0 and ¢, (t + s) = y(s), where se[—h,0], then
J(@rosto, T + to) = j(,0, T)and L(t + to,t0, T + to)p,, = L(t, 0, T).

The next property is the feedback control mentioned in the Introduction.
Its proof also can be found in [2, Property 3, § 3].

Property 6. For each ¢,, in C[—h, 0], the identity L(t, t, T)¢,, = L(t, t, T)x}"
(5 @y o, T) holds. Thus u™(t, ¢,)) = — U~ 'E*L(t, ¢, T)X[( -, P,y Lo, T).

Hypothesis H. For all t, 2 0 and each ¢, in C[—h, 0], it will be assumed that
limy_., j(1,1 to, T) < c0.

Remark 5. What Hypothesis H says is that the problem (1)~(2) can be optimized
for T = oo and all ¢,,.

The next property is proved in [2, Theorem 3.1 and its corollary].

Property 7. Assume Hypothesis H holds; then there exists a continuous
symmetric bilinear form R on C[—h,0] x C[—h,0] and a continuous linear
mapping q:C[—h,0] - BV[—h,0] (the space of n-dimensional functions of
bounded variation on [— A, 0]) such that for ¢, and y,, in C[—h, 0],

}I_I’I:O R(to, o, T) (lpm’ ¢to) = R(wt()’ d)to)

(22) = L4so: Y1) = @Yo D1y -
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Moreover, for each ¢,,€ C[—h, 0],
lim Lito, to, T)y, = lim (46,,(0) — q¢bi,(s))-
DErFINITION 4. Define the mapping L:C[—h,0] — R" by
(23) Ly, = lim [(q6,)(0) ~ (a6,)(s)].

Property 8. The mapping L is linear and continuous.

Proof. The proof is a consequence of the fact that q:C[—h,0] - BV[—h, 0]
is linear and continuous.

Using Property 8 and Definition 4, we can prove in a manner analogous to
Theorem 3.2 in [2] the following theorem.

THEOREM 3. Assume Hypothesis H holds and let L be the linear mapping
defined by equation (23). Consider the functional equations

o(to) — DP(ty — h) + f [Ax(s) + Bx(s — h)] ds

t
(24) x(1) = + Dx(t — h) — f EU 'E*Lx,ds fort = t,,

to

@t) forto —h =t =t

Denote the solution of (24) by x,(¢,,). Then, given any sequence {T,} — oo, the
following holds:

(25a) lim x™(-, ¢,,, to, T,) = x(¢,) foreachte[ty, o),
(25b) nlim j(¢t0’ to’ 7;1) = R(d)to’ ¢to),
(25¢) the pointue L, givenby u(t) = — U~ 'E*Lx(¢,,)

is the optimal control for the functional J(u, ¢,,, t,, o) and x,(¢,,) is the optimal
trajectory.

COROLLARY 2. If Hypothesis H holds, then given any continuously differentiable
¢, in C[—h,0], the optimal control and optimal trajectory for the functional
J(u, ¢,,, ty, ) are connected by the relations

(26) x(t) = Ax(t) + Bx(t — h) + Dx(t — h) — EU ™ 'E*q(1),
(27) 4(t) = Wx(t) — A*q(t) — B*q(t + h) + D*4(t + h),
and

(28) u(t) = — U 'E*q(1).

Proof. Let ¢,, be continuously differentiable. Let {T,} > co and x"(t)
= x"(t, ¢,,, to, T,) and set L(t,t, T,) = L,(t), n = 1,2, ---. By Theorem 3, {x"(t)}
— x(t, ¢,,) uniformly on compact intervals, and by Property 7, {L,(t)¢} — L¢
for all ¢ in C[ —h, 0]. Hence if we set

an(t) = L,(0)x} and  q(t) = Lx(¢y,),
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it follows that for each t € [t,, 00),
lim ¢,(t) = q(1).
n— oo

Notice that x(¢,,) satisfies (26) and that (28) holds by Theorem 3. We have
shown in the corollary to Theorem 1 that each g,(t) is differentiable a.e. and satisfies
(16). The function ¢(¢) is also differentiable a.e. by Remark 3 since L is a continuous
linear mapping. Hence the sequence of differential equations

d
7190 — D¥q(t + W] = —Wxt) — A*q,(t) — B*q,(t + h)
converges a.e. to the function
—Wx(t, d,,) — A*q(t) — B*q(t + h).

Using standard arguments from real variables, it follows that

d
2,140 = D*qt + W] = 4(t) — D*q(t + h)

—Wx(t, ¢,,) — A*q(t) — B*q(t + h),

which establishes (27) and proves the corollary.
COROLLARY 3. If the control problem (1)}+2) satisfies Hypothesis H, then all
solutions of the differential-difference equation

(29a) x(t) = Ax(t) + Bx(t — h) + DX(t — h) — EU'E*Lx,,
where
(29b) x(t) = ¢(t) is continuousiy differentiable on C[—h, 0],

have the property that

(30) on [x(t)?dt < .

0

Proof. The inequality (30) is a consequence of the fact that
j(¢,0,00) = w, f |x(t)|*dt, wherew; > 0.
0

Remark 6. If A, B, D, E, W and U are real matrices, and C[—h,0] and L,
are complex Banach spaces and Hypothesis H holds, then the conclusions of
Corollary 3 remain valid.

In [2] it was possible to prove for the case D = 0 (i.e., the retarded case) that
the system (29) generated an exponentially stable semigroup of operators on
C[—h,0]. If D # 0, the situation is unclear. However, we can obtain certain
analogous properties for the system of differential-difference equations given by
(29). Thus let us assume that Hypothesis H holds and that C[—h,0] and L, are
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complex Banach spaces. The functional form of (29) is the system

o(to) — DP(ty — h) + f [Ax(s) + Bx(s — h)] ds

14
31 x(t) = - J EU'E*Lx,ds + Dx(t — h) ift = t,,
t

o(t) iftelt — h,to].

It is known (see, e.g., [3]) that the solutions of (31) in C[ — h, 0] generate a semigroup
of operators T(t) which is strongly continuous on C[—h,0]. Let o/ denote the
infinitesimal generator of T(t). Recall that the domain of <7 is dense in C[—h, 0]
and consists of those ¢ which are continuously differentiable and satisfy the
condition

(32) %%(O) = A¢(0) — Bd(—h) — EU™'E*L¢ + D%(—h).

Also, if ¢ is in the domain of &7, then
d
E(T(t)rb) =AT()p = T .

Hale and Meyer [3] have proven that the spectrum of .«Z, o(.%/), consists only of
point spectra and that the generalized eigenspace associated with any A € o(/) is
always finite-dimensional. Furthermore, since T(f) is strongly continuous on
[0, c0), there exist constants M = 1 and w > 0 such that |T(5)¢| < Me™'| |
for all ¢ € C (see, e.g., [4]).

LEMMA 2. Let the control problem (1)~2) satisfy Hypothesis H. Then there
exists ay > 0 such that spectrum o(f) of the infinitesimal generator of T(t) lies in
the left half-plane Re z £ —a,.

Proof. On C[—h,0] x C[—h, 0] we define the bilinear Hermitian form

(33) M¢W=fﬁwm@mmwm.

By the second corollary to Theorem 3 and Remark 3, it follows that f is defined
on all C[—h,0] x C[—h,0] and that B(¢, ¢) = 0 for all ¢. Since p is Hermitian
and defined everywhere, it is evident that f is continuous. Hence we can find
b > 0 such that

(34) 0= B(¢,¢) <bl¢|> forallpeC[—h,0].
Using the semigroup property of T(¢) we have the identity

mnwﬂm@=kuwmmwmmmww
(35) = foo(Wx(s +t,0),x(s + t,¥))ds
0

= on (Wx(s, @), x(s, ) ds.
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Hence if ¢ is in the domain of </,

d
d—[:(T(t)aﬁ, T(t, ¢) = BT, T(p) + T ()¢, L T()¢)

(0 = —(Walt, ). (0, 8)
= —AH(T(O)p, T(1)).

Here s is the continuous Hermitian form defined by

(37 H (P, ) = (We(0), ¥(0)).

Clearly because of the assumptions on W,

(38) 0= H(d, d) < wylldl>.

Hale and Meyer [3] have shown that the eigenvectors of o7 are of the form ¢(s)
= e*c, where ¢ is an n-vector and se[—h,0]. Let 4 be an eigenvalue of .«/ and
#(s) = e*c, ¢ # 0, a corresponding eigenvector. Then by (36),

(39) 2Re Af(¢, ¢) = —(We, ) < 0,

which means that Re 4 < 0. Hence the spectrum of </ lies in the left half-plane
Rez < 0.

Notice that if Re 4 < 0, if ¢(s) = e**c and se[—h, 0], then
(40) ll1% = |c|? e~ 2Redn,

Thus using (36), (40) and the bounds on  and W, we can make the following
estimate on any eigenvalue and eigenvector of .o/ :

~2Re X ¢[’b = —2Re B, ) = (We, )

“1) > wild? = w; 2@ 2,
Hence
b e(ZRel)h
42 — 2 .
(42) wy ~ —2Rei

The inequality (42) establishes the lemma since there must exist a number 2a, > 0
such that
bjw, = e *"/x
for all x = 2ay. Thus —2Re A = 2a,0or Re 1 < —a,.
THEOREM 4. Let the control problem (1}A2) satisfy Hypothesis H. Let
¢ € C[—h, 0] be continuously differentiable. Then the solution satisfies the estimate

(43) Ix(t,9) = Mye” | ¢l;,

where a; > 0, M = 1 are independent of the particular choice of ¢.

Proof. By Lemma 2, the spectrum of the semigroup generated by the solution
of (31) lies in the left half-plane Re z £ —a,. Hence the estimate (43) with a, = a,/2
follows directly from the work of Hale and Meyer [3, p. 38, Theorem 1].

A final word needs to be said concerning Hypothesis H. In [2], necessary and
sufficient conditions are given for the satisfaction of this hypothesis when the
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matrix D is zero (i.e., the retarded case). However, these conditions will not suffice
in the case of neutral equations, and it would be interesting to find reasonable
sufficient conditions for Hypothesis H to be valid. One obvious condition is that
the homogeneous system in (2) be uniformly asymptotically stable.

Thus the value J(0, ¢,,, ty, ©0) < oo for all ¢, in C[—h, 0], and Hypothesis H
holds.
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POSITIVITY CONDITIONS AND INSTABILITY CRITERIA FOR
FEEDBACK SYSTEMS*

RONALD A. SKOOGt

Abstract. An instability theorem is obtained for feedback systems which is analogous to the
““positive operator’’ theorem for L,-stability, and from this theorem instability counterparts to many
known stability criteria can be obtained. In particular, a counterpart to the circle criterion is given, and
results are given for systems with a time-varying gain with restricted rate of variation in the feedback
loop. The most significant feature of the result is that it allows one to use “‘multiplier” techniques to
obtain instability criteria.

1. Introduction. In this paper an instability theorem (Theorem 1) analogous
to the “‘positive operator theorem™ [11], [14] for stability is obtained for negative
feedback systems of the type shown in Fig. 1. Of course, one cannot hope to

U+Ze G -y

H |

F1G. 1. A feedback system

prove instability by requiring G and H to be positive operators on L,(0, c0), since
this leads to stability. Rather, for the simplest case of Theorem 1 it is assumed that
G is a linear time invariant operator of the form

t

(L.1) (Gx)(t) = gox(t) + f gt — 7)x(r) dt
0

having a Laplace transform G(s) with Re G(jw) = 0 for all w, and in addition G(s)
is assumed to have P # 0 poles in Re s > 0. Then, if H is a positive operator on
L,(0, o) it is shown that there exists an input u € L,(0, c0) such that if e satisfies
the feedback equation

(12) e + HGe = u,

then e ¢ L,(0, c0).

The main idea behind the proof of this result is fairly simple. The proof is by
contradiction, and thus one assumes that u and e are elements of L,(0, c0), which
then implies that Ge € L,(0, o0). The key step is to then show that there is a certain
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bounded noncausal mapping G, of L,(— o0, c0) into itself with the property that
if Gee L,(0,0), then Ge = G,.e when e and Ge are viewed as elements of
L,(— 00, o0). As a result, it is shown that if e € L,(0, co) then, when e is viewed as
an element of L,(— oo, 00) with e(t) = 0 for ¢t < 0, it must satisfy the equation

(L.3) e+ HG,e = u.

The important point here is that (1.3) involves bounded mappings, and is thus
easier to deal with than (1.2). In particular, it is shown that there exists a
u€ Ly(— o0, o) withu(t) = Ofor t < Osuch that(1.3) hasno solution e€ L,(— o0, 00)
with e(t) =0 for t < 0. As a result, for this u, (1.2) can have no solution
e € L,(0, o0).

The instability theorem described above is applied to the specific case when
H is a time varying gain to obtain explicit instability criteria. The first application
is to obtain an instability counterpart to the circle criterion. Results of this type
were first obtained by Brockett and Lee [3] using Lyapunov methods and by
Willems [13] using operator methods. The proof of Willems was simplified and
extended somewhat by Bergen and Takeda [1]. The result given here generalizes
those of [13] and [1] in that G is allowed to be an unbounded operator. Also, the
seemingly superfluous assumption used in [13] and [1] that (I + HG) has a causal
inverse on the extended space L,(0, o) is not required in the proofs given here.
This advantage has more to do with aesthetics than practicality. Nevertheless, it
justifies the remark that stability or instability and causality are two separate
issues, and should be treated independently from one another.

The second application of the instability theorem is to obtain an instability
counterpart to the stability theorems of Brockett and Forys [2], Gruber and
Willems [6], and Freedman [4]. The result given here is in line with that of Freedman
in that it does not require the existence of a “multiplier’ in the theorem statement.
Specifically, the result states that if H is defined by (Hx)(t) = k(t)x(t) with a < k(t)
< f,and if G is a linear time invariant system such that the closed loop system has
the same number (not zero) of poles in Res > 0 for all constant gains between
o and f, and either

k(t) k(t) — o
(1.4) k(t)—aéa(l_ ﬁ_a)
or

k(t) k(t) — o

where 0 < ¢ < 0., 0. depending on G, then the time-varying feedback system
is unstable. Thus, if k is sufficiently small, stability or instability can be predicted
on the basis of the “frozen-time’’ systems, so long as the number. of poles in
Re s > 0 does not change. It has been shown by an example [12] that if the number
of poles in Re s > 0 does change, then no matter how slowly varying the system is,
the “frozen-time” systems can be unstable and the time-varying system stable.
Although the main instability theorem given here (Theorem 1) can be used
to obtain results such as the circle criterion for instability, its main utility lies in
proving results as in the second application described above. In these cases
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instability criteria are obtained by the introduction of certain “multipliers” to
create ‘‘positive’’ operators. It is in this direction that the previous methods of
proving instability are not applicable.

The reader is assumed to be familiar with L,-spaces and the notion of ex-
tended spaces (in particular the extended L,(0, co)-space L, (0, 00)). The reader
is referred to the works of Sandberg [11] and Zames [14] for these details. We recall
here two notions. The first is the truncation operator Pr. For x(-) a real-valued
function and TeR, (Pyx)(t) = x(t) for t £ T and (Prx)(t) =0 for t > T. The
second notion is causality. A mapping H is called causal if and only if P,HP;
= P;H for all TeR.

2. The main results. The feedback system to be considered is that shown in
Fig. 2. The system G is a linear time-invariant system which will be restricted to a
certain class ¢ defined as follows.

H |«

F1G. 2. Feedback system of Theorem 1

DEerFINITION 1. The class % of operators mapping L, (0, o0) into itself are those
which can be represented by

@.1) (G)1) = gof () + fo gt — 0f () dr,

where g(¢t) = 0 for t < 0 and has the form

(2.2) 8(0) = g,(1) + g,(),

with g, € L,(0, 0), g,e” "€ L,(0, o0) for all ¢ = g, > 0, and where the Laplace
transform G,(s) of g, given by

(2.3) G,(s) = f 2,(t)e " dt, Res = g,
0
is a rational function with a finite number of singularities and no singularities in
Re s = 0. (Note that G,(s) is defined by (2.3) only for Re s = g, but since it is a
rational function, it is clear that it has a meromorphic continuation to the entire
complex plane).
From the conditions placed on G,(s) it is clear that g,( - ) has the form

M=

i
(2.4 g, (1) = Z ai,jtj_l e, t20,
i=1

]

i=1

where «; ; and g; are complex numbers with Re o; > 0 for all i. Thus it is possible
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to make a continuation of g,(t) to negative values of t to obtain g,(t) defined by

n 1
o, e 10,
2.5 2,(0) = i; j; ’

0, t>0.

It is observed that g, € L,(— o0, o0).

With this construction of g, it is now possible to associate with each Ge 4
a noncausal mapping G, of L, (— o0, co) into itself as follows.

DEFINITION 2. For each G € ¢ define G,, on L, (— o0, 0) by

26) (G, f)) = gof (1) + f— gt — 1) f(v)dr — f gt — 1) f(v)dr.

From the fact that g, € L;(0, ) and §, e L;(— o0, 0) it follows easily that G,
maps L,(— o0, o0) into itself. The Laplace transform G, (s) of G, defined by

0

@7 Gols) = go + f

0

0
g()e dt — f g,(t)e " dt
exists for —o,; < Res < o, for some o; = 0 and is easily seen to be
(2.8) G,{s) = go + G(s),

where G(s) is the meromorphic continuation of

(2.9) G(s) = on gt)e % dt, Res > ay.

0

Thus it is seen that G and G, have the same Laplace transform, but with different
regions of convergence.

Our first theorem is the key result of this paper, and it plays a predominant
role in the proofs of the remaining theorems giving explicit instability criteria.
This result is analogous to the positive operator theorem for L,-stability obtained
by Sandberg and Zames [11], [14].

THEOREM 1. Let F, G, and H satisfy the following assumptions:

(@) Ge % and Re G(jw) = 0 for all w.

(b) F is a causal mapping of L,(— oo, o0) into itself, FO = 6, (Fx, — Fx,,
X; = X0 2 kilx; — x50 and |Fx, — Fx,| £ k,llx, — x,| for all x,,x,
€ L,y(— o0, o) and some k,, k, > 0.

(c) <FG,x; — FG,x;,x; — x> =20 for all x,, x,€L,(—00,00), where
G, is as defined in Definition 2.

(d) H is a causal mapping of L,(— oo, c0) into itself, HO = 0, (Hx; — Hx,,
Xy = x20 Z allx; = x5l and [[Hx; — Hx,ll < Bllx; — x2| for all xy, x,
€ L,(— o0, ) and some a, f > 0.

Then if G # G, (i.e, if G(s) has a singularity in Res > 0), there exists some
u € L,(0,00) such that if e € L, (0, o0) and satisfies

(2.10) (I + HFG)e = u,
then e ¢ L,(0, c0).
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Note that in the theorem statements, F and H were assumed to be causal
mappings of L,(— oo, c0) into itself. For most systems which are of interest, causal
mappings on L,(0, o) can be extended to causal mappings on L,(— 00, o0) in a
natural way (c.f. [13]). Thus, there will generally be no difficulty in meeting these
conditions. Also note that (2.10) is viewed as an equation on L,,(0, c0). This is
well-defined since a causal mapping of L, (— oo, o0) into itself is also a causal
mapping of L, (0, o) into itself.

The next result gives an explicit instability criteria for the system of Fig. 3, and
is an instability counterpart of the circle criterion. Results of this type were first
obtained by Brockett and Lee [3] using Lyapunov methods and by Willems [13]
using operator methods. The result given below (Theorem 2) generalizes those in
[13] and [1] in that there G was restricted to being a bounded mapping of L,
into itself, while here G is allowed to be an unbounded operator on L,(0, o).

k(1)

F1G. 3. Feedback system with time-varying gain

For the feedback system of Fig. 3, let k( - ) be a real-valued function of ¢, and
denote by K the mapping (Kx)(t) = k(t)x(t), where x(-) is any real-valued func-
tion of t. Then the feedback equations for Fig. 3 are

(2.11) e + KGe = u.

THEOREM 2. For the system of Fig. 3, let G € 9, G(s) have P polesinRe s > 0, and
o+ e k(t) £ — ¢ for some ¢ > 0 and all t.

Case 1 (x> 0, > 0). If G(jw) does not intersect the closed disk D[a, ] (see
Fig. 4a) centered at (—(1/2)(1/a + 1/B), 0) with radius (1/2)(1/o — 1/p), and makes
N < o clockwise encirclements of it as w goes from — oo to o0, and N # — P, then
there exists an input u € L,(0, 00) such that if e is a solution of (2.11), then e ¢ L,(0, co)
and Ge ¢ L,(0, ).

.

Mid /////, ///

F1G. 4. The disks D[a, B] of Theorem 2

»
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Case Il (x < 0, 8 > 0). If G(jw) lies inside the open disk D(a, ) (see Fig. 4b)
and P-# 0, then there exists an input u€ L,(0, 00) such that if e is a solution of
(2.11), then Ge ¢ L,(0, c0).

Note that in Case II it is not possible to conclude that e ¢ L,(0, co) but only
that the output y = Ge is not in L,(0, c0). The reason for this lies in the fact that
here k(z) is allowed to be equal to zero. As a result, for k(t) = O it is seen from (2.11)
that e = u and is therefore in L,(0, c0). Also, it is possible for k(t) to approach
zero as t — oo at a sufficient rate that KGe € L,(0, c0) even though Ge ¢ L,(0, o).
For this situation as well, it is seen from (2.11) that e € L,(0, ).

One further point is worth noting. The result of Case II has not been obtained
in any of the previous works on instability [3], [13], [1]. This result cannot be
obtained by the methods used by Willems [13] or Bergen and Takeda [1] since
their methods of proof depend heavily on the condition that G be bounded on
L,(0, 00) (i.e., G(s) can have no singularities in Res > 0). Also, as mentioned
previously, the result of Case I generalizes those in [13] and [1] in that G is allowed
to be unbounded. Thus, Theorem 2 applies to systems having an unstable open
loop, whereas the results in [13] and [1] do not.

The next result (Theorem 3) gives an instability counterpart to stability
theorems of the type given by Brockett and Forys [2], Gruber and Willems [6],
and Freedman [4] with regard to systems having slowly varying feedback gains.
Before giving the result some notation will be needed.

Let @(-) be a differentiable mapping of the real line into the interval (—m, n)
with lim, - ,, [®(w)| = 0. Then define y by

(2.12) y & 7 — max [D(w)|,

and define Q by
(2.13) Q £ min {w|®(w)| <.(x — y)/3 for all || = w}.

THEOREM 3. For the system of Fig. 3, let G €%, G(s) have P poles in Res > 0,
o+ e Z k(t) £ B — eforsomee > 0andallt,and let k( -) be absolutely continuous.

Case I (oz > 0,8 > 0). Assume G(jw) does not intersect the interval [—1/u,
—1/B) on the real axis, and encircles it N times in the clockwise direction with
N # —P.

Case 11 (@ < 0,8 > 0). Assume G(jw) does not intersect either the interval
(—o0, —1/B] or [—1/a, 00) and P # 0.
Then, with ®(w) = arg [1 + BG(jw)][1 + aG(jw)]™*, y and Q given by (2.12) and
(2.13), and

(2.14) o, (3””) / f

if there exists a o € (0, 0.) such that either

(i) k@)/(k(e) — @) < 20(1 = (k(t) — W/ — a0))

d)(a)) ’ dw,

or
(ii) k(@)/(k(t) — @) 2 —20(1 — (k(t) — 0)/(B — @)

holds for all t = t, > 0, there exists a u€ L,(0, c0) such that if e€ L, 0, ) is a
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solution of (2.11), then e ¢ L,(0, 00) and Ge ¢ L,(0, o) for Case 1, and Ge ¢ L,(0, o)
for Case 11.

It should be noted from the proof of Theorem 3 (in particular (3.17)) that one
does not need to require k() to be absolutely continuous for Theorem 3 to hold.
One can replace conditions (i) and (i1) above by

(i) (B — k(t)/(k(t) — &) e~ *" is monotone nonincreasing,

(il") (B — k(t)/(k(t) — «) e** is monotone nondecreasing,
and the conclusions still " hold. Thus in the case ('), decreasing discontinuous
jumps are allowed, and in case (ii'), increasing discontinuous jumps are allowed.

3. Proofs. As discussed in the Introduction, the essential idea behind the
proof of Theorem 1 is the replacement of the unbounded operator G by the bounded
noncausal operator G, defined in Definition 2. The next lemma is the key result
concerning G,,.

LeMMA 1. Let Ge % and e € L,(0, ). If Ge € L,(0, ), then Ge = G,e, where
e and Ge are viewed as elements of L,(— o0, o0).

The proof of Lemma 1 is given in the Appendix. Before a proof of Theorem 1
can be given, one more lemma is needed.

LemmA 2. Let F, G, and H satisfy the assumptions of Theorem 1. Then
(I + HFG,,) has a noncausal inverse on L,(— o0, ), and Py(I + HFG,,)™!
-(I — P;) # 0 forall TeR.

The proof of Lemma 2 is given in the Appendix. It should be noted here that
if F and H are linear operators, the noncausality of (I + HFG,, )" implies that
Pr(I + HFG,,) (I — P;) # 0. However, for nonlinear operators this is no
longer the case.

We are now in a position to give the following proof.

Proof of Theorem 1. If there exists an e € L,(0, co) satisfying (2.10) for a given
u€ L,(0, 00), then Gee L,(0, 00). Indeed, from the causality and positivity con-
ditions on F and H and the Schwarz inequality, it follows that forany x € L, (0, ),

(3.1) | PrFx|| = ky[|Prx]|
and
(3.2) [PrHx|| = ol Prx]|.

Thus if x ¢ L,(0, 00), limy_, , |PrFx|| and lim_ , ||[PrHx|| are unbounded and
thus Fx¢ L,(0,00) and Hx¢ L,(0,0). Hence if Ge¢ L,(0,c0), then HFGe
¢ L,(0, 00), and e € L,(0, c0) could not satisfy (2.10) when u € L,(0, o0). Therefore,
it is seen that Ge e L,(0, o0), and from Lemma 1 it follows that Ge = G,e. As a
result, e viewed as an element of L,(— 00, c0) with e(t) = 0 for t < 0 must be a
solution of

(3.3) (I + HFG,)e = u,

where u is viewed as an element of L,(— o0, 00) with u(t) = 0 for t < 0. It will
now be shown that there exists a # € L,(— o0, 00) with ii(t) = 0 for t < O such that
if ee L,(— o0, o0) and satisfies (3.3) with u = 4, then Pye # 0. Thus, for u = i in
(2.10), there can be no solution e € L,(0, c0).
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From Lemma 2 it is seen that (I + HFG,,) is invertible on L,(— oo, c0) and
P.(I + HFG,,)"'(I — P;) # 0 for all Te R. Thus, there exists a i € L,(— 00, 00)
with Pyl =0, (e, 2(t)=0 for ¢t <O0) such that P,é # 0, where é = (I
+ HFG,,) ‘4. Furthermore, e = & is the only solution of (3.3) in L,(— 0, )
with u = 4. Therefore, there exists a u € L,(— o0, c0) with Pou = 0 for which there
is no solution e € L,(— o0, 00) with Pye = 0. Hence it follows that for this u there
is no solution e € L,(0, co) of (2.10), and thus if e L, (0, co0) satisfies (2.10), then
e¢ L,(0,00). Q.ED.

The next result to be proved is Theorem 2. The proof simply involves a change
of variables which puts the feedback equations in a form to which Theorem 1
applies.

Proof of Theorem 2. First add and subtract oG from (2.11) to obtain

(3.4) (I + aG)e + (K — 0)Ge = u.

Now, since G € 4 it follows (cf. [8, pp. 141-150]) that for some o, > O there
exists a function h where he °* € L,(0, c0) and a constant h, such that (I + aG)
has a causal inverse on the weighted L,-space

L,(0,00;e7 %) = { fle” % fe Ly(0, o)},

and this inverse is given by
t

(3.5) (I + aG)~'x](t) = hox(1) + f h(t — 7)x(t) dr.
0

Clearly, this inverse of (I + aG) can be extended to L, (0, c0). From the encircle-
ment conditions on G(jw) it follows that inf__ ., ., |1 + aG(w)| # 0 and that
(I + aG(s))"! has P + N poles in Re s > 0 for Case I and P poles in Re s > 0 for
Case II. Thus, (I + aG) ' e %.

Let € = (I + aG)e, so that (3.4) becomes

(3.6) e+ (K — )G + aG) & = u.

Next, add and subtract (1/(f — a))[K — o] from (3.6) to obtain

(3.7 pI — K]'——l——é + [K — o][1 + BG][I + ocG]"lr—-l— ----- é=u.
f—a p—a

From the conditions on K, it is seen that [ — K] has a causal inverse on
L,(0, c0), and hence also on L, (0, o), given by

1
(3.8) (B — K]x)(1) = mx(l)'
Thus, applying [8I — K]~ ! to both sides of (3.7) yields
(3.9) e* + K*¥G*e* = u*,
where
(3.10a) e* = (1/(B — w)e,

(3.10b) u* = (Bl — K)"'u,
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(3.10¢) K* = (Bl — K)" YK — a),
(3.10d) G* = + BG)U + aG)™ 1.

Equation (3.9) satisfies the conditions of Theorem 1 ; for the bilinear mapping
n = (1 4+ Bz)/(1 + az) maps the disk D[a, f] onto the half-plane Ren < 0 for
o > 0 and onto the half-plane Ren = 0 for a < 0, so Re G*(jw) = 0 for all w.
Also, K* is given by (K*x)(t) = k*(¢)x(t), where k*(t) = (k(t) — a)/(B — k(t)). Thus,
there exists some ¢ > O such that ¢ < k*(t) < 1/e. Finally, note that G* = (1 — /)
(I + aG)~ ' + B/, so G*(s) has the same number of poles in Res > 0 as does
(I + aG(s))~ 1.

From Theorem 1 it then follows that there exists a u* € L,(0, c0) such that
if e* is a solution of (3.9), then e* ¢ L,(0, co). This in turn implies that there is a
u e L,(0, co) such that ée L,(0, c0). For Case I it is easily seen from (2.11) and the
positivity of K that e € L,(0, co) if and only if Ge e L,(0, o). Since é = (I + aG)e
and é¢ L,(0, o0), it then follows that e¢ L,(0, c0) and Ge ¢ L,(0, «0). For Case 11
it follows from (2.11) that e € L,(0, oo) if and only if KGe € L,(0, o). If e € L,(0, o0),
then from é = (I + aG)e it follows that Ge¢ L,(0, o). If e¢ L,(0, o), then
KGe ¢ L,(0, co)and thus from the boundedness of K one has Ge ¢ L,(0, o). Q.E.D.

It remains to prove Theorem 3. Before giving the proof of Theorem 3 the
following lemma due to Freedman [4] will be needed.

LemmA 3 [4]. Let he L,(—o0, ), hyeR, and H(jw)= (%, h(r)e " dt.
Further let ®(w) = arg [H(jw) + ho] and assume |®(w)| < = for all w. Then with
7, Q, and 0. given by (2.12) to (2.14), for any g € [0, a.) there is a y( - ) in L (0, c0) such
that with

(3.11) Z(s) =1 +f y(t)e e dt,
0
the following hold

(i) Re{Z(jo — 0)} = 6 > 0 for all w,

(ii) Re {Z(jw)[H(jw) + hyl} =2 6 > 0 for all ®.

It is remarked that in [4], the above result was stated for he L,(0, c0); however,
from the proof it is clear that it holds as well for he L,(— o0, o0).

Proof of Theorem 3. Make the same transformation of variables as in the proof
of Theorem 2 to obtain (3.9). Since the bilinear map 1 = (1 +fz)/(1 + oz) maps
the line segment Reze[—1/f, —1/a] onto Im#n =0, ReA = 0 when a < 0, it
follows from the assumptions in Case I and Case 1I that |arg G*(jw)| > = for
all w. Also, since G* € ¥ there is associated with G* a G as defined by Definition 2.
Thus, there is an hy and he L,(— o0, 00) such that G*(jw) = H(jw) + h,, and
hence by Lemma 3 there exists a causal mapping Z of L,(0, o) into itself given by

t
(3.12) (Zx)(1) = x(t) + j y(t — 1) e " x(1) dr,
0
where ye L(0, o), such that Re {Z(jw)G*(jw)} = é > 0 and Re{Z(jw — o)}
=06>0.
Since ye L,(0, c0), it is seen that Z(s) is analytic for Res = —o, and thus
since Re Z(jw — 6) = § > 0, it follows from the maximum modulus theorem [7]
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that infg ;> _,|Z(s)| # 0 and hence that Z has a causal inverse on L,(0, co) of the
form

(3.13) (Z7'x)(t) = qox(t) + fl q(t — t)x(t) dr,
0

with g e”* € L,(0, o) (cf. [8]). Also, since Z(jw — o) is bounded and Re Z(jw — o)
> 0, it follows that Z~!(s) is analytic for Res = —¢ and Re {Z !(jo — 0)}
2 f > Ofor all w.

Now, rewrite (3.9) as follows:

(3.14) e* + (K*Z~ 1) (ZG*)e* = u*.

It is clear that ZG* € ¢, and from the above it is seen that Re {Z(jw)G*(jw)} = 0
for all w, and hence ZG* satisfies the conditions for G of Theorem 1.

It will now be shown that if (i) holds, then K*Z ™! is a positive operator on
L,(— 0, 00). First of all, K* is extended to a mapping of L,(— o0, o0) into itself
by defining k*(-) to be (note that this does not effect the solution of (3.9) for
t=0)

B — k()

—a 20
(3.15) k(1) = 5 KO

k(O)——O(ezat’ t<O0.

Since Z ! is defined by a convolution, it has a natural extension to L,(— o0, o0).
Then for any x € L,(— o0, o0),

(K*Z 1x,x) Jm k*(t)x(t)(Z ~*x)(t) dt

T
im | k*1) e 27'x(t) e2(Z ~ 1x)(t) dt.

T-

(3.16)

Now condition (i) implies that k*(t) e~ 2°' is monotone nonincreasing for ¢t > 0,
and from (3.15) it is seen that k*(t) e~ 2°" is constant for ¢t < 0. Integrating (3.16) by
parts gives
T
k*Z7'x,x> = lim {k*(T)e“Z“Tf x(t) e2°(Z " 1x)(t) dt
T- oo -0
(3.17)

_ J‘T [f x(t) €2°(Z ~ 1x)(1) dt] d[k*(7) e—zm]} ‘

Now, since Z~' is causal and Re{Z '(jo — o)} 2 >0, it follows from
Parseval’s theorem that

T o0

J x(t) e*(Z " x)(t) dt = if Z Yjo — o)\ X (jo — o) dw
% 2n ) _

(3.18)

= BlIPrx|?,

where X ;(s) denotes the Laplace transform of Prx. Thus using (3.18), the fact



FEEDBACK SYSTEMS 93

that k*(t) = ¢ > 0, and k*(t) e~ 2° is nonincreasing with (3.17), it is seen that
(3.19) CK*Z7'x,x) 2 &|x||

for some & > 0.

Finally, taking F = I, G = Z~'G* and H = K*Z ! in Theorem 1, it follows
that there exists a u* € L,(0, o0) such that if e* satisfies (3.14), then e* ¢ L,(0, ),
and this in turn implies the existence of a u € L,(0, c0) satisfying the conclusion of
the theorem.

The proof of the theorem when (i1) holds is similar to the above except that
in lieu of (3.14), one applies Z~ ! to both sides of (3.9) to obtain

(3.20) Z7le* + (ZTIK*)(G*Z)Z le* = Z 7 lu*.

Condition (ii) implies that k*(t) e2° is monotone nondecreasing, so (1/k*(t)) e~ 2
is monotone nonincreasing. Using this fact and the properties of Z ™!, it is shown as
above that Z~'K* is positive. The remaining details are omitted. Q.E.D.

4. Concluding remarks. An instability theorem (Theorem 1) analogous to
the positive operator theorem for stability has been obtained, and this result has
been used to prove the instability counterparts of the circle criterion (Theorem 2)
and a criterion with restricted rate of gain variation (Theorem 3). The method
employed here for proving instability allows one to deal with a much wider class
of systems than did previous methods, in that unbounded operators can be handled,
and also multiplier techniques can be employed in obtaining explicit instability
criteria.

Although a majority of the stability criteria proved using multiplier tech-
niques can now, through the use of Theorem 1, be given instability counterparts,
it is not true in general. In particular, the results of Freedman and Zames [5] do
not carry over. The reason for this is that although when G is a positive causal
operator and k(-) is a monotone decreasing gain the operator KG is positive
(where (Kx)(t) = k(t)x(t)), this is no longer the case if G is noncausal. As a result,
the factorizations used in [5] will not yield a positive operator when G, is used in
place of G. At this point, it is a perplexing question as to whether this is a result of
the method of analysis or if the instability counterpart to the result in [5] is simply
not true. Most would probably conjecture that it is the method of analysis which
is at fault.

Another deficiency in the methods used here is that the instability circle
criterion for nonlinearities in the feedback path cannot be handled satisfactorily.
One can easily extend Theorem 2 to cover the case of a time-varying nonlinearity
f(-, 1) satisfying alx — y| < |f(x,t) — f(y,t)| < Blx — y| but not to the case
o < f(x,t)/x < p,whichhas been handled successfully in [1] and [3]. Also, counter-
parts to the results of O’Shea [10] and Zames and Falb [15] cannot be obtained.
The reason for this deficiency lies in the fact that the proof of Theorem 1 relies on
the inverse of I + HG,, existing on L,(— o0, o), and therefore incremental
bounds on nonlinearities are needed. For finite-dimensional systems, this presents
no problem since one can linearize and prove instability locally.

To end on a more positive note, it is pointed out that one need not assume
anything (such as having a causal inverse) about the behavior of the operator
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(I + HG) on the extended space L, (0, oo). In fact one does not even need to deal
with L, (0, oo0), but can make the domain of the operator as large as is desired
(e.g., measurable functions). For recalling the proof of Theorem 1, it was shown
that if e lies in the domain of (I + HG) and satisfies (I + HG)e = u for a certain
ue L,(0, o), then e ¢ L,(0, ).

Appendix.
Proof of Lemma 1. From (2.1), (2.2), and (2.6) it is seen that, with e(t) = 0 for
t <0, Ge = G,e if and only if

(A.1a) ft 2,(t — te(t)dt = — on g,(t — 1)e(r)dr, t=0,
0 t

(A.1b) 0= fw g,(t — 1)e(r) dr, t < 0.

0

This is equivalent to the condition

(A.2) J &,(t — 1e(r)dt =0, -0 <t< 0,
0
where g,(t) = g,(t) + g,(t) (note: g,(t) = Ofort < 0 and g,(t) = O fort > 0).
Let y = Ge, so by assumption y € L,(0, o). The Laplace transform of y is

(A3) Y(s) = G(s)E(s),

where E(s) is the Laplace transform of e. The region of convergence for G(s) is
Res > g, and for E(s) it is Res > 0. Thus Y(s) is well-defined for Res > a,.
However, since y € L,(0, o) it follows that Y(s) is analytic in Re s > 0. Thus if
G(s) has an [;th order pole at s = g, with Re g; > 0, then E(s) must have at least
and /;th order zero at s = ¢;. Thusforg < [; — 1,

<o) q
(A4 [(moremea =252 <o
0 dsq s=aoi
Hence, for ¢ < I, — 1,
(A.5) f (t — 1)1 e’ " Ye(t)dr = 0,
0

and since

n l;

8,(t) = Z Z ai,j[j_l e’

i=1j=1
it then follows from (2.16) that

f g,(t — te(t)dt =0
0
for all ¢.

Proof of Lemma 2. Two preliminary lemmas are required for the proof of
Lemma 2.

LeEMMA 4. Let Q be a mapping of L,(— oo, o) into itself and be a contraction
(e, Ox; — Ox,| < ylx; — x,| for all x,;,x,€ L,(— o0, ) and some y < 1).
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Then I + Q is invertible on L,(— oo, o), and if PrQ(I — Pr) # O for some T, then
P(I+ Q) 'I—-Pgy)#0.

Proof. The fact that I + Q has an inverse if Q is a contraction is well known
(cf. [9] and note that L*(— oo, 00) is complete). To prove the remainder of the
lemma, note that since P,Q(I — P;) # 0, there exists some x € L,(— o0, 00) with
Prx =0 and P;Qx # 0. Let y = x + Qx, so P;y # 0, and let £ be given by
£ =+ Q) '(I — Py)y. It will be shown that Pr% # 0 and hence that P(I
+0) Y1 — Py) #0.

Since
(A.6) I+Qx=y
and
(A7) I+ Q)% =U-Ppy,
subtracting (A.2) from (A.1) gives
(A.8) (x = %)+ Ox — Q% = Pyy.

Thus, from (A.8),
x —%,Pry) =<{x—%,x — X+ Q0x — Q%)
= lx — %% + <{x — £,0x — Q%)

(A.9) 2 [x = £I* = Kx — £,0x — Q%)
2 fx — %I = Ix — 211Qx — 0|
2 (1 = ylx = 2II%

Also, from (A.8) it is seen that £ # x since P;y # 0. Thus, from (A.9), (x — %,
Pry> = —(P¢%X,Pry> > 0 and thus P;£ # 0. Q.E.D.

LEMMA 5. Let G and F satisfy the assumptions in Theorem 1. Then (I + FG,,)
has a noncausal inverse on L,(— 00, 00), and in fact, Pr(I + FG,.)"'(I — P;) # 0
for all TeR.

Proof. Consider the equation

(A.10) (I + FG,)e = u.

It will be first shown that (A.10) has a unique solution in L,(— oo, o) for every
u € Ly(— o0, 0), and hence that (I + FG,,)” ! exists on L,(— 00, 00). Add and sub-
tract cG,, from (A.10) with ¢ > 0 to obtain

(A.11) I+ cGple + (F — c)G,e = u.

From the fact that Re G, (jw) = 0 for all w, it follows that [1 + ¢G,(jw)] ! is
bounded and thus defines a mapping of L,(— o0, c0) into itself [8], namely,
(I + ¢G,,)~". Also, since G, (s) has poles in Res > 0 and Re [1 + ¢G, (jw)] > 0,
it follows easily from the principle of the argument [7] that [1 + ¢G,(s)]"! has
poles in Re s > 0, and hence that [I + ¢G,.] ! is noncausal.

Having established that (I + ¢G,,) has a noncausal inverse, let & = (I + G, )e
so that (A.11) becomes

(A.12) &+ (F — )G, (I + ¢G,) "¢ = u.
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Note that since I — (I + ¢G,.)"! = ¢G,(I + ¢G,)" !, it follows that G,(I
+ ¢G,,)~ ! is noncausal. It will now be shown that for ¢ sufficiently large, Q = (F
— )G, (I + ¢G,,)" ! is a contraction. First of all,

(A13) G I + ¢G,)" I = sup |G, (jw)(1 + ¢G,(jo)'| < /e,

where | - | denotes the induced norm on mappings of L,(— oo, o0) into itself.
Secondly, for all x,, x, € L,(— 00, o),

I(F = exy — (F = cDx,|?

(A.14) = [|[Fx; — Fx,||* — 2c{Fx; — Fx;,x; — x,) + c?[|x; — x,?
= (k% — 2ck; + c2)||x1 - x2||2.
Thus
10x, — Ox, 1% < (1/c?) (k3 — 2cky + *)llx; — x,||?
2k k2
(A.15) = (1 —71+;§—)1|x1 — X,

For c¢ sufficiently large, (1 — 2k,/c + k3/c?) < 1, and hence Q = (F — ¢I)G,,
(I + ¢G,,)" " is a contraction.

Since Q is a contraction for ¢ sufficiently large, I + Q is invertible on
L,(— o0, o) for ¢ sufficiently large. Further, sincee = (I + ¢G,.)” ', it then follows
that I + FG,, is also invertible, and in fact

(A.16) (I +FG,) ' =(+cG,)'U+Q"

[t remains to be shown that P(I + FG,,)”'(I — P;) # 0 for all TeR. As
shown above, G, (I + ¢G,.)” " is noncausal. Since it is a linear time-invariant
operator, it is easily seen that P;G, (I + ¢G,.)” (I — P;) # 0 for all Te R. Then,
for ¢ > k,, PtQ(I — P;) # 0. Indeed, since F is causal,

(A.17) PO — Py) = P,[F — cI]P;G, (I + ¢G,.)”"'(I — Py),
and for any x € L,(— o0, 00),

(Py(F — cD)Pyx, Ppx)y = (FPpx, Ppx)y — ¢ Pyx||?
(A.18) < (ky = )l Ppx]?,

and thus for ¢ > k,, P{(F — cI)Pyx = 0 if and only if P;x = 0. Therefore, since
PG, (I + ¢G,)"'(I — Pp) # 0, it follows from (A.17) that P,QU — P;) # 0.
Lemma 4 then establishes that P,(I + Q)" '(I — P;) # 0, and thus for every T
there exists a u e L,(— o0, 00) with Pu = 0 and P;é # 0, where ¢é satisfies (A.12).
Finally, it can be concluded that the corresponding solution e of (A.10) satisfies
Pre # 0. For suppose Pre = 0. Then P FG,.e = 0, and since F is causal and
{PFP,G,e, PG e> = k| P;G,e|3, it then follows that P.G,e = 0. But
é=-¢+ cG,e so P& =Pre+ cP;G,e =0, giving a contradiction. Hence if
P& #0, then Pre # 0, and therefore P(I + FG,.) '(I — Py) # 0 for all
TeR. Q.ED.
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From Lemmas 4 and 5, the proof of Lemma 2 can now be given. Consider the
equation

(A.19) (I + HFG,.)e = u,
and add and subtract ¢cFG,.e to obtain
(A.20) (I + ¢FG,.)e + (H — c)FG,e = u.

Now from Lemma § it is known that (I + ¢FG,) has an inverse on
L,(— o0, 00) and satisfies Py(I + ¢FG,.) (I — Py) # 0 for all Te R. Thus let
¢ = (I + c¢FG, e so that (A.20) becomes

(A.21) ¢+ (H — c)FG, (I + ¢cFG, ) '¢ = u.

The remainder of the proof proceeds in precisely the same manner as that of
Lemma 5. It is only necessary to show that P, W(I — P;) # Oand |[Wx, — Wx,||
< (1/o)llx, = x,|| for all x,,x,€L,(—o0, ), where W =FG,(I + ¢cFG,,)"".
To show PW(I — P;) # 0, simply observe that W = —(1/c)[I — (I + ¢FG,.)" '],
and hence that PW(I — Py) = —(1/c)Pr(I + ¢FG,.) (I — P;) # 0.

To show [[Wx; — Wx,| < (1/c)]|x, — x,]I, let x,,x,€L,(—00,00) and
define y;and e, (i = 1,2) by

(A.22) yi = FG,(I + ¢FG,))" 'x,,
(A23) ¢, = (I + ¢cFG,) 'x,.
Then

(A.24) 1= Y2, (xy = eyy) = (x2 — cy)) = (FGue, — FGuey,e0 — ;) 20,

where condition (c) of Theorem 1 has been used to obtain the inequality. Using
the Schwarz inequality it then follows from (A.24) that

(A.25) Iyy = vall Xy = x50l 2 <yy = yauxy — x50 Z ¢y, — Y2“2’
and thus ||[Wx, — Wx,| = (1/o)llx;, — x,I|. Q.E.D.
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ON THE EXISTENCE OF MOMENTS
OF STATIONARY LINEAR SYSTEMS WITH
MULTIPLICATIVE NOISE*

U. G. HAUSSMANNt¥

Abstract. Conditions are derived under which a control system described by a linear stochastic
differential equation with multiplicative noise possesses a stationary probability distribution with
finite pth moment. Both the 1t6 and Stratonovich interpretations are considered.

1. Introduction. Consider the control system described by the stochastic
differential equation

(LY X = Ax — Bu — C(uw, + D(x)w, + Ew,;.

Here x is the state vector, u the control vector and w,, w,, w; are independent
Gaussian white noise disturbances. The matrices C(u) and D(x) are assumed to
be linear in their arguments, and hence these terms could model wide band
disturbances in the matrices 4 and B. Some applications of this equation are
given in [4].

A problem of some interest is to determine conditions under which the
corresponding process has a steady state for which the pth moment, i.e. &{||x|?},
is finite. This is a type of stability, equivalent to Lagrange stability of deterministic
systems. In the case p = 2, such a stability guarantees that there exists a control
minimizing the expected value of a quadratic cost criterion in the steady state
(11, {71, [8].

Usually (1.1) is interpreted in the sense of 1t6 ; however, it is well known that
actual physical processes described by a Langevin equation can best be approxi-
mated by equations interpreted in the sense of Stratonovich [5], [6]. In the present
article we extend results about the second moments known for the Itd6 equation
[17, [2], [3]1, [7], [8] to the Stratonovich equation, and then extend these results
to higher moments.

In [8]itis shown that if the noise is sufficiently small, then the second moment
is finite for (1.1) in the It6 sense. In [3] it is shown for the case D = 0 that the same
conclusion holds if the system has suitable structure. After some preliminaries in
§ 2, both these results are shown to hold in § 3, when (1.1) is interpreted in the sense
of Stratonovich. In § 4 it is shown that the same result holds for higher moments
for either interpretation. Finally, in § 5 conditions on the structure of the system
are given to guarantee finite the pth moment for the case D # 0.

2. Some preliminaries. Consider the stochastic differential equation

2.1 dx = (Ax — Bu)dt — C(u)dw, + D(x)dw, + E dw;, t =0,

where x is a vector in R", Euclidean n-space with norm x| = [Yr_, |x)|*]"/?,
* Received by the editors September 25, 1972, and in revised form January 8, 1973.
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n = 2,uisin R", and w,, w,, w; are independent Wiener processes of dimensions
d,,d,,d; respectively. C(u) and D(x) are given by
m

C(U) = Z Ciuia
i=1

D(x) = ) Dx;,
i=1

and A4, B, C;, D;, E are real constant matrices of corresponding dimensions.
Hence D, C are linear operators mapping R" (resp. R™) into the space of n x d,
(resp. n x d,) matrices.

Ifin (2.1), u has the form u = Kx and the random variable x(0) is independent
of the increments of the Wiener processes, then (2.1) determines a diffusion process

(2.2) Xk = {x(t):t = 0}.

Here we have assumed that the stochastic integrals implicit in (2.1) are taken in
the sense of 1t6. If they are taken in the sense of Stratonovich [5], then a different
diffusion process results,

(2.3) Xy = {x(t):t = 0}.

Although the Stratonovich interpretation of (2.1) is more meaningful
physically, since it is the limit of a suitable sequence of Langevin equations [6];
the It6 interpretation is easier to treat mathematically. In view of this we observe
that the process X also satisfies the Ito equation

(2.4) dx = (Ax — B(K)u)dt — C(u) dw, + D(x) dw, + E dw,,
with u= Kx, where 4 =4+3)% (D)’, BK)=B— p(K). Here (D)
= (Dk)ija B(K) = %Zj':l CjKCj’ and (Cj)ik = (Ck)ij (see [5)).
Let &, be the differential operator given by
(2.5) ZxV(x) = X [AV,) + KT(V,)K]x + X(4 — BK)V, + 3 tr (E'V,,E),

where tr M is the trace of M, V, is the vector 0V /0x, and V,, is the matrix 0%V /0x>.
x'denotes the transpose of x. Moreover, A(P);; = tr (D;PD;)and I'(P);; = tr (C;PC)).
Similarly, let £ be given by

2.6) FV(x) = ix[AV,) + KT(V,)K]x + x(4 — B(K)K)V, + +tr (E'V,,E).
Then £, and Zy are the differential generators of X and X . respectively.
We shall say that u, a probability measure on the Borel sets of R", is invariant

provided that x(t) has distribution y,t > 0, whenever x(0) has distribution pu.
Of interest is the pth moment of p, i.e.,

EdIx]7) = j X7 (d).
-

We wish to investigate conditions guaranteeing that there exist controls u = Kx
such that for either X or X :

) (i) the process admits at least one invariant probability measure;
27 . o .
(i) all such invariant measures have finite pth moment.

The case of Xy with p = 2 and D = 0 was discussed in [3].
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3. Existence of second moments for X,. In [1], [8] it is shown that there
exists a control u = Kx such that the process Xy satisfies (2.7) with p = 2 provided

(3.1) inf j B TA(L) + K'T(I)K e~ 8K gt “ <1,
KexX'

0

where A = {K:A — BK is stable}. By definition 4~ # (¥ if (4, B) is stabilizable.
The same method applied to (2.4) yields that there exists a control u = Kx such
that the process X satisfies (2.7) with p = 2 provided

(3.2) inf
KeX
where # = {K:A — B(K) is stable}.

Moreover, if (4, B) is stabilizable, and if ||C|| and ||D|| are sufficiently small,
then A # . Hence assuming (A, B) is stabilizable, we again have that if the
noise intensity is sufficiently small, then an invariant measure with finite second
moment exists.

However, just as in the case X, we can do better if we assume D = 0 (see [3]).
a(4), the minimal polynomial of A, factors into a(4) = o (A)a_(4), where a_(4)
has all zeros in the half-plane Re (1) < 0, and a, (1) has all zeros in Re (1) = 0. Put

(3.3) F(A) = {xe R":a,(A)x = 0}.
Next define

<1,

f ¢ A BERKIIA(L) 4+ K'T(IK] '~ BEK gy

0

M(V)={BuueR",Cuev,j=1,2,---,d,}
= {Bu:ue R",Image C(u) = ¥}.
Let #, = & (A) and
Ry =span {R;, x,Ax, -+, A" 'x:xe€ MR)}, i=0.

THEOREM 3.1. If R,, = R", then there exists a control u = Kx such that the
process X g satisfies (2.7) with p = 2.

It should be observed that this theorem is the same as Theorem 3.7 in [3].
Hence if #,, = R", then invariant probability measures exist and they have finite
second moment irrespective of whether (2.1) is interpreted in the sense of It6 or
in the sense of Stratonovich. Of course the associated control problem (cf. [1], [7])
can no longer be solved as easily with the Stratonovich interpretation as it could
be with the It6 interpretation.

The proof of the theorem is the same as that of Theorem 3.7 in [3], if we
proceed as follows. Let T, be the projection of R" onto ¥;(A) along %% (4).
Then T, A = AT, = A, . It follows that A_ restricted to %_(A4) is stable. Put
x; = Tyx,B,(K)= T,B(K),C(u) = T,C(u),E, = T,E.Then(2.4)decomposes
nto

dx_ =[A_x_ — B_(K)u]dt — C_(u)dw, + E_ dwj,

3.4 dx, = [A.x, — B, (Ku]dt — C,(u)dw, + E, dw,.
IfKisoftheform K = K, T,,ie,u=Kx = K,x,,then
B.(K) = §+(K+) =B, — B.(K,),
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where

:%Z +)K )j-

Here C,(u) =), T.Cu; = Y (C,)u;, and (C,); is derived from (C.); just as
C;is from C Hence with such a control, (3.4) has exactly the same form as (2.4).
Itisknown [3, Lemma 3.1] that a control asrequired by the theorem exists, provided
that there exist real matrices P = 0 (i.e., nonnegative definite and symmetric)
and K , and positive constants A, and p, such that for all x, € &, (A4),

PE P S Ay — pelxg >

Here f?;* is the operator as defined in (2.6) with + subscripts on K, I', 4, B,
C;, E and D = 0; hence it is the differential generator of the process described by
(3.4)withu = K_ x_.

As in [3] we try to stabilize A, using controls u in A", the kernel of C ().
Assume R™? is isomorphic to R™/.4#" and let S be a linear map of R™* into R™
with the image of S being complementary to .#". Thenu = K, x, can be written as

u=K'x, + Su?
where K'x, € 4" and u? € R™. Hence
dx, = (A, — B,KYx, dt + f.(K.)K'x, dt
— (B, — Bo(K,)Su?dt — C_(Su*)dw, + E, dw;.

As K'x, e A, then B, (K, )K'x, =0. Put E? = E_, C*u? = C,.(Su?), B?
=B.,S,A*=A, — B,K',x?> = x,,u* = Kx*. Then

ﬁ+(K+)S = [f+(K1 + SK)S = ﬁ+(SK_)S = BZ(K),
where 2 is derived from C? exactly as § is from C. Then (3.5) becomes

(3.6) dx? = (A2x* — BA(Kw?) dt — CHu?)dw, + E* dw,.

(3.5)

This has the same form as (2.4) and so we can repeat the process. Now we can
follow the method in [3] to complete the proof.

For the process X we were able to show that if #,, # R" and if the noise is
sufficiently large, then all second moments must be infinite. In the present case the
proof breaks down, although one would certainly expect the result to hold.

4. Existence of higher moments. It is known [3], that if there exist a function
V(x) and positive constants k, p such that

(4.1) LxV(x) =k — pllx)|”,

then the process X g satisfies (2.7). If we set V(x) = (x'Px)? for P > 0 with g = 1,
then just as in the proof of [3, Thm. 4.3],

V(%) < q(x'Px)*"'{(2q — 1) tr (E'PE)

4.2

42 + x'[(2q — 1)(A(P) + K'T(P)K) + (A — BK)P + P(A — BK)]x}.
But

“43) q(x'Px)"~ 'x'[(2q — 1)(A(P) + K'T(P)K) + (A — BK)'P + P(A — BK)]x

< = pollxII*,
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Po > 0, if and only if for some Q > 0,
44) (29 — 1)(A(P)+ K'T(P)K) + (A — BK)P + P(A — BK) + Q = 0.
In this case (4.2) implies (4.1) with p = p,/2 and with

k= p'"qg(2q — D|P|*"" tr (E'PE))

Combining this with Lemma 3.1 from [7] and setting p = 2q we have the following.
LeEmMa 4.1. If

4.5) inf

Kex

f ¢ BRYA(L) + K'T(DK] ¢4~ BK) dy
0

<(p-1n7",

then there exists a control u = Kx such that the process Xy satisfies (2.7) with
pz2
We observe that the same result holds for the process X ., if (4.5)is replaced by

4.6) inf

KeX

<-4

f " pUABRIRA() 4 KT(I)K] e BER gy
0

Moreover, the methods of [1], [3] and the previous section yield further information
in the case A = 0.

THEOREM 4.2. If R,, = R", then there exists a control u = Kx such that both
X and X satisfy (2.7) for any p = 2.

The proof of this theorem proceeds as in [3] for X, and as in the previous
section for X . As the equivalent of Lemma 3.1 of [3] one needs to show that if
there is a mapping P, of &, (A) onto itself satisfying (4.4) on %, (A), then there is a
mapping P of R" onto itself satisfying (4.4) on all of R". On . (A), A = A_ is
stable, and so (4.4) can be solved for P_ with Q = I, K = 0 (A = 0). Let V(x)
= x'Px = x', P, x, + x'_P_x_. Mixing notation from (4.18) of [1], we see that
the left side of (4.3) is

q(xlpx)q_l{(zq = DX, KL [I(T, P, T,) + BI(T_P_T)]K ; x
+ x (A4, — T,BK )P, + P, (A, — T,BK)]x,
+ Bx_[A_P_ + P_A_Ix_ — 2Bx' (T_.BK ,YP_x_}

S —q(x'Px)"p, )| x||?

if f > 0 is sufficiently small as in (4.18) of [1]. Hence P satisfies (4.3) and conse-
quently (4.4).
The remainder of the proof is exactly the same as in [3] for the case p = 2.

5. Further results for state-dependent noise. We shall now give some results for
the case D # 0 analogous to Theorems 3.1 and 4.2; that is, we shall prove the
existence of controls u such that the corresponding process satisfies (2.7) without
requiring the noise to be small. Again we rely on the results of [1, § 4]. We assume
that C = 0. The basic idea is as follows. Let .4} be the kernel of D. Suppose there
exists a matrix K such that .4; is invariant under A — BK, i.e., if x is in .4; then
so is (4 — BK)x, and such that 4, is a subset of ¥ (4 — BK) (cf. (3.3)). R" can be
split into A4 and R"/.A4;. Now the proof of Theorem 4.1 of [1] goes through.
(There is an extra term of the form Sy Fz in (4.18) since .4, need not decompose
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R" relative to A — BK.) The condition (4.8) of [1] is satisfied since it pertains to
Aon Ay, 1e.,A_(I) = 0. Finally to satisfy condition (4.9) of [1], we use Lemma 4.4
of [1], i.e., we assume that R"/.A, < (Image (B))/.A}.

To formulate the result precisely we proceed as follows:

A1 = {u:D(Bu) = 0} and T, is any projection of R™ onto .4;.
A, = ker (Ty). Hence R" = 4] @ A;. Ny = {x:D(x) = 0}.

THEOREM 5.1. Assume
() R" = A; @ B(A),

(i1) Image (DAT,) < Image (DB),

(iii) Ay < span {Ryp [ToA], S (ToAT,)},
where T, is the projection of R" onto A, along B(A3) and where Ry [A] = image
([BT,, ABT,, ---, A" 'BT,)). Then there exists a control u= Kx such that
X g satisfies (2.7) for p = 2.

Proof. From (i) and (ii) it follows that there exists a matrix K, with kernel
(Ko) 2 B(A), image (Ky) € A5, such that if u = Kyx + v for any v in .4, then
D(Bu) = D(AT,x). Hence if K = K, + K, where K, is any matrix mapping R"
into 47, then

D[(A — BK)x] = 0

for x in A4 . Thus A} is invariant under A — BK.
It follows that

(5.1) A — BK, = AT, + TyAT,,

where T, =1 — T, and so if B(-) and y(-) are the minimal polynomials of
A — BK, and T,AT, respectively, then

(52) 0= f(A — BK)T, = B(T,AT,)T,.

Hence y(1) divides A(1). As T,f_(ToAT,) = B_(0)T, and B_(0) # 0, it follows
that

(5.3) STy AT, < ;.

Using (5.2) and (5.3) one sees that & (TyAT,) = & (A — BK).

From (iii) it follows that xe 4; has the form x = x, + x,, where x, e Ry [T, A]
and x,e % (T,AT,). But (5.1) and BT, = T,BT, imply x, € Ry;[A — BK,].
We conclude that

Ay < span {Rpr [A — BK,], (A — BK,)}
= % (4 — BK)

for suitable K, [3, Thm. 3.2]. The proof is now completed as mentioned above
using Theorem 4.1 and Lemma 4.4 from [1], observing that A > 0 on B(.4,).

Some comments are appropriate. First, the work of the previous section
shows that the theorem is valid for any p = 2. In addition, these results are also
true for the process X . This follows readily if we observe that AT, = AT,, and
then apply the theorem to (2.4).

Finally, for the case C # 0, the theorem is still true if we add the assumption :
(iv) for all u, image (C(u)) = A;.
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The overall results of the theory are now summarized. If the pair (4, B) is
stabilizable and the state- and control-dependent noise are sufficiently small,
then (2.1) has a stationary solution whose pth moment is finite no matter whether
the It6 interpretation or the Stratonovich interpretation is taken. The greater p
is, the smaller the noise must be.

Ontheother hand,if D = Oorif C = 0,and if the system has suitable structure,
then just as in the case of no multiplicative noise, there exists a control giving
rise to a stationary process with all moments finite. The result is again independent
of the interpretation of (2.1). Moreover, if the system does not have the required
structure and the control-dependent noise is sufficiently large, then no such control
exists provided the Ito interpretation is used and D = 0. Finally if both state- and
control-dependent noise are present but the control-dependent noise does not
produce state-dependent noise, then a similar result holds.
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RELAXIVE HILBERT PORTS*
A. H. ZEMANIANY

Abstract. The completely monotonic behavior of the transient responses of RC n-ports to certain
pulses of finite duration is used to characterize a more general kind of system, which we call the relaxive
Hilbert port. This generalization encompasses networks having an infinite number of lumped and
distributed elements as well as an infinite number of ports.

A primary result of this work is the generalization of Bernstein’s theorem on completely monotonic
functions to operator-valued functions. This in turn leads to a representation theorem, which states
that the frequency-domain system function for a relaxive Hilbert port is the Stieltjes transform of a
positive-operator measure. The approximation of the unit-impulse response by a finite sum of damped
exponentials is discussed. For n-ports, this provides a means of synthesizing a relaxive Hilbert port
as an RC network with perhaps ideal transformers.

Meixner’s concept of a relaxation system of the second kind is also extended to operator-valued
functions, and relaxive Hilbert ports are shown to be special cases of such systems. In fact, relaxive
Hilbert ports are precisely those relaxation systems of the second kind whose unit-impulse responses
remain bounded. Actually, the inevitable stray capacitances of any physical electrical system force
every relaxation system of the second kind to be relaxive.

An example of a relaxive infinite system is also given.

1. Introduction. The concept of a “relaxive one-port”, which was introduced
in a prior work [18], extends the idea of a finite lumped RC one port with an initial
shunting capacitor to the general context of linear time-invariant passive systems.
Thus, infinite and distributed systems are included within this extension. Our
present objective is to define and investigate the analogous concept for n-ports
and more generally for Hilbert ports. The latter is a system analogous to the n-
port but with signals that take their instantaneous values in a complex Hilbert
space [14], [15].

To motivate our subsequent definition, consider the finite lumped RC
n-port N of Fig. 1, where every port has a shunting capacitor. There are n current
generators driving each port and yielding thereby an impressed current vector
u={u;, -, u,}. The responding voltage vector is v = {v,,---,v,}, and the
polarities for these quantities are so assigned that (u(t), v(t)) is the complex power
entering N at the instant ¢. Here, (-, - ) denotes the inner product in n-dimensional
complex Euclidean space C". Any impulse of current u = ad, where ae C" and ¢
is Dirac’s delta function, deposits charges at the time ¢t = 0 throughout a certain
capacitive subnetwork N, of N. N, can be obtained by open-circuiting every
resistor in N. N, will not in general contain every capacitor in N, but it will
include every capacitor that is connected across the terminals of any port. The
charge vector inserted through the n ports is the integral of ad, namely, a. On the
other hand, the voltage v(0) generated at t = 0 by the inserted charge is v(0) = Ma,
where M is the inverse of the open-circuit capacitance matrix of N .

The charges in N, induce dissipating currents in N, which produce in turn a
monotonic decay in v. Indeed, it is a fact (see [4, pp. 267-270]) that the open-circuit

* Received by the editors April 18, 1972, and in revised form January 18, 1973.
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+
u @ \_ll ;IL FINITE
LUMPED
RC n-PORT
< N
+
“® w x
FiG. 1
impedance matrix Z of N has the form
m P.
(1.1) ZQ) = —,
jgl C + O(j

where { = ¢ + iw is a complex variable, each P; is a positive (i.e., nonnegative
definite) matrix, M = Z';‘=1 P;, and the o; are real numbers satisfying 0 < o,
<a, <--- < o,. The response v to the input u = ad is therefore

(1.2) o(t) = Pyae™ ™1 (1)

j=1
1,(t) denotes Heaviside’s unit step function. Since (Pa,a) = 0, it follows that
(v(t), a) is completely monotonic for ¢t > 0. In fact, this property of (v(t), a) con-
tinues to hold for t > T if u is any current vector of the form u = a¢, where ¢ is
any smooth (i.e., infinitely differentiable) function with support contained in the

interval (— oo, T']. Moreover, in the latter case,

(), @) = (Ma, a) f g0 dr.

It is through these properties that we shall define our general class of relaxive
Hilbert ports in § 3. It will be shown in § 4 that a necessary and sufficient condition
for a linear time-invariant Hilbert port with a convolution representation to be
relaxive is that its response v to the input u = ad be of the form

(1.3) ut) = foo dPae™"1 (1),
0

where P, is a PO measure (i.e., a positive-operator measure) on [0, c0). The proof
of this result is based on an extension to operator-valued functions of Bernstein’s
theorem concerning completely monotonic functions [12, p. 160]. The needed
extension is established in the next section. Moreover, the impedance Z of a
relaxive Hilbert port is characterized by a Stieltjes integral analogous to (1.1).
It follows easily from this that every Hilbert port is passive.

The approximation and synthesis of relaxive n-ports by finite lumped RC
n-ports is investigated in § 5. Actually, our results are obtained in the general
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context of Hilbert ports, but, until synthesis techniques with appropriate building
blocks are devised for Hilbert ports, the results of this section have a physical
significance only for n-ports.

In § 6 we extend Meixner’s class of relaxation systems of the second kind
(8, p. 282] to Hilbert ports and then show that our relaxive Hilbert ports comprise
asubset of that extended class. We exploit these results in § 7 to develop an example
of a relaxive Hilbert port consisting of an infinite lumped RC network with an
infinite number of ports.

Our notation is identical to that used in [14]. Thus, given any two topological
linear spaces U and V, [U; V] denotes the linear space of all continuous linear
mappings of U into V, and { f, ¢ ) or alternatively f¢ is that member of V assigned
by fe[U:V]toge U.[U: V]issupplied with the topology of uniform convergence
on the bounded setsin U. | - || = | - || s denotes the norm in any Banach space B.
H is a complex Hilbert space with the inner product (-,-). R is the real line, R*
is the closed interval [0, c0), C is the complex plane, C, = {{e C:Re{ > 0}, and
C, = {{ e C:{isnotareal nonpositive number} . The kth derivative ofany Banach-
space-valued function or distribution fis denoted by f®' = D¥f. At times, we use
the symbol D * to show that the differentiations are with respect to x. We set
f = (—1y®_ supp fis the support of f. We sometimes use £ to denote an
equality by definition. Finally, s-lim denotes a limit in the strong operator topology
of [H; H].

2. An extension of Bernstein’s theorem on completely monotonic functions.
Let z be an [H; H]-valued function on R*. We shall say that z is completely
monotonic on an open interval Q < R if, for each nonegative integer k, each
ae H,and each t € Q, we have that z¥)(¢) exists under the strong operator topology
and (z™(t)a, a) = 0. Furthermore, we shall call z completely monotonic on R™ if
z(t) tends to a limit in the strong operator topology as t — 0+ and z is completely
monotonic on the interior of R*. When H is the complex plane, this definition
becomes essentially the customary definition of scalar (i.e., numerically-valued)
completely monotonic functions [12, p. 145]. We wish to extend the following
theorem to [H ; H]-valued functions.

BERNSTEIN’S THEOREM. Let f be a scalar function on R*. A necessary and suffi-
cient condition for f to be completely monotonic on R is that

f@t) = dp, e, t>0,

R+

where p, is a finite positive measure on the Borel subsets of R™. p, is uniquely deter-
mined by f.

We shall show that the desired extension can be obtained by replacing p,
with a PO measure P,. (For a discussion of PO measures, see [1, Chap. 8], [3],
or [17, Chap. 2].) In the following we let [H; H], denote the space of positive
continuous linear operators on H.

LemMA 2.1. Assume that z(t) is an [H ; H] , -valued function on the open interval
(0, 00) such that, for all ae H and as t — 0+, (z(t)a, a) increases monotonically to a
finite limit. Then, there exists an F e [H; H], such that,ast — 0+, z(t) > F in the
strong operator topology.
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Proof. By polarization (z(t)a, b) also tends to a finite limit for every a,be H.
Define E by
E(a,b) = lim (z(t)a,b).
t—=0+
It follows that {a,b}— E(a, b) is a positive sesquilinear form on H x H. Two
applications of the principle of uniform boundedness show that

|E(a,b)l = lim |(z(t)a, b} = Mia]l [|b]l.

Consequently, there exists a unique F € [H; H], such that (Fa,b) = E(a, b). By
virtue of [17, Lemma 2.2-1], we can now conclude that z(t) —» F in the strong
operator topology.

Our extension of Bernstein’s theorem is the following.

THEOREM 2.1. Let z be an [H ; H]-valued function on R*. A necessary and suffi-
cient condition for z to be completely monotonic on R* is that

(2.1) Z(t) = dP,e", t>0,
R*

where P, is a PO measure on the Borel subsets of R*. P, is uniquely determined by z.

Note. Equation (2.1) shows that the function z(¢) is a Laplace transform and
therefore analytic for ¢+ > 0. Consequently, its derivatives exist in the uniform
operator topology as well [17, Thm. 1.7-1].

Proof. Sufficiency. For any scalar continuous bounded function on R*, we
have the estimate

2.2) lU dP,g(n)

= IIP(R+)I|[H;H] sup [g(n)l-
[H:H] neR*

With the use of this inequality it is straightforward to show that (2.1) can be dif-
ferentiated under the integral sign any number of times at each ¢ > 0. Hence, for
every a€ H, t > 0, and nonnegative integer k,

(2.3) (z”‘](t)a,a) _ d(P,,a, a)nk e >0

R+

since P, is a PO measure. Furthermore, (2.3) shows that (z(t)a, a) increases mono-
tonically to the limit (z(0)a, @) as t — 0+, which by Lemma 2.1 implies that z(t)
— z(0) in the strong operator topology.

Necessity. We may write

(2.4) (z%(1)a, a) = (— 1)*DXz(t)a, a), t>0.
By hypothesis, (z(t)a, a) is a completely monotonic scalar function on 0 £ t < co.

By Bernstein’s theorem there exists a unique finite positive measure u,(a) depend-
ing on a such that

(z(t)a, a) = f dp,(a)e™™.
R+
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Now, let a,be H and f € C. Then,

dp,(Ba)e™" = (z(t)pa, Ba) = |B*(z(t)a, a)

R+

1B f dis (@) e ™.
R+

By the uniqueness of the Laplace transformation [5, Thm. 6.2.3], we have the follow-
ing equality between measures:

2.5) t(Ba) = B> wla).
In a similar way, we can show that
(2.6) Ula + b) + p(a — b) = 2p,(a) + 2u,(b).

We now define the complex measure Q,(a, b):E~— [Q,(a, b)](E), where E is
any Borel subset of R*, by

Qn(aa b) & %[p’n(a + b) - l'tn(a - b) + ip'r](a + lb) - iun(a - lb)]

For fixed E, a+ [u,(a)](E) is a functional on H taking only nonnegative values.
This fact coupled with (2.5) and (2.6) allows us to conclude (see, for example,
Kurepa [6]) that {a, b} — [Q,(a, b)](E) is a positive sesquilinear form on H x H
such that

(Qy(a, A))(E) = [u,(@))(E) = 0.

Furthermore,

I[Qy(a, A(E) = [u(@)(E) = [u(@)](R) = (z(0)a, a)
< [1z0)] lall*.

Therefore, there exists a unique P,(E) € [H ; H], such that (P,(E)a, b) = [Q,(a, b)](E)
for every a,be H. Since (P,(E)a, a) = [u,(@)](E) and [u,(a)](-) is a positive finite
measure, we can conclude that P, is a PO measure on the Borel subsets of R™.
(See [17, Thm. 2.2-1].)

Thus, forall t > 0 and all ae H,

(z(t)a, a) = d(Pa,a)e ™ = (

R+

dP,e " "a, a) .
R +

By means of the polarization equation, we arrive at (2.1). The uniqueness of P,
follows from the fact that (z(t)a, a) uniquely determines (P,a, a) for every ae H.

3. Relaxive Hilbert ports. We shall always assume that the impedance
operator 3 of the Hilbert port at hand is a continuous linear time-invariant causal
mapping of 2(H) into [Z; H]. As in [14], 9(H) is the linear space of all smooth
H-valued functions on R of compact support and is supplied with the customary
Schwartz topology. We set 9 = 9(C). [2; H] is the linear space of all H-valued
distributions on R. [Z; H] has the topology of uniform convergence on the
bounded sets in £. 3 has the stated properties if and only if 3 is a convolution
operator 3 = z*, where ze[%(H); H] and suppz < R* (see [14, Thm. 6.1]).
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By the identification between [2(H); H] and [ ;[H ; H]] given by {14, Thm. 3.1],
we can also say that ze [Z;[H; H]]; that is, z is an operator-valued distribution
on R. z is called the unit-impulse response, and its Laplace transform Z = £z is
called the impedance function or simply the impedance.

The domain of 3 contains every H-valued distribution u whose support is
bounded on the left. We set v = 3u = z * u. Moreover, for any scalar distribution
S such that supp fis bounded on the left, z * f has a sense as an [H ; H]-valued
distribution, and z * (fa) = (z * f)afor every ae H. When ¢ € &, z * ¢ is a smooth
[H : H]-valued function with support bounded on the left, and

(.1) (z*@)(1) = {2(x), Pt — x)) = {2t — x), P(x)).

(See [14, Thm. 4.3].)

DErINITION 3.1. 3 will be called relaxive whenever the following two condi-
tions are satisfied for every nonnegative ¢ € &.

(i) If T = supsupp ¢, then z* ¢ is completely monotonic on the open
interval (T, c0).

(i1) There exists an M € [H ; H], not depending on ¢ such that, for all t € R,

(3.2) (*)(t) = M f $(x) dx.
R

Whenever these conditions hold, we shall also say that the unit-impulse
response z, the impedance Z, and the corresponding Hilbert port are relaxive.

Note that condition (i) is equivalent to the assertion that, for v = Ju and
for every u of the form u = ¢a, where p€ %2, ¢ = 0, and ae H, we have that
(v(+),a) is a completely monotonic scalar function on (T, c0). Similarly, condi-
tion (ii) is equivalent to the requirement that

(1), a) < (Ma, a) f $(x) dx
R

forall u of the stated form. These are the conditions we obtained from the physically
motivated discussion in the Introduction.

THEOREM 3.1. 3 is relaxive if and only if z is an ordinary [ H ; H]-valued function
on R and z is completely monotonic on R*. When this is the case, z(0+)
= s-lim,_, . z(t) is the infimum (in the sense of positive operators) of all M for which
(3.2) holds.

Proof. If. Set w = z* ¢ = 3¢, where ¢ € . For every nonnegative integer
k, it is permissible to write

(3.3) wlhi(t) = (2M(x), it — x)>.

(See [14, (4.16)].) Let ¢ = 0 and T £ supsupp ¢. For ¢t > T, the suppdrt of the
function ¢(¢t — x) of x is contained in (0, c0), and therefore

wl(t) = f Z¥(x)p(t — x) dx.
supp ¢

Since for each x > 0 and t > T the integrand on the right-hand side is a member
of [H; H], , so too is the left-hand side. Condition (i) is hereby established.
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Furthermore, for every te R and ae H,

0

0 < w(t)a,a) = f (z(x)a, a)p(t — x) dx

0

< <z<0+)a,a)fw¢<x)dx.

This proves (3.2). That z(0+ ) is the infimum of all possible M in (3.2) can be seen
by choosing ¢ as an arbitrarily sharp pulse.
Only if. Assume that J = z * is relaxive and set

w(t) = zx ¢(1) = {z(x), p(t — x)), PP,
Also, let ¢ = 0 and t > T. Then, for eachk =0,1,2,---,
wihl(t) = (ZM(x), (¢ — x))> € [H; H].
according to condition (i). So, for all ae H,
0 = W0)a, a) = ((zM(x), ¢t — x))a, a).

Thus, with e 2 and supp ¥ < (0, ), ¥+ ({z*, ¥ >a,a) is a positive scalar
distribution on (0, c0) and is therefore a positive measure on the Borel subsets of
(0, 00) [10, p. 29]. Since this is so for every k, ¥ — ({z,¥a, a) is distributionally
the same as a smooth nonnegative function f, on (0, o) [10, p. 85]. In fact, f, is
analytic on (0, c0). Indeed,

[t de = [ e = (3.0

= (<Z[k]7 l//>a,a) = 0

for all = 0. Hence, f, is completely monotonic on (0, o). Whence, f, is analytic
on (0, 00) according to Bernstein’s theorem and the analyticity of a Laplace
transform.

Now, for every a, be H, we define the analytic function f, , on (0, o0) by

Jas® = &l far D) = foos(®) + forn®) = Haon(D)], 0 <7 <00

It can be shown by expansion that

(3.4)

[ fustowr de = cz.w3a.)

for every ¥ € & with supp ¢ < (0, o0). So, for each fixed ¥ of this sort,

{a,b} f S OW(e) de

is a sesquilinear form on H x H, which is positive when i = 0.
Next, we choose an appropriate sequence {{/,} = 2 which tends to ,, the
delta functional concentrated on the fixed point t € (0, o0). Then, forany a,b,ce H,
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we get

ﬂwﬁﬂ“JﬂMWMhZKL%xa+dﬁ)

= [ fode + [ foppodi= 1) + o),

and similarly for f, , s ., fou s> and f, ., , where a € C. This shows that {a, b} — f, ,(7)
is a sesquilinear form on H x H. It is also positive since f, (1) = f,(1) = 0.

Now, let K be any compact interval contained in (0, c0) and let #,7€ K be
arbitrary except that # < 1. Choose Y € 2 such that ¥ = 0, suppy < (0, 0),
and Y = 1 on K. Then,

J"Ldrgfwnwdu=«aw>ma)§u<zwwuw2
n 0

Also, by the results of the preceding paragraph, {a,b}— [: f,,dt is a positive
sesquilinear form on H x H. These facts imply that there exists a mapping Q of
the closed intervals [#, 1] = K into [H; H], such that

fﬁﬁw=«MmﬂMﬁl

With 7 fixed, define g(t) £ Q([n, ]). Thus,

(3.5) J‘tfa‘,, dt = (g(t)a, b).

Note that the left-hand side is an analytic function of t € K. Therefore, g is an
[H: H], -valued analytic function of t. We may differentiate (3.5) to get

(3.6) Jap(®) = (f()a, b),

where f(t) = g'"(r). Since #, 7, and K are arbitrary, (3.6) holds for all 7 € (0, c0),
where again fis analytic on (0, 00).
Altogether then, for every ¥ € 2 with supp ¥ < (0, ),

KLW%M=J&W¢=JUWMW®¢

=(ffwmawy

which shows that z = f. Hence, z is analytic on (0, 00). It now follows from (3.4)
that (z¥(t)a, @) = 0 for all t > 0 and ae H. That is, z is completely monotonic on
(0, 0).

We next show that lim,_,,,(z(t)a, a) exists for every a € H. If this is not so,
then, by the complete monotonicity of z, (z(t)a, a) » oo for at least one a. Let
P ={peP:$p20,]pdt =1}. We can make (z(t)a, a) * ¢(t) as large as we wish
in a neighborhood of t = 0 simply by choosing ¢ € 2 as a sufficiently sharp pulse.
This will violate (3.2) for any fixed M. We conclude that the aforementioned limit
must exist. By Lemma 2.1, s-lim, , , z(¢) also exists.
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Another thing we have to show is that z does not have any singularities
concentrated on the origin. Let w be an [H ; H]-valued function on R such that
w=0on (—o0,0] and w = z on (0, c0). Then, h £z — w is an [H; H]-valued
distribution concentrated on the origin. Therefore, for each a € H,

(za,a) = ) ¢;0V + (wa,a),
j=1
where the ¢; are complex numbers depending on a. (See [13, p. 98].) Now, with a
fixed, (wa, a) * 2 is a uniformly bounded set of functions because, for any ¢ € 2,

0 = (wx@(t)a,a) = [(wa, a) * ¢](¢)
= J(w(x)a, a)pt — x)dx < (WO0+)a, a).

On the other hand,
Yo=Y cp?
can be made arbitrarily large at any given t by choosing ¢ € 2 appropriately so
long as ¢; # 0 for some j and some a. Therefore, ¢; = 0 for all j and all a if condi-
tion (ii) of Definition 3.1 is to be fulfilled.
Consequently, (za, a) = (wa, a). With this fact and the polarization equation,
we can show that

(<Z’ '//>a’b) = (<W, l//>a’ b)

forally e ¥ and all a,b e H. Hence, z = w in the sense of equality in [Z, [H ; H]].
Therefore, z is an ordinary [H ; H]-valued function on R. This completes the proof.

As was noted immediately after Definition 3.1, (v( - ), a) is a completely mono-
tonic function after the termination of the pulse u = ¢a, where p € 2, ¢ = 0, and
a€ H. We can use Theorem 3.1 to show that this property continues to hold even
when ¢ is an arbitrary positive distribution of compact support. The proof is
quite similar to the argument for the scalar case [18, §IV].

4. Representation theorems. Some representations for relaxive Hilbert ports
now follow readily. First, we note that the value at t = 0 of any relaxive z can be
altered without changing z as a distribution. Henceforth, we shall set z(0)
= s-lim,_, ¢, z(t).

THEOREM 4.1. A Hilbert port is relaxive if and only if its unit-impulse response z
admits the representation

4.1) Z(t) = dP, e "1 .(1), teR,
R

where P, is a PO measure on the Borel subsets of R*. This is the case if and only if

the impedance Z has the representation

1
4.2) Z(i) = N dP"Z“'_:H, {eCy.

(C, is the complex plane with the nonpositve real axis deleted.)
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Proof. The first assertion follows from the conjunction of Theorems 2.1 and
3.1. To obtain the second assertion, we take the Laplace transform of (4.1) and
then reverse the order of integration. The latter can be justified by showing that
this can be done weakly by virtue of Fubini’s theorem. This yields (4.2) for { e C, ,
which is a vector version of the Stieltjes transformation. That the equality in (4.2)
holds weakly (and therefore in [H ; H] as well) for all { € C, follows from the fact
that any scalar Stieltjes transform exists for all { e C,, if it exists for any single
{eC,[12, p. 326].

In fact, Z is an [H ; H]-valued analytic function on C|, since, for every a,b e H,
(Z({)a, b) is a scalar analytic function on C, [12, p. 328]. Furthermore, (Z({)a, a)
is a scalar relaxive impedance and the poles of such a function are simple with
positive residues [18, Thm. 4]. It follows that the poles of a relaxive [H ; H]-valued
function are also simple and lie on the real nonpositive axis, and their residues are
all members of [H; H], .

The fact that a relaxive J = z * is passive on Z(H) does not appear to be
readily obtainable from the definition of relaxivity. However, the representation
(4.2) allows us to arrive at this conclusion directly.

THEOREM 4.2. Every relaxive Z is positive* (see [14, Def. 10.1]) and the corre-
sponding operator 3 = z * is passive on (H).

Proof. For everyae Hand (e C,,

=0,

Re(Z(0)a,a) = d(P,a,a)Re - !

R, {+

which shows that Z is positive*. The passivity of 3 now follows from [14, Thm.
12.2].

Actually, the representation (4.2) shows something more, namely, that
(Z(0)a, a) is real for every ¢ > 0. This in turn implies that Z is positive*-real [14,
Def. 10.2] whenever H is the complexification of a real Hilbert space.

For the rest of this section we discuss the special case where H is n-dimen-
sional complex Euclidean space C". In this case the measure P, takes its values in
the space of positive n x n matrices. If P, is concentrated on m discrete points of
R™, we get the representation (1.1) of the impedance matrix of a passive RC n-port
containing possibly ideal transformers.

For the general case where P, is a [C";C"],-valued measure, set u(n)
2 P([0, 1)) for n > 0 and let u(0) be the zero matrix. Then, u(y) is an n x n matrix
(w1 ; its elements y;, are functions of #, which are continuous from the left
and zero at the origin. Upon choosing o = {a;}’j_, € C" with a; = 0 for j # k,
we see that (u(n)a, o) = (). Consequently, p,, is a nondecreasing bounded
function on R™. A similar argument with no more than two of the components
of @ nonzero shows that

FACTR-AN)) £ ol + MM + p(m)ao + #jj(ﬂ)|°‘j|2

is a nondecreasing bounded function of #. Upon first setting o, = «; = 1, then
setting o, = 1, &; = i, and finally combining the results, we see that yu; and py,;
are functions of bounded variation of R*™. We can therefore conclude with the
following.
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THEOREM 4.3. If Z = [Z,] is the n x n open-circuit impedance matrix of a
relaxive n-port, then each Z, has the Stieltjes integral representation

(4.3) J T+n dpln

where every p;; is a real nondecreasing bounded function on R™ and every p; is a
function of bounded variation on R*. Moreover, p;, = [i;.

5. Approximation in the time domain. Our objective in this section is to show
that relaxive z can be approximated under a rather strong topology by finite sums
of damped exponentials with positive-operator coefficients. For n-ports, the ap-
proximating sums will have the significance of the unit-impulse response of a
finite lumped RC n-port with perhaps ideal transformers. Thus, the results of this
section imply an approximation and synthesis method for relaxive n-ports.

THEOREM 5.1. Let z be relaxive. Then, there exists a sequence {z,},”_ such
that each z, has the form

(0= Y ¢ e L0,
(5.1) 0
c,v€[H;H],, ZO Caw=20+), 0=B,0<P1 < <Py,
and such that {z,} converges in the strong operator topology to z(t) uniformly for
allteR™.

Proof. By virtue of Lemma 2.1 and Theorem 4.1, there exists a P, € ([H; H],
(possibly P; = 0) such that

(52) 20 = P10 + [ a0 e 10,

where Q, is a PO measure on R such that (Q,([0, x))a, a) » 0 as x — 0+. Now, for
eachgq = 1,2, --- , we will choose a partition 7, of R™ with the endpoints

A
ﬁq,O = 0 < ﬂq,l <Bq,2 < <ﬁq,nq < o0
and will set

20 = PO + [ dQ,stn. 01,0,
R+
where
exp(_ﬁq,vt), Bq,v—l §’1<ﬁqv7 V= 17”'7nq’
s(n.t) =
exp(—ﬁq,nqt)’ Bq,nq =1n < 0.

Note that z, has the form of (5.1) for ¢, , = Q((B,, — B,,-1)), where v =1, -+,
Cang = QByn,~1- ), and ¢, , = P,. Moreover, Y Cov =PRT)=2(0+).
Thus

() - z0= [ dgem— e

[O:ﬂq,l)

+ f dQ,fe" — s(n, 01,0
[ﬂq 1 ﬂq n

(cont.)
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n f 40, e (1) — Q[Byn.» ) €Xp (— Byn )14 (1)

[ﬂq,nq;ﬂo)
= A,(t) + A5(1) + A5(0) + AL0).

Here, the 4; denote the four terms between the two equality signs in the indicated
order.
For any Fe[H; H], we have the estimate

(53) IFall> < (Fa, a)|| F|
forallae H[17, Lemma 2.2-1]. Let us apply this to 45(¢). By virtue of (2.2),

14301 = 1Q([Bgn,» DI = [QR™)].

Also, (A5(t)a, a) = (Q([Byn,» ©)a,a) >0 as B,, — co. So, for every aeH,
[ A5()al — 0 as B,,, — oo uniformly for all teR*. Similarly, ||4,4(t)a| does the
same.

For A, we have | 4,(0)] = [Q([0, B, )l = [QR™)| and (4,(t)a, a) < (Q([0,
Bg1))a,a) = 0as B, ; — 0+. Therefore, for everyae H, |A,(t)al — Oas B, ; — 0+
uniformly for all te R*.

Finally,

IA (Ol < QR sup {le™™ — s(n, ) :By1 S 1 S Byn,» 0 S 1 < 00}

The right-hand side can be made as small as desired simply by choosing the
partition n, fine enough. This is because e ~#* is a uniformly continuous function
of {t, B} for B,y =n = P,,,and 0 <t < o0.

In fact, we can construct the desired sequence {z,} by choosing a sequence
{m,} of partitions with the following properties: .11 < 38415 Bas 1,0, > 2Banys
and the length of the largest interval in the partition of [B,4 1,1, Bg41,s,] is less
than half the length of the smallest interval in the partition of [B, . B,,.]. This
ends the proof.

Actually, Theorem 5.1 can be strengthened by showing that a sequence {z,}
can be constructed which converges under a much stronger topology than that
implied in the theorem. Indeed, with f(¢) denoting an [H ; H]-valued function on
R™, let

’yO,a(Af) = Sup || f(t)a” s ae H9
0=<t<w
TeaxlS) = sup | f®@)all, aeH, x>0, k=1,2,--.
xSt<ow
The set of all f for which all these quantities are finite comprise a locally convex

space ¥~ whose topology 7 is generated by the seminorms yo candally,, ..
Now, for any relaxive z, for ¢t > 0,and for k = 1,2, -

() = f Qe ™.
R+

With z, constructed as in the preceding proof, we have, for t and k as stated,

2 = | dQysin. 1),

R+
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where
’t;,v exp(_ﬁq,vt)9 ﬁq.v—l é n< Bq,v? V= 17 st My

Sk(na t) :{ k

q,ng exp (_ﬂq,nqt)’ ﬂq,nq = n < oo.
Choose the partitions m, as indicated in the last paragraph of the preceding proof.
Then, it follows through almost the same argument that, for each k > 0 and as
g — oo, 2l tends to z*! in the strong operator topology uniformly on every
interval of the form [x, 00), where x > 0. Thus, z, — z under the topology .7

Conversely, let {z,} be a Cauchy sequence under the topology 7, where
each z, has the form of (5.1). By virtue of the sequential completeness of [H ; H]
under the strong operator topology and the uniform convergence of each derivative
of {z,}, there exists a limit function z to which {z,} converges under 7. (In this
regard, see [17, Problem 1.6-3].) Moreover, z is relaxive since every z, is relaxive.
Thus, we have proven the following.

THEOREM 5.2. The set of all relaxive z is the closure in ¥ of the set of all z,
of the form (5.1).

6. Relaxation systems of the second kind. We now introduce the vector
analogue of Meixner’s relaxation systems of the second kind [8, p. 282] and show
that relaxive Hilbert ports are special cases of such systems. The physical signifi-
cance of this will be pointed out at the end of this section.

DEFINITION 6.1. Z is said to be a relaxation impedance of the second kind if
(sZ(s*)a, a) is a.scalar positive-real function of s for all a € H. The set of all such Z
is denoted by .#, . The corresponding Hilbert port is said to be a relaxation system
of the second kind.

[t is understood throughout the following that the range of the argument
function is restricted to the branch (—=, n]. We exploit the standard result that
F is a positive-real function if and only if F is analytic and |arg F(s)| < |arg s| for
alls e C, [9]. A simple manipulation with{ = s?converts this resultinto the follow-
ing criterion for the functions in .#,.

LEMMA 6.1. Z € .4, if and only if Z satisfies the following conditions for every
ae H. Z is analytic on Cy, and

(6.1) —arg{ < arg(Z({)a,a) £ 0, Im{ >0,
(6.2) arg (Z(o)a,a) =0, o> 0,
(6.3) 0 <arg(Z(Qa,a) < —arg(, Im¢ < 0.

The sum of two impedances in .#, is also in .#, in view of Definition 6.1.
Therefore, the series connection of two Hilbert ports having such impedances
yields another Hilbert port of this kind. A similar assertion holds for parallel
connections, but now we must make sure that the parallel combination of im-
pedances has a sense. In the following, F~1({) £ [F(()] ™.

THEOREM 6.1. If W and Z are members of M, and if W~ 1), Z~'({), and
(WY + Z~ 1)) exist for every { € C,, then

(6.4) FEW™' +Z ) e,

Proof. F will be analytic wherever W and Z are both analytic. Hence, we need
merely investigate arg (F({)a, a). By our assumption concerning the existence of



RELAXIVE HILBERT PORTS 119

the inverses, for any given a € H there exists a unique b e H such that [W~1({)
+ Z7Y{)]b = a. Moreover, there exist unique ¢, de H such that b = W()c
= Z({)d. Consequently,

(FQa,a) = (b, [W~ 1) + Z71({)Ib)
= (W(0)c, ) + (Z(0)d, d).
Now, for any o, f € C with Im o« < 0 and Im 8 < 0, we have that
min {arg o, arg f} < arg(« + f) < max {arga, arg }.

Consequently, F satisfies (6.1). The same argument establishes (6.2) and (6.3),
thereby completing the proof.

To show that every relaxive impedance is a member of .#,, we shall make use
of a certain representation for .#, impedances, which we now establish. We start
with Schwindt’s representation [14, p. 130] for a positive* function, which we may
apply to sZ(s?) since sZ(s?) is a positive* function whenever Z € 4, .

— i&s
(6.5) sZ(s?) = sP, + Py + f dQ,§ i seC,.
Here, Pye[H:H],, P, is a skew-adjoint member of [H; H], and Q, is a PO
measure on the Borel subsets of R. Since, for any ¢ > 0 and any a e H, (6Z(c%)a, a)
is a real number and since the real and imaginary parts of the integrand in (6.5)
are even and odd functions of £, we can conclude that P, = 0, that Q. = Q _,

(ie., QAE) = Q_AE) 4 Q4 —E) for any Borel subset E of R), and that

s(1 +¢&
(2)_9})1 fdQ¢z+éz)’

Upon setting { = s?, we see that there exists a PO measure M, such that

eC,.

1+ +n
Ty
This is the vector analogue to Meixner’s representation for a scalar relaxation
impedance of the second kind [8, Thm. 3.2].

THEOREM 6.2. Z € .4, if and only if Z admits the representation (6.6), where
P,e[H;H], and M, is a PO measure on the Borel subsets of R*.

We are now ready to relate relaxive impedances to the members of .#, .

THEOREM 6.3. Z is relaxive if and only if Z e #, and (¢Z(0)a, a) tends to a
finite limit as ¢ — oo for each ae H.

Proof. Since the representation (4.2) is a special case of (6.6), a relaxive Z is
certainly a member of .#,. Moreover, the existence of lim aZ(o)a, a) follows
easily from (4.2).

Conversely, from (6.6) we get

(6.6) 20 =P + | dM, - LeCy.

oo

(6.7) (6Z(o)a, a) = (Pya, a)o + f dM,a,a)—— —
R+

Now,

(6.8) o(1 + n)f(c +n)
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is a function of # that varies monotonically from the value 1 at y = 0 toward the
value o as n — oo. Moreover, for each fixed #, (6.8) increases toward 1 + y as
o — 0. Since (M,a, a) is a positive measure, the integral in (6.7) either increases
indefinitely or increases toward a finite limit. Furthermore, (P,a, a)jo — oo as
o — oo for at least one ae H if P, # 0. Therefore, under the assumption that
(6Z(0)a, a) tends to a finite limit, we must have that P; = 0 and [ d(M,a, a)(1 + #)
< oo for each ae H. We define P,(E) A [gaM,(1 + n) for each Borel subset
E of R and obtain thereby the PO measure P,, the representation (4.2), and the
conclusion that Z is relaxive.

COROLLARY 6.3a. Z is relaxive if and only if Z is analytic on C, and, for each
ae€ H, Z satisfies conditions (6.1) through (6.3) and lim,_, ., (6Z(0)a, a) exists.

We can interpret Theorem 6.3 physically as follows. Some of the Hilbert
ports that are relaxation systems of the second kind will respond to an impulse of
current with an infinite initial voltage and will absorb an infinite amount of energy.
On the other hand, relaxive Hilbert ports are precisely those relaxation systems
of the second kind for which this does not happen. For the n-port discussed in the
Introduction, it is the capacitive subnetwork N, which prevents infinite initial
voltages and infinite energy absorption. Actually, every physical electrical system
has stray capacitances which act like the capacitive subnetwork N .

7. An example of a relaxive oo-port. By an co-port we mean a Hilbert port
for which H is Hilbert’s coordinate space [, [16]. Actually, we shall let [, be the
space of all two-sided quadratically summable numerical sequences {0}~ _ .

The results of the preceding section will be used to show that the co-port of
Fig. 2 is relaxive. All the series resistances therein are r ohms, the shunt conduct-
ances are g mhos, the shunt capacitances are ¢ farads, and we take rg = 3.43.
It will simplify our formulas a bit if we choose r = 5.04. This co-port can be con-
sidered to be the parallel connection of the two co-ports shown in Figs. 3 and 4.

Let us first investigate the oco-port of Fig. 3. As has been pointed out by
H. Flanders [2], care must be taken in choosing the current distribution in the
infinite resistive grid. An unreasonable set of currents, which satisfy Kirchhoff’s
voltage and current laws and for which no input currents are imposed at the
ports, is shown in Fig. 5. The only current distribution we will allow when there
is no excitation at the ports is the one where all branch currents are zero. When the
current u, is imposed at the kth port and all other ports have no imposed currents,
we may apply a suitably modified form of Flanders’ analysis [2] to conclude that
a unique current exists in each resistance and each conductance. (The modification
involves the partitioning of every current distribution into equivalence classes,
two current distributions being considered equivalent if they agree on all the
branches other than the branches appearing in the ground line, that is, in the

AAA AAA AAA

U%c g ;l[c : ‘NUU

AA
VWA~

a
<
)
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o
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lower horizontal line of Fig. 3.) The current distribution in the resistances and
conductances can be computed by using the standard equations for lumped
iterated transmission lines [11, pp. 106, 119]. The current distribution at the
instant ¢ under an imposed current vector {u,}i _ €/, on the oco-port is then
taken to be the sum of the current distributions due to each u, applied one at a
time.

The aforementioned transmission line equations show that the open-circuit
oo x oo impedance matrix for the oco-port of Fig. 3 is Z = [Z,], where Z,(()

AY|

]

o
l AY| ‘
' VAl

o

AY|

U

o

FiG. 4

=p "M for all {,i,k=---, —1,0,1,---, and p = 523 ... . Thus, Z({) does
not vary with {. (Henceforth, Z denotes that fixed range value, and not the function.)
We can verify that Ze[l,;1,] as follows. Let a = {a;}3> _ €, and set b = Za.
Then,

— o0

R

i=—w Lk=—w

Upon taking absolute values and then changing the order of summation, we get
”b”2 =< Z Z |akaj| Z ZikZij
k j i

=Y Ylaajp ™ QL + k= jl + 1),
kJ
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where

E= Y p2=.0379--.
v=1
Summing diagonally, we obtain

1612 = ¥ X lausnlp”™QE + Iml + 1).

o0 n= = 00

An application of Schwarz’s inequality to the summation on n yields

1612 < flal? 3 p~I™Q2E + |ml + 1).
Since the last summation on m converges, we can conclude that Z e [l,;[,].
Furthermore, Z is invertible. To establish this, it is enough to show that
A 2 ] — Z satisfies |A|| < 1. Here, I is the identity operator on [, so that
A =[A,], where A; =0 and A, = —p "% for i # k. This time set d = Aa,
where a € [,. The same manipulations as those in the preceding paragraph now
yield

Id|)* = IIaIIZ[% +48 Y pmM+2 i pI"(m| — 1)]

m=1 m=2

= [lal%(2227 - - ).

Thus, || A]| £ 471 ---, which is what we wished to show.
Still more is true. Z is a positive operator on /,. Indeed, for any ae l,,

(Za,a)= Y Y p " Haa,.

We can conclude that this convergent double series is nonnegative because p !l
is a positive definite function [7, p. 70]. So truly, Z€[l,;[,], . As a consequence,
7 'e[ly;,], also. In addition, Lemma 6.1 now shows that Z € .Z,.

We turn now to the co-port of Fig. 4. Let W denote its open-circuit co X o0
impedance matrix. Clearly, W = [W,], where W;({) = 1/c{ for every iand W, = 0
when i # k. Moreover, (W({)a,a) = (¢{)”'|a||*. Thus, by Lemma 6.1, We.#,.

We want to investigate the open-circuit o0 x co impedance matrix F of the
co-port of Fig. 2. This is the parallel combination of W and Z if it exists as an
operator. To check the latter condition, consider

FO=W'O+2Z2 T =(+2H"

We havealready noted that Z ! is a fixed positive operator. Therefore, its spectrum
is contained in the real nonnegative axis. Consequently, F({) exists for every
{eC,. Theorem 6.1 can now be invoked to conclude that F e .#,.

To show that F is relaxive, we shall use Theorem 6.3. So, let ¢ > 0 and
consider

1 t__\7!
(aF(a)a,a)zz I +——C;Z a,aj.
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For all o sufficiently large, we have ||(cZ)™'|| < | and therefore

(6F(o)a, a) Z (—coZ) *a, a).

Moreover, there exists an x > 0 for which the last series converges uniformly for
X < @ < 0. So, we may pass to the limit under the summation sign to conclude
that (cF(0)a, a) = ¢~ '||a||? as ¢ — oo. By Theorem 6.3, F is relaxive.

We have hereby established that the system of Fig. 2 isan example of a relaxive
oo-port.
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NUMERICAL SOLUTION OF ITO INTEGRAL EQUATIONS

N. J. RAOf%, J. D. BORWANKAR] anpD D. RAMKRISHNAS§

Abstract. An algorithm is derived for solving a large class of Ito random integral equations. The
derivation of the algorithm involves approximate discretization of the given Ito equation. The Ito
integrals arising out of discretization are expressed as functions of normal random variables. The
algorithm gives a sample pathwise solution and is readily implementable on a digital computer.

1. Introduction. A wide variety of engineering dynamical systems with
stochasticinputs and/or parameter disturbances are modeled as Itorandomintegral
(or differential) equations, and consequently the study of these equations is of great
interest to the engineer. A stirred tank chemical reactor with stochastic changes in
the input concentrations and the lateral, or the longitudinal, dynamics of an air-
craft with gust disturbances are good examples of such models. The present paper
is concerned with deriving an algorithm to solve a fairly general class of Ito
integral equations. The algorithm, which involves discretization of the given
equation, is readily implementable on a digital computer and gives a sample
pathwise solution. The Ito scalar stochastic integral equation is of the form

(1.1) x(t, w) = x,(w) + Jq a(s, x(s, w)) ds + Jl b(s, x(s, w)) dW(s),

where x(s, w) € R, w is an element of the sample space and {W(t)} is a Wiener pro-
cess. Equation (1.1) is the integral equation formulation of the Ito random
differential equation

(1.2) dx(t, w) = a(t, x(t, w))dt + b(t, x(t, w)) dW(t)

with initial condition x(u, w) = x,(w). Under fairly general conditions on a(.,.)
and b(.,.) unique and sample pathwise continuous solutions are known to exist
both for scalar and vector versions of the Ito equations [4], [6], [8]. The sample
pathwise solutions of a small class of Ito equations have been expressed as infinite
series [2], [3]. Linear and nonlinear equations have been studied in [1], [5] by
solving for the exact or approximate density functions from the Fokker—Planck
equations. Either way analytical solutions are difficult to come by and generally
are not in a readily usable form. An approximate algorithm will be very useful in
the study of Ito equations as well as in solving stochastic control problems.

2. Discretization of the random integral equation. The functions a( -, -)
and b(.,.) in the scalar random integral equation (1.1) are explicitly known and
assumed to have continuous partial derivatives with respect to ¢ and x at least up to
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the third order in the interval of interest. Let T be a time interval [u,v], 0 £ u
< v < oo,andlet {W(t),t e T}, also written as { W,}, be a standard Wiener process,
i.e., with variance parameter unity. The integrals involved are assumed to exist in
Ito’s sense [6]. Divide the interval T, over which the integral equation is defined,
into smaller intervals of duration h, ie, u=1t, <t, < --- <ty = v, where
(t;+1 — t;) = h. Now one may write

th+1

2.1) x(t"+1)=x(t")+J alt, x) dt + f bt, x) dW(1),
" " n=1,2,---,N — 1.

The first strategy for the development of the algorithm consists in replacing
the integrals in (2.1) by their Taylor series expansions about (¢, x,) where x,, = x(t,).
Terms involving (x — x,) which arise in the above expansions are successively
replaced by the following expression (analogous to (2.1)):

t t
(2.1a) x(t) = x(t,) + f at', x)dt’ + j b(t', x)dW(t').

th tn
The number of successive substitutions would be governed by the desired order of
error arising from truncation. Thus, for example suppose one replaces
[i+va(t,x)dt in (2.1) by (1,4, — ta(t,,x,) and fintb(t, x)dW(t) by blt,,
X,) j i+t dW(t). This would appear to be the stochastic analogue of Euler’s scheme
for the corresponding deterministic case, giving an error of order! o(h) and o o(h).

However, it can be easily shown that the term

blty %) ot %) f j AW (s) dW (1),

arising from the substitution of (x — x,) in

n+1
[ Stxa — xpawio,
tn
is of order O,(h) and cannot be neglected for an error of o,(h).

The present paper develops an algorithm for an error of order o(h?) and
0,(h?). The development of higher order schemes involves evaluation of stochastic
integrals of an increasingly complex nature and the difficulty in evaluating them
does not appear to be commensurate with the gain in accuracy.

The following notation is followed in this paper:

a = a(tna n) bx,, = @(tnaxn)’
0x
da ob
a, = E(tn,xn), b, = 5[0”’ x,), etc.

! o(h?) means that lim,_,q (1/h*)o(h?) = 0 and x is o,(h?) if lim,_o (1/h*)P[|x| > €] = O for every
e > 0.
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We consider terms up to second order in Taylor’s expansion of a(t, x) and up to
third order terms in Taylor’s expansion of b(t, x). We have

a(t, x) =a, + (t - tn)aln + (xt - xn)ax,. + %(t - tn)zat,.t,.

(22) + (t - tn)(xt - xn)at,.x,. + %(xt - xn)zax,.x,.

+ 0(|t - tnlz) + 0(|xt - xn|2)’

and
b(t’x) = bn + (t - tn)btn + (xl - xn)bxn + é—(t - tn)zblnln
+ (t - tn)(xt - Xn)bt,.xn + %(Xt - xn)sz,.x,.
1
(2-3) + _(t - tn)3blnlnln + %(t - tn)z(xt - xn)bt,.t,.x,.

3!
1 2 1 3
+ f(t - tn)(xt - Xn) bt,.x,.xn + ;(Xt - Xn) bx,.x,.x,.

+o(t = 1,°) + ollx, — x,/%).
It can be shown that [7]

rﬂ [0t — %) + ollx, — x,|*)]dt = o(h?) + 0,(h?)

n

and

| " ol = 1) + ollx, — )] WD) = o,(h?).

n

The function b(x, t) is expanded up to third order terms unlike a(x, t) because

| " ol = 1) + olx, — x,2) W)

n

is only 0,(h*?) and not o,(h*). Now equation (2.1) may be written as

T+ 1
Yoy = X + f [a, + (¢ — t)ay, + (% — x)ax, + Mt — )%,
t

n

+ (t - tn)(xt - xn)at,.xn + %(xt - xn)za

1dt

XnXn

th+1
+ f [b,. + (t = t)b,, + (x, — x,)b,, + 3(t — 1,)%b
t

n

tnln

(24) + (t - tn)(xt - xn)btnx,, + ‘;‘(X, - xn)sznx,.
1
+ “‘(t - tn)3btnt,.t,. + %(t - tn)z(xt - xn)btnt,.xn

3!

1
+ %(t - tn)(xt - xn)zbtnxnxn + g—i(xt - xn)3bxnxnxn:| dW(t)

+ o(h?) + o,(h?).
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The lower limit of integration is t, and the upper limit s ¢, , ; in the rest of the paper
unless otherwise specified and as such will be omitted. The terms on the right-hand
side of equation (2.4) can be evaluated. We have

(2.5) J a,dt = ah,

(2.6) f (t — ta, dt = sa, h*,
f(x, - Xx,a, dt = axnf(x, — Xx,)dt.
(x, — x,) is expanded in the form of Taylor’s series:
t
= x) = [ [+ (5 = tay, + (x, = xay, + ofls = ) + olix, — x})}ds
t

4 [ Bt = b+ (5 = x)b, + ols = 1)

+ o(lx, — x, )] dW(s).
(xy— x,) is now expressed as [a,(s — t,) + b, (W, — W,)]. Now one may write:

t t
ax"f(x, — x,)dt = ax"[a,l fj dsdt + (a, + a,a,) Jf (s —t,)dsdt

+ ax”b,,” (W, — W)dsdt + b,,” AW (s) dt

2.7) ,
+ (b, + b, a,) JJ (s —t,) dW(s) dt
b [[ W, — Wy awis) dr] + olh?) + o,(h?);
(2.8) f%(t - t,)%a,, dt = gl—!a,",nh3;

f (t = 1)(x, — X,)a,., dt
29 =a,., f (t — )t — 1) + bW, — Wl dt + o(h?) + o(h?)

=a,,, [a,, j(t —t,)*dt + b, J(t —t )W, — W) dt] + o(h*) + o,(h?);
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1 2
Jf(xt - xn) ax,.x,. dt

—la,. f [a(t — t,) + bW, — W) dt + ofh?) + o,(h?)

(2.10)
- %axnxn[af [ = nrar+2ap, € - ) - wya
+ b2 '[ (W, — W,)? dt] + o(h?) + op(hz);
@.11) b, [ aw(e) = b, — W)
(2.12) f (t —t)b, dW(t) = b, J t —t,)dw();

f (x, — x,)b., AW(1)
= b, [ f [, + (5 — t)a, + (x, — xo)ap, + os — t) + ollx, — x,)] ds dAW(0)

t
+ b,, JJ [b, + (s — t,)b, + (x;, — x,)b, + 3(s — t,)*b,,.

+ (S - tn)(xs - xn)bt,.x,. + %(xs - xn)sz,.x,. + O(IS - tnlz)
+ ollx, — x,|*)] dW(s) dW (1)

t
b, f f [ay + (5 — t)a,, + @y s — 1) + a, bW, — Wy ds dW ()
t
+ b, j f [bn + (5 = by, + beays — 1) + by bW, — W)
b, [ = L) aW@ + b boa, [ =1 awe

+ bxnbxnbnf W, — W,)dW(u) + %bt,.t,.(s - tn)2

+ bt,,x,.an(s - tn)z + b bn(s - tn)(vvs - VVn)

nXn

+3b,  aX(s — t,)? + b, ab(s —t)W, — W)
Q13 = i

+ 3bye,bu(W, — W,.)Z] dW(s)dW(1) + o,(h?)

= bx"[a,, J:Jq ds dw(t) + (a,, + a,,a,) f J t (s — t,)dsdW(r)

(cont.)



ITO INTEGRAL EQUATIONS 129

+ a. b, j J W, — W) dsdW() + b, f f " AW (s) AW (1)
40+ boa) [[ 6 = aw aw
+ b [ 0 - wyawe awio
+ b, (b, + bx,.an) fjt Jq (u — t,)dW(u) dW(s) dW (1)
s bbb [[ [ 0~ wyaww awe aw
+ Ybye + 2b, . ay + by, a2) j f (5 — 62 dW(s) AW (@)
4 G, + bt [ [ = L)W, = W awis) aw
12 [ on - W..)de(S)dW(t)] + o, %);

(2.14) f%(t - t,)*b,,, dW(t) = 3b,,, f (t — t,)? dW(1);

[ €= 0 = xbi e, a0

Q19) = b, [ (€ = L)1 = 1) + b, = WILAW(O) + 0,8

E b,,.xn[an [e—wrpawo+ b, ] - W»dW(r)} + o ?);

f $x, — x,)%b, ., dAW(1)

[N

— 1, f |:an(t —t) + bW, — W) + b, f (5 — £) dW(s)
t t 2
+b,a, J (s — t,) dW(s) + by b, f W, - W,,)dW(s)] dW(t) + o,(h?)
- %bxnxn[aﬁ [~ wpawe + 82 [ on - wpawey

+ 2a,b, j (t — 1) (W, — W) dW(r)

t 2
+ (b, + by a,) f { j (s — t,,)dW(s)} dw(t)

(cont.)
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(2.16) , ,
vt | { [ow- W.,)dW(S)} W)
+ 2a,b, + b, a,) f (t—t,) f (s — t,) dW(s) dW(t)
+ 2000, + o) [ 08— W) [~y awisyawio
+2b,b,(b, + b)) | { [fon. = myawe [o- r,,>dW(s>} AW

20, [ 1) [ 08— wyawsawio

w20 [ 0= [ 08— Wy w9 W | + 0,00
1 1
@I g (€= b WO = b, [ €= 1 W0

,}Zf(t - tn)z(xt - xn)btntan dw(o)
(2.18)
= [ =W+, [ = - o + .

1

ij(t - [n)(xt - xn)zbtnx,.x,. dW(t)

219) = —;b,,,xnxn[a,% f (t — £, dW(0) + 2a,b, f (t — L)W, — W) dW(1)
+ b2 f (t — L)W, — W, dW(t)] + 0,(h%);

1

31| = b W0

= —;‘!bxnxnxn[a;‘:f ([ — tn)3 dW([) + 30,2.an (t _ tn)Z(VVt . VV,,)dW([)
i 3“"b3f (t = t)(W = W) dW(0) + by f (W, — W,)? dW(t)] + 0, ().
(2.20)

All the integrals that are encountered in equations (2.5)+2.20) are of Wiener type
or of Ito type. So each one of them gives rise to a random variable. They are
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defined as follows::
2, = [[aw,
Z,, = thdW(s)dt,
Zou= [[ o0~ wyasaweo,
Zo, = [0 = wyawo,
Zy, = [ = awo,
Zoy = [ W - Wiy,
Zo, = [ - wpawo,
Zyy = [ (€= )W, — wyawo,
zo,= | (s — 1) dW(s) AW (),
Zyo = [ (W, = Wy aw,
Zosa= [[ 00— Wy aweyawo,
Zin= [ [ = wyawisyae
2= [[ 0.~ wyaw awe,
Zysw= [[ [ 0.~ wyaww aws awo,
Zisu= [0 = W) [ o0, wyawiyawo,
Zyow = [ =t awio),

Z g, = ff (s —t,)dW(s)dt,
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Zaou = [ [ [ =t amw awisyaweo,
Zos= [[ 6 - e awe awo,

Zon= [ [ 6= a9, - wyaw awo,
Zos = [ [ €= 1) — ) aw awe,
Zosw= [[ €= 0%, ~ Wy aw awo,

[ nt 2
Zys = f f (s—r,.)dW(s)] AW,

2

Ziw= [ | W, - W,,)dW(s)] AW (),

Zyrn = | | s - t,.)dW(s)] U(W - Wn)dW(u)] W),
Zage = [ [ 00~ W5 — ) awes awio,

Zoow = [ (¢ = 1 awao,

Zyon = [ (¢ = 0200 - Wy awo,

Zay = f (t — )W, — W dW(2).

The properties of these random variables and their relationships are studied in
detail in the Appendix. One may find from these relationships that Z,,, Z,,, Z 4.,
Z 90, Z1gns Z 19, and Z, 4, are dependent normal variables and Z,, is uncorrelated
to Z,, and Z,, and it may be approximated by a normal variable. The random
variables Z,,~Z 5, can be expressed in terms of Z,,, Z,, and Z;,. The random
variables Z,¢,~Z5,, are 0,(h*). One may also observe that Z;;, (i = 1,2, -+, 31)
are independent for different values of j,j = 1,2, ---, N — 1.

3. Algorithm. For a second order algorithm one has to account for deter-
ministic terms which are bigger than o(h?) and random variables larger than



ITO INTEGRAL EQUATIONS 133

o,(h*). As a result the terms involving h*/3!,Z,c—Z,, can be neglected.
Regrouping the remaining terms, one gets

hz
xn+1 = xn + anh + anIn + ?(at,. + ax,.an) + ZZn(ax,.bn) + ZSn(bx,.ax,.bn)

+ Z4n(bx"bn) + ZSn(bt,I + bx,.an) + %ZGn(a
(3.1) + Zg, (b, b, + b

1
+ g—' Zl On(bxnx,.x,.br?) + %Zl 1n(bx,.bx,.x,.b12|) + Zl 2n(axnbx,.bn)

x,.x,.br%) + %Z7n(b
bnan) + ZQn(bi,.an + bxnbt,,)

by)

XnXn

XnXn

+Z, 3n(b:2c,,bn) + Zl4n(bi"bn) +Z, sn(bx,.x,,bx,,bf)'

By making use of the relationships (A.6)—(A.17) derived in the Appendix, the
algorithm may now be written as

Xp+1 = X, + ah + b,Z,, + 3h*(a, + a,a, — 3a, b, b,
+ Z,ay,b, — b, — by a, + 3b3b,) + HZ3, — hb
+ Z,,ib,, + b, a, — %binb") + Zyb,a.b,
+ 5212y — Z3)(agb by + ag,.,b7)
+ 3623, — Z2)(by b7 + b1 b,)
+ HZhh — 3+ Zs, — 21,25, by by + by iby — 3D
+ {ZLh = 30 = Zy, — Z,,2,,)(b,a, + byb, — 3b3,b))

b

xn’n

32
32 bob?)

XnXn

1
+ %(%Z‘I‘n - 3ZInZ2n + 3Z3n) ybxnxnxnbs + %bxnxnbxnbr%
+ %(%Z‘I‘n - ZanZH - Z3n)(%bx,.bxnxnb£ + %b?cnbn)

In this algorithm only three random variables Z,,, Z,, and Z,, appear. Z,, and
Z,, are dependent normal variables and Z,, is approximately a normal variable.
Now the algorithm given by (3.2) can be very easily implemented on a computer
by simulating Z,,, Z,,, Z;,,n = 1,2,--- , N — L.

4. Example. Consider an Ito integral equation given by

t t
4.1) x(t) = x(t,) + J Cxds + J Dx dW(s),

to to
where C and D are constants, W(t) is a standard Wiener process and the interval
of definition is [#,,¢,]. It is well known that the process {x,} is Markovian and
that the transition density function, p(x, t/x,,t,), satisfies the Fokker—Planck
equation

op __ 9(Cxp) N 0*(D*x*p)

1
42) ot 0x 2 ox?
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The equation can be solved either for the density function or for the moments. If
m,(t) and m,(z) are the first and second moments respectively, then

(4.3) my(t) = E(x,) exp (Ct),

4.4) my(t) = E(x3)exp (2C + D).

The algorithm given by (3.2) gives a sample pathwise solution at discrete points
in the interval of definition. The algorithm for this example is given by

Xpe1 = X,[1 + Ch + Z,,D + $h*(C? — 1CD?) + $Z,,D + Z,,h(CD — 1D?)
+ Z,,CD* + 42}, — hD* + YZ,,Z,, — Z,,)CD?
+3D°3Z3, - Z,,) + 3(CD? — 3D (ZL,h — 3h? — Zy, — Z1,25))
+ %(%Z?n - Z3n - ZanZn)D4]'

This equation can be repeatedly solved to produce different sample paths each
time by getting different realizations of x,,Z,,,Z,,and Z;,,n = 1,2, --- , N — 1.
From these samples paths the moments can be easily computed. The equation
given by (4.1) is solved with the following values:

(to.t;] =03secs, C= —20; D=10, x,(w)=100, h=0.005.
Moments are computed with 100 samples. If 62 is the variance of x,,, then the sample

mean should lie between m,(t,) + 30,/./100. The computational results are shown
in Figs. 1 and 2.

10
8 x Theoretical value

o Sample mean values
5 my(1) +3 o (V)f/N
4

m(t)-3 oy (1)//N

2
O 1

FI1G. 1
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100
80
o Sample second-moment
60k values
¢]
40F mo(1)
20F
0 L 1 1 1 ? e o )

0 0.2 0-4 0-6 08 1.0 12 1-4 1.6

Time —=

FiG. 2

5. Conclusions. The algorithm derived in this paper is readily implementable
on a digital computer. A large class of random integral equations, including the
equations where a(.,.) and b(.,.) are nonlinear in ¢t and x, can be studied. The
extension of this algorithm to the vector Ito equation, where x, is a vector but
(W,)is a scalar, is direct. Extension to the vector case, where W, is also a vector, isnot
immediate.

Appendix. Let (Q, P, %) be the probability space, let ', ¢ € T, be a monotone
increasing system of Borel subalgebras such that 4' includes all null sets for each ¢,
and let W, e (#') and (W,,, — W) be independent of #'. f, € (#') indicates that f,
is %”' measurable Let &, be the set of all functions, f, such that (i) f is measurable

(ii) f, € (#") for almost all e T and (iii) [, /7 dt < oo for almost all weQ,
where Tls the interval over which f, is defined. The following lemmas are used to
derive some of the relationships between the random variables defined earlier.

LemMma 1. If f, ge &,, then

fﬂdm)(f gde;) =f fSGSdW;+f gstdWs+ffsgst,
t t t t t

where F, = [ f, dW, and G, = % g, dW,.
LemMA 2. If f, g€ &,, then

(ffdes)U gsds) ij aw, + f o F. ds.

where F, = [ f, dW, and g, = [} g, do.
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Proofs of these lemmas are given in [6]. In what follows the upper limit of
integration is ¢, ; and the lower limit is ¢, unless otherwise specified. Consider

de(t w,.. —W.,.

Z,, 1s a normal random variable, by definition of the standard Wiener process,
with zero mean and variance h:

(A1) Z, = N, h),

where d means the left-hand side has the distribution specified on the right-hand
side. Here N(O, h) represents a normal distribution with mean zero and variance h.

=”'dW(s)dr=f(W,—W d

By the definition of the Ito integral Z,, can be expressed as the limit in the mean of
linear combinations of random variables which are jointly normal and as such Z,,
is normal:

(A2) Z,, L N, h3/3).

Also one may observe that
(A.3) E[Z,,Z5,]) = h2,

Z,, = H de(u)dde(t) = JZZ,,(t)dW(t).

Evidently Z;, is not normal, but its moments can be computed :
Bz -0 EZ3]-: Ezs) - Sl
12 1680
E[Z3,] = E[Z3,] = E[Z,,]*"! = 0.
Its characteristic function may be written as

h* t? 61 . t*
o rr O sl
ZU) 122! " 1680" a1

Consider a normal random variable Y with vero mean and variance h*/12. The
characteristic function of Y is given by
h* 2 N 3h8 t*
12 2! 144 4! ’
h8 4

=g T o)

Therefore for small values of h one can approximate Z,, by a normal variable
with zero mean and h*/12 variance:

(A.4) Z,, Z N, h*/12).

dy(t) = 1

b2, (1) — dyl)
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It may also be noted that
(AS) E[Z,,Z5,] =0; E[Z,,Z3,] = 0.

The random variables Z,, to Z, 5, can be evaluated using Lemma 1 and Lemma 2.
1. Let f(t) = 1 and g(t) = 1 in Lemma 1,

de(t JdW(t JJ dW(s)dW(t) + IJ‘ dW(s) dW(t) + fdt

ZinyZin=Zy+Zy, +h,

2. Let f(t) = 1 and g(¢t) = 1 in Lemma 2,

de(r)fd::” ds AW (1) + ” AW (s)

Zln'h =Zs, + ZZn’
(A7) ZSn = (Zlnh - ZZn)‘

3. Let f(¢) = 1 and g(t) = (W, — W,) in Lemma 2,
de(r)f(W. — Wy = ”(W Wy dsdW(r) + f(W, — Wy,

ZanZn = Z3n + Zén’
(A,8) Z6n = (ZanZn - an)-
4. Let f(t) = 1 and g(t) = (W, — W,) in Lemma 1,

det)fW W) dW (1) f{(w W,)? — (t — t,)} dW(2)

+ f(W, — W) aw() + f(w, — W) dt,

Zln%(an - h) = %Z7n - %ZSn + ZZn’
(A9) Z3=GZ3. — Z,).

5. Let f(t) = (W, — W,) and g(t) = 1 in Lemma 2,
f(W, - Wn)dW(r)fdr - f(r — L)W, — W) dW ()

1
3 [ - = -

l(Zz - h)h = ZSn + %ZGn - %hZ’
(AIO) Z 8n = %(Z%nh - %hz + Z3n - ZanZn)'
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6. Let f(¢t) = (t — t,) and g(¢) = 1 in Lemma 1,

f(r 1) dW() f AW (1) = f (t — 1)(W, — W) dW(1)

+ ”' (s — t,)dW(s)dW(t) + f(t —t,)dt,

ZSnZIn = Z8n + Z9n + h2/2a
(All) Z9n = %(Z%nh - %hZ - Z3n - ZanZn)'

7. Let f(¢t) = (W, — W,) and g(t) = (W, — W,) in Lemma 1,
f(W. - W,,)dW(r)f(W, ~ W) dW(r) = 2f(W, — W)W, — W)

— (= ) W + [ - W e,

%(Z%n - h)%(Z%n - h) = ZlOn - ZSn + Z6n’
(A12) ZlOn = (%Z‘:n - %ZanZn + %Z3n)'

8. Let f(t) = (W, — W,)* and g(t) = 1 in Lemma I,
f (W, — W2 dW(1) f AW (0) = f (W, — W)> dW (1) + f f W, = Wy dW(s) dW (1)
+ f (W, — W) dr,

Z7nZIn = ZlOn + len + ZGn’
(A.13) Zi1w =262V — 21423, ~ Z3,),

Zinw= [[ 00~ myawea
1 1
ZEJ(W’ — W,)2dt — if(t —t,)dt
(A14) = %(ZanZn - Z3n) - h2/4 (by A8),
Ziy = ”(W W) dW(s) dW (D)

- J o= wawio - f (t — 1) dW(0)

(A.15) = 1023, — Z,) — YZ,,h — Z,,) (by A9),
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Zyw= | [ o= wyawi aw awo

1 t
=[] o= = 6 =y awrawe
(A16) N Zy1n — Zow,

Zys = f(W, - Wn)f (W, — W) dW(s) dW (1)

1 1
=5 [ =y aw 3 [ = v, - wyawa

(A17) = %(ZIOn - Z8n)'

It can be easily seen from the Chebyshev inequality that a random variable Z
will be op(hz) if the variance of Z is o(h*). Using this result it can be easily shown
that the random variables Z ¢, through Z;,, are o,(h?).
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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS
FOR THE FRITZ JOHN PROBLEM WITH LINEAR
EQUALITY CONSTRAINTS*

KENNETH R. GEHNERTY

Abstract. A generalization of Motzkin’s theorem of the alternative is developed, and is then used
to obtain necessary optimality conditions for the Fritz John optimization problem with linear equality
constraints. Under certain constraint qualifications and convexity assumptions these necessary
conditions are also sufficient. An application of these results to the problem of Chebyshev approxima-
tion with interpolation is given.

1. Introduction. Consider the following general optimization problem:

minimize F(x)
X

subject to

(@) G{x,1) =0 forallteT;, i=1,--,1,
(P) (b) H(x,s) =0 forallse§;, j=1,-,m,

(c) xe X°,

where
(i) F(x) and each G(x,t) are real-valued functions which have continuous
partial derivatives with respect to x for each t € T;, and each G(x,t) is
continuous in t € T, for each x € X°;

(i) each H(x, s) is a real-valued linear function in x for each s€ §;, and is

continuous in s € S; for each x e X°;

(iii) each T;and §;is a compact subset of a complete metric space;

(iv) X°is an open set in R".

Since the Fritz John problem [4] is obtained from (P) by deleting the constraints
(b), we shall call (P) the Fritz John problem with linear equality constraints.
Although problem (P) can be put into the form of the Fritz John problem by re-
placing each Hj(x,s) = 0 by H{x,s) < 0 and — H(x,s) < 0, it is difficult to show
that the Fritz John necessary optimality conditions for the resulting problem [4]
are also sufficient under reasonable constraint qualifications and convexity
assumptions. The specific difficulties are made clear in § 4.

In order to obtain necessary optimality conditions for (P), a generalization
of the Motzkin theorem of the alternative [5] is developed in § 2. The necessary
optimality conditions in § 3 together with the constraint qualifications in § 4 and
appropriate convexity conditions yield the characterization conditions given in
§ 5. These characterization results are applied in § 6 to obtain characterization

* Received by the editors January 16, 1973.

+ Western Electric Engineering Research Center, Princeton, New Jersey 08540. This work was
supported in part by the Mathematics Research Center at the University of Wisconsin and by the
National Science Foundation under Contract GJ362.
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conditions for the solutions of a Chebyshev approximation problem with additional
interpolation requirements.

2. Generalized Motzkin theorem. One of the main results needed for proving
the necessary optimality conditions is the following theorem.
THEOREM 1. Let

U and V be compact sets in R",
W be an arbitrary set in R".
Then either
uz <0 forallueU,
(2.1) vz=0 forallveV,
wz=0 forallweW,
has a solution z € R" or for any u® € U, there exists S < n with
(1) S vectors
ueU, i=1,---,8,,
VeV, i=S +1,---,8,,
weW, i=8,+1,---,8,
(2.2)
(i1) S + 1 real numbers A;,i = 0,1, ---, S, such that
420 fori=0,1,---,8,,

with either A, > 0 or S; = 1 such that

St S> S
A’ + Y Ayt 4+ Y, A+ Y Aw =0,
i=1 i=S +1 i=S,+1

but not both.

Proof. The impossibility of both (2.1) and (2.2) follows at once, for if (2.1)
holds there would be a 2 € R” such that

S ) S ) S )
YoAuz4+ Y Apt+ Y w2 <0,
i=0 i=S;+1 i=S;+1

—<0- —~ =<0 =0

which contradicts (2.2).
Suppose (2.1) does not hold. Define the following subsets of R":

uw =0 forallueU
2= f
vz =0 forallveV

Z,={zlwz=0 forallwe W}.
Both Z, and Z, are convex and Z, N Z, = .
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If Z, # ¢, then since Z, # J always holds, the separation theorem for dis-
joint convex sets in R" [5] yields

gzza forallzeZ,,
(2.3)
qz <o forallzeZ,

for some nontrivial g€ R" and real number a. Since Z, is a subspace, namely
Wt A (zeR"wz = Ofor all we W}, gz = 0 for all ze Z,. Thus, ge Z3 = W't
and by a theorem from linear algebra [6] g espan W, so write q = li=1 oW’
with w' € Wand | £ n. It is clear from (2.3) that the system

uz <0 foralueU,
24) vz<0 forallveV,
1
( Y a,.wi)z <0
i=1

has no solution z € R".
If Z, = &, then the system

uz <0 forallueU,

vz<0 forallveV

(2.5)

has no solution.
Since (2.4) and (2.5) are of the same form, define
0- { l | ifZ, = &,
UU( Y aiw') ifZ, # &,
i=1
and then the system
gz <0, qe€Q,

vz £0, veV,

(2.6)
has no solution z € R". Since both Q and V are compact, for any chosen u® € U,

1 J
Y Bd' + Y 0p7, ¢ = u’forsomei
(27) Z — z 1='1 j=
)
i=1

is closed and convex. If 0 ¢ Z, then by the strict separation theorem for a closed
convex set and a point outside that set [5], there is a d € R" and a real number
o < 0 such that

(2.8) dz <a <0 forallzeZ.
It follows from (2.7) and (2.8) that
qgd <0 forallgeQ,

vd £0 forallveV.
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Since this contradicts (2.6), 0 € Z must hold, and so for some I, J,, #{ and 6] we
have

o ) Jo ‘
S R+ Y 8% =0,
i=1 j=1
(29) g;=u® forsomei=1,--,1I,

Iy
YR =1, =0, 69=0.
i=1

By replacing the appropriate ¢' by Y!_ aw' if it occurs in (2.9), the resulting
expression is a linear combination in terms of the original vectors in (2.1). By
repeatedly using reductions based on the linear dependence of n + 1 or more
vectors in R", such as are used in the proof of the Caratheodory theorem [5],
the desired result (2.2) is obtained. Q.E.D.

The classical Motzkin theorem of the alternative [5] is simply Theorem 1
where each of the sets U, V, and W is finite.

3. Necessary optimality conditions. In order to obtain necessary optimality
conditions for problem (P), we shall first need a result concerning the linearization
of the constraints around any local minimum of (P).

LEmMMA 1. Let X be any local minimum of (P). Define T, = {te T|G(X,1) = 0}
fori=1,--. | Then the system

V,F(®)z < 0,
(3.1 V.G(X,)z <0 forallteT fori=1,---,1,
VxHj()?,s)z=0 fOrallSGijorjzl,...,m

has no solution z in R"

Since the proof of Lemma 1 is very similar to the proof given in [4], the details
are not given here.

THEOREM 2. Let X be a local minimum of problem (P). Then there exist integers
So and s withQ < s, < s < n such that

there are s, indices i, with 1 < i, < | together with s, points

B ket = (e TG, x.0 =0}

Jork=1,---,s,,and

there are s — s, indices j, with 1 £ j, < m together with s — s points
(3.3) . .

ste§; fork=s,+1,---, s such that
(34) there are s + 1 real numbers A, with A, > 0 or s, = 1, and 4, > 0 for

' k=1, s,

with the property that

(3.5) AV FE) + Y 4V.G (X, + Y AVH(X,s)=0.
k=1 k=so+1
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Proof. By Lemma 1, there is no solution of the system
V.F(x)z < 0,
(3.6) V.G(X,t)z <0 forallteT, fori=1,---,1,
V,H(X,s5)z=0 forallseS; forj=1,---,m.

Then (3.2)~3.5) follow from (3.6) and Theorem 1, where we let u° = V F(X).
Q.E.D.

4. Constraint qualifications for problem (P). Although Theorem 2 gives
necessary conditions for an X € R" to be a local minimum of (P), unless it can
be shown that 1, > 0 holds, these conditions are not very meaningful since
if A, = 0 then the conditions say nothing about the objective function F(x) of
problem (P). The following constraint qualifications are sufficient to guarantee
that 4, > 0.

Constraint qualification 1 (Modified interior point condition). The problem
(P) satisfies the modified interior point condition if each G(x, t) is pseudo-convex in
xforallte T fori=1,---, land there exists a point X € R" which satisfies

(i) G(x,t) <0 forallte T;fori=1,---,1,
and
(i) H(X,s) =0 forallseS;forj=1,---,m.
Constraint qualification 2 (Modified strict inequality condition). The problem
(P) satisfies the modified strict inequality condition at a given point X, where X € X
= {xe X°G(x,t) < Oforallte T, fori=1,---,land Hfx,s) = 0 for all seS;

for j=1,---,m}, if for any choice of integers s, and s with 0 S s, =s=n,
together with

(i) any choice of s, indices i, with 1 < i, < [ and s, points
the T, = {te TG, (x,t) =0} fork =1, -+, 5,

and
(ii) any choice of s — s, indices j, with 1 < j, S mands — s,
points s*€ S, fork = s, + 1,---,s,
there is a vector y = (y,, - -, ¥,) € R" such that
(i) Y y, V.G (%, <0 fork=1,---,5,
q=1
and

(iv) Y yV, H;(%,5=0 fork=sy+1,--,5.
q=1

For most problems, it is usually easier to verify constraint qualification 1
rather than constraint qualification 2. Moreover, under the assumption that
G{(x, t) is differentiable in x, constraint qualification 1 implies constraint qualifica-
tion 2.
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THEOREM 3. Let X be a local minimum of problem (P). If either constraint
qualification 1 or 2 is satisfied at X, then A, > 0 is guaranteed in Theorem 2.

Proof. Since each Gy(x,t) is differentiable in x, constraint qualification 1
implies constraint qualification 2. So it is sufficient to prove the result under
constraint qualification 2. By Theorem 2,

(4.1) AWVFE + Y AV.G (X, + Y AV.H
k=1

k=sot+1

WX, =0.
If 4, = 0 holds, then from (4.1) and the y € R" from constraint qualification 2 we
have

Z MyV.G (X, ] + Z ik[nyij(ank)] =0
k=1

k=so+1

—<0-> —=0-

which is a contradiction. Thus, 4, > 0 holds. Q.E.D.

Although constraint qualifications are needed to develop meaningful neces-
sary optimality conditions for nonlinear programming problems with a finite
number of variables and constraints, this is not necessary for linear problems of
the same form [5]. In contrast, for Fritz John type problems some type of constraint
qualification is always needed to guarantee 1, > 0, even when the objective func-
tion and all the constraints are linear. Consider the following problem which was
originally formulated in a different form and used for another purpose [7]:

minimize 7
X1,X2,T

subject to
@) t*—x;, —xt—1=0
() x; + x,t —t* =10
4.2) for all t € [0, 1].
(iil) x; + x,t — ¢ <0
(iv) =t —x; —x,t =0
This problem is linear in all the variables x,, x,, and 7. By inspection of constraints
(iii) and (iv), the only feasible solutions are x; = 0Oand —1 < x, < 0,so the optimal

solution is X; = X, = 0 and 7 = 1. By Theorem 2, there exist real numbers 4,
i=0,1,2,3, with at least one 4; > 0 such that

1 —1 0 0 0
4.3) Wl + Al =1] + 4,01 + A, —1]=[o].
0 —1 0 0 0

VF(x,7) constraint constraint  constraint
(att =1 (ii)att=0 (iv)jatt=20

Clearly 4, > 0 is impossible for problem (4.2).
Finally, it is appropriate to point out why it is necessary to develop a new
characterization theorem for the Fritz John problem with linear equality con-
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straints rather than reduce the equalities to two inequalities and then apply the
Fritz John necessary optimality conditions [4] to the resulting problem. If the Fritz
John necessary optimality conditions are obtained for the reduced problem with
only inequality constraints, it is possible that we can only conclude that (1/2)(—v)
+ (1/2)v = 0, where vx = 0 was one of the original equality constraints. There does
not appear to be any reasonable way in which to avoid such useless results other
than to derive explicit necessary conditions for problems with equality constraints.

5. A characterization theorem for problem (P). Under quite general convexity
assumptions on the objective function and constraints of problem (P), the necessary
conditions of Theorem 3 are also sufficient. Generalizing from [5], a real-valued
function G(x,t), where x e R", t € T and T is an arbitrary set, is said to be quasi-
convex at X if for each x such that G(x,t) < G(X,t) for all t € T, then G((1 — A)X
+ Ax,t) £ G(X,t) holds for all0 < 1 £ 1 foreacht € T. The function G(x, t) is said
to be quasi-convex onaset I' = R"ifit is quasi-convex for each point x € I'. Pseudo-
convexity is defined as in [5].

THEOREM 4. In addition to the assumptions for problem (P), let F(x) be pseudo-
convex on X°, each G{x, t) be quasi-convex on X°, and assume that either constraint
qualification 1 or 2 holds at X. Then X solves problem (P) if and only if there exist
integers s, and s with0 < s, < s < n such that

there are s, indices i, with 1 < i, < | together with s, points

O ke, = e TG, m0 = 0)
Jork=1,---,s,, and

(5.2) there are s — s, indices j, with 1 £ j, < m together with s — s,

: points s*€ S, fork = s, + 1, -+, s such that
(5.3) there are s real numbers A, with A, > 0 for k = 1, -, s, with the

' property that
(5.4) VFE + Y AV.G 5+ Y AV.H, (%5 =0.

k=1 k=so+1

Proof. The necessity follows at once from Theorem 3.
For the sufficiency, suppose that x were any feasible point, i.e.,

xe{xe X°G(x,t)<0forallteT, i=1,---,1;
Hx,s) = OforallseS;,j=1,---,mj.

Then for any i =1, -, m, V.G(X,i)(x — %) <0 for any Xxe X° and 7 which
satisfy G(X,7) = 0 by the quasi-convexity and differentiability of each G(x, 1)
from a theorem in [5]. It follows that

(5.5) Y AVG (X, ) (x —X) =0

k=1
since each 4, > 0. By the linearity of H(x,s) for j=1,---, m, V H{(&,5)(x — X)
= 0 for any X € X° and § which satisfy H (%, 3) = 0, so

(5.6) Z MV H (R, 1%)(x — %) = 0.

k=so+1
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Applying (5.5) and (5.6) in (5.4), we conclude
(5.7) V.F(X)(x — X) = 0.

The pseudo-convexity of F(x) and (5.7) imply that F(x) = F(X). Thus X solves
problem (P). Q.E.D.

6. An application of the characterization theorem. The characterization
theorem developed in § 5 can be applied to obtain characterization theorems for
numerous important problems in approximation theory; see [2] and [3]. In this
paper, for the purposes of illustration, only one application is described, namely the
problem of Chebyshev approximation with additional interpolation requirements.

The problem can be described as follows. Let T be a compact subset of a
complete metric space, f(t) and {¢{(t)}i-, be real-valued continuous functions
defined on T, and T = {}"_ be a set of m chosen points in T. Then the problem
is to find an approximation )_ x¥¢(t) to f(t) such that

n

(6.1) Y xi¢it) = f(t) forteT,
i=1
(6.2) sup | f(t1) — Y x¥¢{t)| = inf sup| f(t) = Y x;0(1)|.
teT i=1 allxi’s teT i=1

This can be rewritten in the same form as problem (P):
minimize 7
subject to

@ —f(O)+ 3 xdf) —t <0
i=1

-

(b) +f(t) — xpt) —1 20 forallte T

[l

i=1

n

© f(t) = Y xip(t) =0 forj=1,---.m

i=1

If there are parameters X; which satisfy (6.3c), then (6.3) satisfies constraint
qualification | since by choosing a 7 large enough both (6.3a) and (6.3b) can be
satisfied as strict inequalities for all t € T. Using Theorem 4 we obtain the following
characterization for Chebyshev approximation with interpolation.

THEOREM 5. Assuming that f(t) is not in the span of {¢;(t)}i-,, a vector x*
solves problem (6.2) with (6.1) if and only if the origin of R" can be represented as a
linear combination of at most n + 1 points from the sets

$4(0)
(6.4) e(t) le(®) = llellyp,
Pl

where e(t) = Z’:= (XF (L) — f(t)is the error function for the approximation problem
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and |le|l; = supy le(t)|, and
¢.(1) é.(t)

(6.5) - ||teTY = =1, my,
du(t) bu(t))

with at least one point from the set (6.4) and every point from (6.4) having a positive
coefficient in the linear combination.

Proof. All the hypotheses of Theorem 4 are satisfied, so by (5.1)5.4), (x*, t*)
solves (6.3) if and only if

1 -1 0

0
0 S0 — 1) k s Jke
oo 0|, g Cree |, e[}
: k=1 k=so+1 0
0 (—1y%¢,(t") ba(17)

where fork =1, -+, s,
{0 if constraint (6.3a) is active at t*,
k= . . . .
1 if constraint (6.3b) is active at t*

and 4, > 0. Since f(t) is not in the span of {¢{t)}"-,, t* > 0, and so defining
A = A/*fork =1, .-, s, and observing that

+1t* if (6.3a) is active at t*, ie., ¢ = 0,
e(t') = . o .
—1* if (6.3b) is active at t* ie, ¢ = 1,

then (6.6) becomes

1 —1 0 0

0 s tk s o .
(6.7) Y A ¢1.( : + Y A M. : =

: k=1 k=so+1 0

0 d.(t") b(t7)

with 4, > Ofork=1,---,spands <n+ 1. Q.E.D.
Theorem 5 generalizes results previously obtained by Deutsch [1] for the case
where T is a compact subset of the real line and {¢(t)}7-, is a Haar set.
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A GENERALIZATION TO DUAL BANACH SPACES OF A
THEOREM BY BALAKRISHNAN*

RICHARD B. VINTERY

Abstract. A class of optimal control problems is studied in which the controls and outputs are
taken as elements in Banach spaces, and the cost functions and constraints are expressible in terms of
the norms on these spaces. The paper is principally concerned with generalizing certain results of
Balakrishnan relating to optimal control in Hilbert space to this more general setting.

1. Introduction. Let a system be described by a bounded linear map ¥ from
the control space % into the output space X (% and X both “dual” Banach spaces),
and suppose that the controls u are subject to the constraint ||ju|] < M, M > 0.
We set the problem of finding, from among all controls which minimize the dis-
tance of the output from the desired output x, while satisfying the constraint, a
control of minimum norm. The norms on % and X are chosen to give a measure
of cost of control and output error respectively. Thus we seek an admissible control
whose output approaches most closely to x,; if there are a number of such controls
we seek the most economical. This problem we henceforth call the basic problem.

In connection with the basic problem, Balakrishnan has supplied the following
result dealing with the case when % and X are Hilbert spaces (our notation is
adopted).

THeOREM 1.1 [1, p. 120, Thm. 2.3]. Let ¥ be a compact linear bounded trans-
formation mapping a Hilbert space % into another Hilbert space X. Suppose that
for a given x, in X it is required to minimize

|Lu — x4lI*
subject to u being in the sphere C in U :
lull> < M2,

Denote the adjoint of £ by £*. Then either
sup [[£*L + al]” ' LEx | £ M
in which case the sequence
u, = [L*L + al] ' F*x,
is such that u, converges (strongly) to the optimal element u, of minimal norm
Lif{)l 1 LUy — x 11> = iuggllfu — x4|? = | Luy — x4lI%

or
sug [[L*L + ad]™ ' L*x,|| > M,

* Received by the editors October 31, 1972.

T Electronic Systems Laboratory, Department of Electrical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139. This work was supported by the Commonwealth
Fund (Harkness Fellowships).
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in which case
Uy = [L*L + apI]™ ' L*x,,

where o, is adjusted so that |uy| = M yields the unique solution to the minimization
problem.

Below, a generalization of this theorem to dual Banach spaces is provided.
The result is thereby made available to a considerably broader range of control
problems; in particular, taking % as L, or NBYV, to problems involving ‘“hard”
and ““fuel” constraints on the control respectively.

Under a fairly mild condition on the input/output map ¥ we shall establish
existence of an optimal control, characterize where possible the solution in terms
of a closed hyperplane in the output space and show how this hyperplane may be
obtained as the solution to an unconstrained minimization problem over the
normed dual of the output space. When such characterization is not possible, we
shall obtain the solution instead as the limit of a sequence in the manner of
Theorem 1.1 for the Hilbert space problem. Finally § 11 extends certain results of
Porter [3, Chap. 4] concerning characterization of “minimum effort”’ controls
from the case when . is onto to the case when the range of .# is merely dense in X.

Balakrishnan has briefly examined a slight variant on the basic problem
above [2, § 3]. In this treatment, however, characterization of the optimal control
is limited to the case when the optimal output x, is not x, (this being equivalent to
the condition that k, > 0 in [2, p. 163, line 26]) and no means is provided of
determining the appropriate closed hyperplane of support at x, (though it is
suggested that this may be done through a generalization of the Pontryagin maxi-
mum principle).

2. Notations and definitions. By a dual Banach space B* is meant a space
isometrically isomorphic with the linear space of all bounded linear functionals f
on some Banach space B (the primal space), the norm of f being defined in the usual
way. We say that B* is the (normed) dual of B and that B is the pre-dual of B*. Only
real Banach spaces are here considered.

Suppose that M isa continuous linear map from A4 into B (A, BBanach spaces),
with adjoint M*:B* — A* (A*, B* the duals of 4, B respectively). Then we say
that M is the pre-adjoint of M*. It is remarked that if B is not (norm) reflexive then
not all bounded linear maps from B* into A* have pre-adjoints.

The operation of a continuous linear functional b* on an element b in the
primal space will be written (b, b*)». The norm on all spaces will be denoted by
l(-)ll. 6 will denote the null element (in the linear space determined by context).

A Banach space B will be called strictly normed if given x,, x, € B,

Ix; + x50l = |Ix{]| + |x,]| implies x; = Ax, or x, = 6, A20.

We note in particular that L,,1 < p < oo, and any Hilbert space are strictly
normed.

Given any element b in a Banach space B, there exists a nonzero element b*
in the dual of B such that

<b,b*> = [|b]| - 1b*||
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([4, p. 186, Thm. 4.3-B]). We say that the two elements b, b* are aligned if and only if
this equality holds. Alignment will be indicated by writing b || b*.

In the sequel, solutions to the control problems will be elements in a dual
space %. These solutions will be characterized to within alignment with some
nonzero element in the pre-dual of %, and to within the magnitude of their norms.
For some spaces (e.g., # = L, or NBV) the characterization may be incomplete
unless we place certain restrictions on the input/output map (for example assume
system ‘“‘normality” in the case # = L_,). With no such restrictions further
analysis will be required to determine the full optimal control history.

In this section we have followed the customary usage of indicating a dual
space by *. However in the sequel we shall be working principally in dual spaces
and it is convenient to distinguish a Banach space and its dual instead by attaching
a superscript ' to the primal space.

DEFINITION 2.1. Let X be a topological space. The functional f: X — R* is
said to be lower semicontinuous (l.s.c.) on X if for any x,€ X and ¢ > 0, there
exists a neighborhood V of x, such that f(x) > f(x,) — ¢forall xe V.

As is well known [5, p. 219] this definition is equivalent to the requirement
that the set {x|f(x) < ¢} be closed in X for all real &.

We note in particular the following.

LEMMA 2.1. The norm on a dual Banach space B is a weak* l.s.c. functional.

Proof. For ¢ > 0, the set D, = {x € B|| x| < ¢} is weak* compact by Alaoglu’s
theorem [4, p. 228, Thm. 4.61-A] and therefore weak* closed [6, p. 424, Cor. 3].
Fore < 0, D, is trivially weak* closed. The result follows from the above equivalent
definition of ls.c. 'ty.

3. Problem formulation. Let %, X be dual Banach spaces with pre-duals
', X' respectively. Let X be reflexive. % will be called the control space, X, the
output space. We introduce the input/outliut map £ U — X. It is assumed:

(1) ¢ is a bounded, linear map;

(i1) & has a pre-adjoint " : X" — U'.
Let x, be some nonzero element in X and let M > 0. Then we define:

The subproblem.

{minimize |xq4 —Lul
subject to lu| = M, ue%.

The subproblem will not be of interest in its own right but as a means to defining
the following.

The basic problem. From among all solutions to the subproblem find an
element u, of minimum norm.

The condition (ii) above on ¢ is fairly mild : for example it is satisfied when
the space % is reflexive. The condition is introduced to ensure the following
continuity property.

LEMMA 3.1. The map £ : U — X is continuous with respect to the weak* topol-
ogies on 9 and X.

Proof. Take the basic weak* neighborhood of 6 in X :

A={xeXKxj,x) <ei=12, n}
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forx;e X',i=1,2,---,n.Then ¥ YA) = {ue %L x\;,u) < &i=12,---,n};
here %' is the pre-adjoint of %, We see that &~ (A4) is a basic weak* neighborhood
of 6 in %, whence .& is continuous in the specified sense.

4. Existence and uniqueness of solutions.

PROPOSITION 4.1. There exists a solution to the basic problem.

Proof. Let D be the subset of B = {ue %||lu| < M} on which the functional
Ilxs —(-)| achieves its minimum. By Alaoglu’s theorem, B is weak* compact
and in consequence of Lemmas 2.1 and 3.1, || x, — &(-)|| is weak* 1.s.c. on %. But
a ls.c. functional on a compact set of a topological space achieves its minimum
whence D is nonempty. It readily follows from Definition 2.1 that D is a weak*
closed subset of B. Therefore [6, p. 424, Cor. 3] D is weak* compact. Now solutions
to the basic problem comprise elements u € D of minimum norm; we conclude
existence of a solution from Lemma 2.1.

PROPOSITION 4.2. If % is strictly normed then the solution to the basic problem
is unique.

Proof. This is shown by a simple contradiction argument.

S. The a-problem. Let us define the functional f on % by
fw) = ||x;, —ZLu|* forue¥.
The solution to the subproblem is first considered. This problem can be cast as
minimize f(u*)
{subject to u*||? — M2 £0.
We find the following.

LEmMMA 5.1. A necessary and sufficient condition for i to be a solution to the
subproblem is that there exist some a = 0 such that

f@) + off|@ll*> — M?] = min {f(u) + of|lu|*> — M)lue %}
and
af [al* — M?] = 0.

Proof. Sufficiency follows from [7, p. 220, Thm. 1] and necessity from [7, p. 217,
Thm. 1] on remarking that (i) the required convexity conditions hold, (ii) the
infimum is finite and (ii1) there exists some u € % for which |u|| < M.

The lemma makes it clear that the subproblem can be approached by solution
of the following unconstrained problem which we call the a-problem.

The o-problem.

{minimize fw) + of|u> = M*], a«a>0
subject toue %.

6. Solution of the «-problem. Itisa straightforward matter to establish existence
of solutions to the a-problem. Further, it is possible to characterize solutions

fairly completely and also to compute them in favorable circumstances. This is
done in a more general setting in [8].
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The following proposition expresses the required control in terms of the
solution of an unconstrained minimization problem over the space X'.

PROPOSITION 6.1. There exists a solution u() to the a-problem. Let u, be one of
the points on which the functional T" with domain X' (the pre-dual of X) achieves its
minimum where

TG = [ul® + el L'pl? — 4u x>, peX.

Then (i) If ¥y = 6 we have the unique trivial solution u(o) = 6.

(i) If L'uo # 0, u(a) is aligned with Z'py and ||u(e)]] = (200) ™| L, |l

Proof. The proposition is a synthesis of Propositions 6.1, 6.2 and Theorem 3.2
of [8], specialized for the cost functional at hand in the manner indicated in § 10
of [8]. (In [8], it was necessary to assume controllability to guarantee a nontrivial
characterization of the optimal control. However with a cost separable in the
control and output terms as here, the assumption may be dispensed with.)

7. A particular case. Let us specialize the results of the last section for
X, % both Hilbert spaces. Here, the pre-adjoint map .#’, to within isometric
isomorphism, is merely the adjoint map .£*: X* — %* between the normed duals
of X and %.

I'(u) is Fréchet differentiable on X. Thus 0T takes the value 0 at u,. A simple
computation gives:
(7.1) [LEL + ollpy = 2ax,,
where I: X — X is the unit map (we loosely regard X and X' as the same space).
Now —u lies in the resolvent set of the positive semidefinite self-adjoint linear map
PP X - X [4,p.330, Thm. 6.2-B] whence [£.£’ + al]~ ! exists and is continu-

ous on its domain of definition.
We can write therefore

Uo = 20[L L + al] 'x,.

Application of the alignment condition of Proposition 6.1 gives the unique
solution to the a-problem as

(7.2) uo) = L[LL + al]l™ 'x,
Remark 7.1. u(e) can be written equivalently as
(7.3) wo) =[L'L + al] ¥ x,
since from (7.1) we have
[P+ ol L uy = L'[LEL + alluy = 20.L'x,.
—a lies in the resolvent set of &'.% : % — %, whence £, can be expressed
Ly = R L' YL + al]” 1 ¥x,.

Equation (7.3) then follows from the alignment condition.

Although (7.3) is more in line with Balakrishnan’s results, (7.2) is to be pre-
ferred since, in the common case when % maps a function space into a finite-
dimensional space, %’ is a finite-dimensional matrix whereas .¥’.% is a map
between function spaces (albeit with finite-dimensional range).



GENERALIZATION TO DUAL BANACH SPACES 155

8. Properties of u(a). In this section some intermediate results are presented.
The proofs are routine and therefore confined to Appendix A.

Throughout u(x) will denote a solution to the a-problem. We first show that
the functional on (0, c0) defined by |u( - )| is well-defined.

PROPOSITION 8.1. If two elements u and u solve the a-problem, then

lull = Jlal -

Additional properties of |Ju(-)| are the following.

PrOPOSITION 8.2. |u(a)|| is a monotone, nonincreasing function of o on (0, c0).

PROPOSITION 8.3. |u(a)| is a continuous function of a on (0, c0).

The next result provides a useful characterization of basic problems which
still have a solution after removing the constraint |ul| < M.

PROPOSITION 8.4. There exists a ug with f(uy) = min{ f(u)lue} if and only
if sup {|u(@)| la > 0} < co. If such a u, exists, then

sup {[lu(@)[[le > 0} < fluol -

Remark 8.1. It is clear from Proposition 8.2 that sup {||u(x)||x > 0}
= lim, ¢ [u()].

9. Solution to the basic problem, Part 1. Solution of the basic problem will
proceed along two different lines depending on which of the two conditions (Cl1)
or (C2) holds:

(C1) lim, o [u(@)| > M,

(C2) lim, o ()] = M.
Case (C1) is the easiest to deal with. In fact we have the following proposition.

PROPOSITION 9.1. Suppose that condition (C1) holds. Let a, > O be such that
llu(oto)|l = M. Then u(ey) is a solution to the basic problem.

Proof. Let us first show that o, with the stated properties exists. Consider the
program

{ minimize f(x)
subject to ||u]]> — M?* £ 0.

We know from Proposition 4.1 that this has a solution #. Further from Lemma 5.1,
there exists some o = 0 such that

f@) + afl@)® = min { f(u) + ofju)*lueu}
and
of Ji)> — M?) = 0.

Suppose that o = 0. Then # solves the unconstrained problem and from
Proposition 8.4 ||i|?> — M? > 0 contradicting the fact that # solves the program.
But if o > 0, then & = u(«) and |u(x)|| = M. Setting o, = « we have achieved our
aim.

We have shown that u(x,) solves the subproblem. It is a simple matter to
show that u(a,) in fact solves the basic problem. For suppose to the contrary



156 RICHARD B. VINTER

that there exists some u with

flu(o)) = f(u) and full < [lu()l.

Then f(u(og)) + oollt(ao)||? > f(u) + ollull? since a, > 0. This strict inequality
contradicts the optimality of u(x,) and concludes the proof.

In view of Remark 8.1, the condition (C1) can be tested by taking some
sequence {a,}, o, |0, and examining whether the monotone nondecreasing
sequence {||u(a,)[|} is bounded above by M or not. The task of matching o, to
satisfy [lu(ao)| = M is aided by knowledge that |ju(-)|| is a continuous, monotone
function (Propositions 8.2 and 8.3).

10. Solution to the basic problem, Part 2. We now turn to the more interesting
situation when condition (C2) holds. A more direct approach can be followed
when the system is controllable (the problem will be examined with this added
postulate in the next section). Here we make no controllability hypotheses.

To obtain a Banach space analogue of Balakrishnan’s result (Theorem 1.1),
we would hope that, for condition (C2), u(«) — u, (a solution to the basic problem)
asa | 0. Making certain assumptions on % we will establish the desired convergence
property (the nature of convergence, strong or weak*, depending on the severity
of the assumptions). In general however we cannot assure convergence (except
for certain subsequences) since we have built no conditions into the problem
formulation guaranteeing even uniqueness of solutions to the basic problem.
However the computational significance of Balakrishnan’s result (assuming
condition (C2) to hold) is that by taking « a sufficiently small positive number,
we can obtain from (7.3) a control whose ‘‘suboptimality” is arbitrarily small. It is
this aspect which has a parallel for the basic problem in its full generality.

PropoSITION 10.1. Suppose condition (C2) to hold. Then writing u, for a
solution to the basic problem, we have

(1) lim,y o o™ H{llxs — Lu(@)|? — |x, — Luol?} =0,
(i) lim, o u(@)ll = lluol,

(111) if the basic problem has a unique solution (in particular if U is strictly

convex), then

u(oz)w;uo as o 0.

If uniqueness fails, we still have that any sequence {o;} of real numbers with a; | 0
contains a subsequence {a;} such that

u(aj)mtﬁ asi— oo,

where i solves the basic problem.

Before embarking on proof of this proposition, we take note of the following
lemma.

LemMA 10.1. Let K be a map from the real line into the topological space Y.
Let oy be some real number and suppose that there exists some y,€ Y such that,
given any sequence {o;} with o; — o, there exists some subsequence {a;} such
that K(a;) = yo as a — . Then

K@) >y, as o—>a,.
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Proof. Suppose that K(a) # y, as « = a,. Then there exists some sequence
{a;} with a; > o and a neighborhood N(y,) of y, such that K(a;)¢ N(y,) for
i=1,2,---. Clearly for no subsequence {«;} do we have K(a;) - y, as hypothe-
sized. This contradiction establishes that lim,_,,, K(x) = y, as required.

Proof of Proposition 10.1. Define the functional Af(-) by

Af(u) = f(u) — f(ug) forue.
Part (i). Since by optimality of u,
lim“i)nf {a™ Af (u()} = 0,

to establish Part (i), it suffices to show that
lim sup {a™ ' Af (u(x))} < 0.
al0

To this end we first remark that for 0 < o, < «,,
luoll? = llu()II* + oy ' Af (u(aty))
2 Jul)ll? + ag ' Af (u(ey)).
This result follows immediately from the inequalities
luol® = lluoll® + o7 ' Af (uo) Z Nlu(ot)I* + o7 * Af (ulexy))
2 Jlu(e)I? + oy ' Af (o)) Z ()] + ozt Af (u(ay)).

(We have used the optimality of ug, u(e;) and u(a,).)
Inequality (10.1) assures existence of some Y < oo such that

lim sup {[u(@)|* + o A ()} = Y.

(10.1)

Clearly,
lim sup {a™ ' Af (u(e))} < Y.
al0

Let us assume contrary to our requirement that

limlsoup {0~ Af (u(e)} = 3e, > 0.

The positive number a5 is chosen so that
Y < Jluea)l* + a3t Af (u()) + &

There exists a positive number o, such that 4o, < a; and 2 < a; ' Af (u(e,)) < 4e.
But then

Y < Jluea)|? + ozt Af (o)) + & < fluleg)|* + a3t Af (o) + ¢
= Jula)l? + (eg/esog * Af (W(ery)) + & S lu(og)]1? + (1/4)og ' Af () + &
< lluea)? + 2& < Jlu(wa)l|® + o ' Af (o)) < Y.

This contradiction concludes the proof of Part (i).
Parts (ii) and (ii1). Let {o;} be a sequence of real numbers with «; | 0. Consider
{u(e;)}. By Proposition 8.4, the sequence is contained in a closed sphere of radius ||u,||
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with center at the origin in %. There therefore exists some subsequence [4, Thms.

weakly*

2.4-D and 4.61-A] which we write as {u(a,)} such that u(a,) ~——— i, where i1 € %.
Now from (10.1),

(10.2) lileswup u(ee)ll < lluoll-

Since the set {ue %|||u| < |luy|}is weak* closed [6, p. 424] we have that [|a]| < [u].
Now in consequence of Lemmas 2.1 and 3.1, Af(-) is weak* l.s.c. whence

Af(u) £ lim inf {Af (u(a,))} -
Since from Part (i) we have that in particular lim, , , Af (u(«,)) = 0,
la < lluol and f(@) < f(uo).

The optimality of u, is contradicted unless ||| = |lupll and f(i1) = f(uy). It is
evident that # is a solution to the basic problem. Taking i as # we have proved the
second part of (iii). The first part of Part (iii) follows from Lemma 10.1.

Again from Lemma 2.1, ||(-)| is a weak* Ls.c. functional on %. We conclude
that

lluoll = llall = lim inf [u(e,)l| < lim sup [lue,)]| < [uol|
(we have used (10.2)). In consequence lim,_, ,, ||u(x,)] = |luol. In view of Lemma

10.1 we have proved Part (ii). This concludes the proof of the proposition.

Remark 10.1. Note that Part (i) of Proposition 10.1 is a rather stronger
statement than: lim,,, f(u(®)) = f(uo).

Finally we point out that by imposing the condition that % be uniformly
convex' we can ensure that u(x) tends strongly (rather than weakly*) to u,, the
unique solution to the basic problem.

PROPOSITION 10.2. Let % be uniformly convex. Then in Proposition 10.1 we can
replace (ii1) by

(i) u(a) > ug (strongly in U) as o | 0, where u, is the unique solution to the
basic problem.

The proof of the proposition is given in Appendix B. The result is of some
interest because all Hilbert spaces and also the spaces [,,L,, 1 <n < oo, are
uniformly convex [10].

11. Controllable systems. As promised we now consider problems where
condition (C2) holds and the input/output map is controllable. By a controllable
map (with codomain a topological space) we mean a map whose range is dense.
The strongest results are obtained when the map & is onto.

PROPOSITION 11.1. Suppose that condition (C2) holds and that & is onto. If u,
is any of the points in X' ~ {0} (X' the pre-dual of X) on which the functional I'(p)
attains its maximum where

() = < xp/1Zull
then u is a solution to the basic problem if and only if
ul|Luy  and Luy = x4.

! A Banach space is said to be uniformly convex if for each ¢ €(0, 2), there exists some > 0 such
that x| = |y = 1 and ||x — y| > ¢ imply that [(x + y)/2|| <1 — 4.
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It will be found that any solution to the basic problem satisfies

luoll = <to>Xad/IL ol -

Proof. With % onto, it is clear from the problem formulation that the basic
problem therefore reduces to

{minimize [l
subject to x; = Lu, ueu.

But this is precisely the minimum effort problem studied in Chapter 4 of [3]. The
proposition expresses standard results in the literature.

The assumption that % be onto is very severe; it effectively limits treatment
to systems having finite-dimensional output spaces. It is of interest therefore to
examine whether Proposition 11.1 admits generalization to the situation, where
the range of % is merely dense in X. Such a generalization would provide character-
ization of solutions to the basic problem directly in terms of nonzero elements in
X' for the case that % is controllable and condition (C2) holds. The cumbersome
procedure of determining the optimal as a limit of solutions to the a-problem
would thereby be circumvented.

Now Proposition 11.1 identifies an optimal control u, as being a point in %
whose image under & lies nearest to the closed hyperplane supporting the set 2
at x,;; here

R = {xeX|x = Lu, |lull <inf{|v]||x, = Lv,veU}}.

Unfortunately, such identification is not always possible when % is not onto;
indeed, it is easy to construct counterexamples (see, e.g., [9]) where no closed
hyperplanes exist supporting # at certain of its bounding points. We do have,
however, the following proposition.

PROPOSITION 11.2. Let £ be controllable-and let U be reflexive. Suppose that
condition (C2) holds. Let T be the real-valued function with domain X ~ {0} defined

by
I = <, xp/1L'ull, preX',
and let

[y = sup {T(u)lue X' ~ {6}}.

Then Ty < oo and either (i) I" achieves its maximum at some po € X' ~ {0} in which
case uy| Lpo and uyl| = 'y, where ug is any solution to the basic problem, or (i) I’
fails to achieve its maximum on X ~ {0}, but there exists some sequence {y;} < X'
such that T'(u;) - Ty and L'y, Strongly, uy where uyy is some nonzero element in U'.
In this case

uollug and |luel = Ty.

The proof of this result is supplied in Appendix C.

Remark 11.1. The unsatisfactory (and apparently unavoidable) feature of
Proposition 11.2 is that u, is aligned not with some element in the range of ¥,
written Z(¥’), but instead with some element in #(¥’). If we relinquish the
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reflexivity of %, the situation is even graver. In this case let us denote the adjoint
of & by #* . X* — U*, where %*, X* are the normed duals of %, X respectively;
in consequence of the assumed existence of the pre-adjoint map #': X' — %' and
the assumption that X be reflexive, we have Z(%’) = Z(ZL*) (to within isometric
isomorphism). Further analysis reveals that here u, is aligned with some element
in the orthogonal complement of the null space of % ; this we denote [A(£)]*.
Since for some input/output maps

RL) = RLHE [N (LN

[4, p. 226, Thm. 4.6-G], we have said somewhat less about the optimal control
than in the reflexive case.

In the light of this section, we can distinguish between three different situations
when condition (C2) holds:

(1) #(&L) = X, % not necessarily reflexive. u, is characterized through some

element u, € X' as being aligned with %', .

(i) (&) = X, % reflexive. u, is characterized through some sequence
{u;} = X' as being aligned with lim,_, , %'p;.

(i) 2(&L) = X, U not necessarily reflexive. u, need not be characterized
through any element or sequence in X'.

Notice that the findings of § 10 are not contradicted ; although u(a), o > 0,
is aligned with some Zu, u e X, the weak* limit of {u(a,)} need not be so aligned.

12. Summary of results. We bring together our findings.
THEOREM 12.1. Let u(a) be a solution to the a-problem. Then either

lim |u(x)| > M,
al0

in which case a solution to the basic problem is given by u(a,), where o is so adjusted
that

lu(o)ll = M

)

or

lim [lu()| = M,
al0

in which case u(e), for a sufficiently small, approximates arbitrarily closely to a
solution of the basic problem in the sense of Proposition 10.1.
We recall from § 7 that for %, X Hilbert spaces,

uo) = [L'L + al]” 1 ¥'x,.

Noting that when % is reflexive we have, for the condition (C2), u(e) Sronely, 4,
(the unique solution to the basic problem)as « | 0 (Proposition 10.2 and succeeding
remarks), we recover Balakrishnan’s results (Theorem 1.1) in full as a special case
of Theorem 12.1. In addition, Part (i) if Proposition 10.1 is a stronger statement
than the corresponding statement in Theorem 1.1 and (as observed in [2]) the
hypothesis that .# be compact has been shown to be redundant.
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Appendix A.

Proof of Proposition 8.1. This is shown by a simple convexity argument.
Assume in contraposition that

f) + aful® = f@ + ofal® and Jull # |lall.
Let ¢ €(0, 1). Then by the convexity of f and the triangle inequality,
fleu + (1 — o)) + afleu + (1 — )il ?
S el f ) + ofull®] + (1~ e)[f@) + af@]®] — el — &) - afllull — [al]*.
Since the last term is positive under the stated hypotheses,
fleu + (1 — &)it] + afleu + (1 — g)i|?
< e[ f @) + alul?] + (1 = o[f @ + afal] = f@w) + ofjull?,
in contradiction of the optimality of u.
Proof of Proposition 8.2. Assume in contraposition that there exist o, , a, with
oy, > a, > 0for which fu(o,)|| > llu(ey)l .
By the optimality of u(x,), u(,),
fu(n)) — fluley)) S o {flule)l? = llulez)l|?}

and
o {{lu)? = lluE)I?} < fuea)) — fulx,)).
Since a; > oy, f(u(e,)) — f(u(e,)) < f(u(ey)) — f(u(e,)). This proves the propo-
sition.
It is convenient to prove Proposition 8.4 before Proposition 8.3.

Proof of Proposition 8.4. The “‘only if”’ part will follow if we can prove the
final statement of the proposition. For any a € (0, «0), by the optimality of u(x),

luoll = flugl® + o™ [ f (o) = fuo)] Z lu(@)ll + o™ '[f (w(@)) — £ (uo)].

But o '[f(u(x)) — f(uy)] = O by the optimality of u,, whence |lug|? = |lu(x)|?
providing the required upper bound.
To prove the ““if” part, suppose that

sup {lu(@)lf]le > 0} < k, k>0,
and consider the program
{ minimize f(u) over ue %
subject to ||u|| — k? < 0.

By Proposition 4.1 and Lemma 5.1, the program has a solution u(x) and there
exists some o = 0 such that

Sf(@) + aflu@)? — k*] = min { f(u) + oflul — k*]|jue %}
and
of [u(w)[|* — k*] = 0.

Suppose that o # 0. Then ||u(x)|| = k. This contradicts the hypothesis and we
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conclude that « = 0. But in this case f achieves its minimum on # as required for
completion of the proof.

Proof of Proposition 8.3. Given the positive real numbers o', «” with o' > o
we first show that ||u(x)|| achieves all values between |u(a)|| and |u(e”)| as «
ranges over [a”, '] the result follows trivially if ||u(a)|| = [[u(a")]|, so we suppose
that |u(e”)|| > |lu(e')| (recall that u( - ) is monotone nonincreasing). Let M belong
to the interval (|u(a)|, |u(e”)|) and consider the problem

{ minimize f(u) over ue %

subject to |lul|> — M? £ 0.

By Proposition 4.1, this has a solution u,, and there exists a corresponding o, =0
such that

(A.1) Suy) + agllug||? = min {f(u) + oy |Ju]*|lue %}
and
(A2) o [llug]|> — M?] = 0.

Suppose that «; = 0. Then u, solves the unconstrained problem, and by Propo-
sition 8.4,

luyll 2 llu@")] > M = fudl.

From this contradiction we conclude that o, > 0. But then from (A.1) we have
that u, = u(x,). From (A.2), |lu(a,)| = M. In view of Propositions 8.1 and 8.2,

a, €, o)

and the result follows.

Now since [[u(-)| is monotonic on (0, 00), it has left and right limits at all
points in (0, 00) [11, p. 78]. Obviously a contradiction arises with the above result
unless the left and right limits are the same. We have established that [u(- )| is
continuous on (0, c0).

Appendix B.

Proof of Proposition 10.2. With % uniformly convex, # is reflexive and strictly
normed [12, p. 33]. Take the sequence {«;} witha; | 0and write {u;} for the sequence
{u(a;)} in %. From Proposition 10.1 (remembering that % is-in particular reflexive)

u; weakly uO#
fudl = luoll

and {|lu;||} is an increasing sequence. (Here u, is the unique solution to the basic
problem).

Now suppose that u; ™" y,. Then there exists some subsequence of {u;}
which we write as {u;} such that

”“0‘“;”>5a j=1,2,"',

for some & > 0. Since {||u;||} is an increasing sequence and # is uniformly convex,
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there exists some ¢ > 0 such that
uo + ull < (2 — &) luoll.

 is reflexive, so there exists some nonzero ug such that {ug, uyy = |ugll [ugll -
But then

2 = ) lluoll > lluo + ujll Z lluoll =™ ', uo +up, j=1,2,---.
Since u; X2k, 4, we have

lim [lug)| ™" <ug, u + u;> = 2|upll = <up, uo) = 2uoll.

From this contradiction we conclude that u; 27", 4, But then by Lemma 10.1,
u(ox) stronely 30 as o | 0, and the proposition is proved.

Appendix C. In this section, Proposition 11.2 is proved. The proof leans
heavily on duality theory. Rather than refer constantly to the duality literature
we prefer to work from the following lemma which condenses the results which
we shall require (the lemma can be pieced together from [13] though the more
streamlined notation of [14] is employed).

LEMMA A.1. Let f and g be respectively proper convex l.s.c. and proper concave
u.s.c. (extended-valued) functionals (see [14] for definition of technical terms) on the
Banach space A. Take the primal problem to be

(P) minimize { f(a) — g(a)lae A}.

Suppose that there exists some point a in the effective domain (dom (g)) of g
such that f is (strongly) continuous at a. Define the conjugate functionals f' and g’
with domains all of A* (the normed dual of A) by the formulas

f'(@) = sup {{a,d') — f(a)lae A}, a' e A*,

g'(@) = inf {<a,a’) — gla)lae A}, a'e A*.
Take the dual problem to be
(P) maximize {g'(a') — f'(a')|d’ € A*}.
Then, if inf { f(a) — g(a)lae A} > — o0,

(@) (P’) has a proper solution ay,,
(b) inf { f(a) — g(a)lae A} = g'(ap) — f'(ac),
(€) aq is a solution to the primal problem if and only if the following alignment
conditions hold :
Cag, oy — flao) = max {<a,ap) — f(a)lae A},
Cag, oy — glao) = min {{a,ap) — gla)lae A}.
Proof of Proposition 11.2. In simple consequence of Proposition 8.4, when

(C2) holds and #(#) = X, there exists some ii € %, ||ui] £ M, such that x, = Zu.
Therefore under the stated conditions the basic problem takes the form:

{minimize [lul|

subject to x; = Lu, ue.
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Let us change variables u — &I — w to give
minimize ||z — w|
(P) :
subject to Yw =0, we.

(P) will be identified with the primal problem. To this end define the continuous
proper convex functional f with domain % by

fw) = |l —w|, weu.

Define also the u.s.c. proper concave extended-valued functional g with domain
U by

0 if we /' (&),
gw) = .
— oo otherwise.

(A (&) denotes the null space of #.)
Then (P) can be cast into the form:

(P) minimize { f(w) — g(w)|we %}.

Our next task is construction of the conjugate functionals f’, g’. Since by
hypothesis % is reflexive, the domains of f" and g’ can be taken as %’. By definition,
for any u' e %',

f'w) = sup {<u',w) — |l — w||wew}
= u, iy + sup { — uuy — |ull lue %}
= Cuyiy + sup {|lull - [lw'] — 1]l]|ull € [0, c0)}.

Clearly,
yuy if flu')| £ 1,
S =

+ o0 otherwise.
We now turn to g'. Again by definition, for any v’ € %',
g'W) = inf {{u', udlue /' (ZL)}.

By a standard result [4, p. 226, Thm. 4.6-C] A'(&) = {#(ZL')}* (since %, X
are reflexive &’ is isometrically isomorphic with the adjoint of #). In simple
consequence of the definition of the orthogonal complement the infimum is 0 if
ue *{{R(L)}*}, and — o otherwise. But Z(Z") = +{{#(L")}*} [4, p. 225, Thm.
4.6-A] whence

0 ifue A&,
gw) = {

— o0 otherwise.

The dual problem

(P) maximize {g'(v') — f'()|w' e U’}
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therefore becomes

maximize —<u’,u) over u' € U’
(P

subject to ||u') £ 1 and v’ e%(g’)

Notice that w = 6 is a point in the effective domain of g at which f'is continuous.
We conclude from Lemma A.1 that there exists some proper solution uy to (P')
and that

luoll = —<up, 1),

where u, = # — wy and w,, is any solution to (P).
Study of the steps in the computation of f* and g’ reveals that u, satisfies the
alignment conditions of Lemma A.1 if and only if

Uoll — up and x; = ZLu,.

Let us show that uj # 6, whence the characterization of u, is nontrivial. Let
u be a nonzero element in X’ such that — u| x, (remember that X is reflexive).
Since & is controllable, the null space of .#” is simply {0} (we have used the result
N(L') = {R(ZL)}*); the magnitude of i can be chosen therefore so that 0 < [|.Z" ||
< 1. Then ¥’y satisfies the constraints on the dual problem. Further

Ly = = p Ly = {—p, Xy = |l - Ixqll > 0.

Thus the maximum in the dual problem is greater than zero. Clearly ug # 6.
Indeed since the objective functional of the dual problem is linear in ', we have
that [jup] =

We have shown that the problem

) maximize {—u', 4y over u' € U’
(P

subject to ||| £ 1 and u e@(ﬁf)

has a proper solution ug with |lup| = 1; that u, solves the basic problem if and
only if (i) u|l —uj and (ii) x;, = Zu, and that any solution to the basic problem u,
satisfies [|ugl = — (ug, ).

Proposition 11.2 is merely an expansion of this statement, distinguishing
between the cases when u, lies, and fails to lie, in the range of % (notice that we
have changed variables u - —u and avoided explicit mention of #).
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DIFFERENTIAL GAMES OF SURVIVAL WITH SPACE-LIKE
TERMINAL SET*

RONALD J. STERNf¥

Abstract. For differential games of survival in which the boundary may be represented as a smooth
curve, we give a method for transforming a survival game into a fixed duration game. Comparisons
between the upper and lower values of the original game and its transform are derived, and applications
of the transformation are given.

1. Introduction. The approach to differential game theory used in this paper
is that of A. Friedman [2]-{4]. In this paper we give a procedure for transforming
a certain differential game of survival into a differential game of fixed duration,
and derive relations between the upper and lower values of these games. We
restrict our attention to survival games in which the capture set is space-like;
that is, its boundary can be represented as a smooth curve of the form ¢t = r(x).

In § 2 we give the requisite preliminaries. In the third section we give two
results concerning d-games which are needed in what follows. The transformed
game and the main results are presented in § 4. Section 5 consists of examples.

2. Preliminaries. Consider a system of m ordinary differential equations
2.1 x = f(t,x,y,2), ty St =T,
with an initial condition
(2.2) x(toy) = x,.

Let Yand Z be compact subsets of the Euclideanspaces R" and RY, respectively.
The controls y(t) and z(t) are Lebesgue measurable functions taking values almost
everywhere in Y and Z, respectively, defined on (¢, Ty].

Let F be a closed subset of R™*! such that

(2.3) F o [T;,©) x R" forsomet, < T} = Tj,.
Given a trajectory x = x(t), define the capture time as
(2.4) i = #(x) = inf {z:(¢, x(1)) € F}.

Consider a payoff functional

f(x)
(2.5) P(y, z) = g[x(@)] + f h(t,x,y,z)dt.

to

The differential game associated with (2.1)+(2.5) is called a game of survival,
denoted G.

* Received by the editors December 19, 1972, and in revised form April 2, 1973.
1 Department of Applied Mathematics, Technion-Israel Institute of Technology in Haifa, Israel.
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Remark 1. Survival games are the most general type of two person, zero-sum

differential game, i.e.,
(1) If g = 0and h = 0, then G is a game of generalized pursuit-evasion.

(i) If g = 0and h = 1, then G is a game of pursuit-evasion.

(iii) If F = [Ty, o) x R™ then i = T,. We then call G a fixed duration game.

The following assumptions guarantee the existence and uniqueness of a
solution of (2.1)«2.2) for each pair of controls (see [1] and [3]):

(@) f(t, x,y,z)is continuous on [ty, Ty] X R" x Y x Z.

(b) There exists k(t) e L'(¢,, T,) such that

1f(t,x,y,2)l = k(@)1 + |x])

forall (t,x, y,z)e[ty, Ty] x R" x Y x Z.
(c) For each R > 0, there exists kg(t)e L'(t,, T,) such that

If(tax’yaz) - f(tﬁ_ﬂy,z)l é kR(t)lx - gl

forallte(t,, T,],ve Y,zeZ,|x| £ Rand |X| £ R.

Regarding the payoff, we state the following assumptions:

(d) h(t, x, y, z) is continuous on [t,, T,] X R™ x Y x Z.

(e) g is continuous on R™

If (a)—(e) hold, then P(y, z) is well-defined on the space of controls. Let n be
any positive integer, and 6 = (T — t,)/n. Let

Ij=(tj_y,t) fort;=ty+jd, 1=<j=n.

Define Y; and Z; to be the classes of measurable functions on I; which almost
everywhere take values in Y and Z, respectively.

Let I/ be any map of Z, x Y, x Z, x Y, x --- x Y,_, x Z; into Y,
We then call the n-tuple

1—‘6 — (1-*6,1, e l—*é.n)
an upper d-strategy for y. Similarly, we define an upper é-strategy for z, A° whose
components A>J are maps from Y, x Z, x Y, x Z, x -+ x Z;_, x Y;into Z,.
For2<j=n,letl;;beany mapfromY, x Z, x ¥, x Z, x --- x Y,_,
x Z;_,into Y;, and let I'; , be any element of Y;. We then call the n-tuple
U= s, s,

a lower-d-strategy for y. Analogously, one defines a lower J-strategy A; for z.
Given a pair (A, %), we uniquely obtain control functions (z;, y°), and a
trajectory x°. Then (z;, y°) is called the outcome of (A;, T%). Analogously, a pair
(T5, A% yields an outcome (y;, z°) and a trajectory x;.
The upper d-value of G is the number

V¥G) = inf sup inf sup - - - inf sup P[A;, I'?],

As,1 TO 1 Ag 5 052 As, n 01
and the lower d-value of the game is defined by
V5(G) = sup inf sup inf - - - sup inf P[T;, A®].
Ts,1 A1 s, A%2 Ts,n AON
We say the differential game has value V(G) if the limits lim,_, , V5(G) = V ~(G)
and lim,_,, V%(G) = V *(G) exist and are equal. ¥~ (G) and V *(G) are the lower
and upper values of G, respectively.
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Proof of the following theorem may be found in [3]:
THEOREM 2.1. Let assumptions (a)(e) hold. Then

(2.6) V%(G) = infsup P[A,, I’] = sup inf P[A,, ],
As T9 Io As

and

2.7 Vi(G) = sup inf P[T';, A’] = infsup P[T;, A?].
I's AS A® T

Some further assumptions now will be stated.
(f) F has C? boundary oF and

m
Vo + minmax ) v;f{t,x,y,z) <0,
z v 5
(2.8) -
vy + min max vifit,x,y,2) <0
Y z =

J

for all (t,x)edF, where v = (vy, vy, -+, v,) 1S the outward normal to 0F at
(¢, x), and the f; are the component functions of f.
max min {f(t,x,y,2)-p + h(t, x,y, z)}

(2) Yoz
= mZin max {ft.x,y,2)-p + h(t,x,y,2)}
for all pe R™

THEOREM 2.2. Let assumptions (a)~(f) hold. Then

(i) V*(G) and V~(G) exist.

(i) If also (g) holds, then G has value.

The proof (i) follows from arguments in [3], in particular §§ 3.3, 5.2, and
Problem 3.4.3. Part (ii) is proven in [2] and [4] in case G is of fixed duration.
Extensions of the results of [4] found in [5] yield (ii) for the general survival case.

3. Two lemmas on J-games.

DEFINITION 1. B} is the class of 'y such that for any A% the y-outcome, y;,
of (T's, A%) is a Borel measurable function. B is defined similarly.

LemMa 3.1. Let G be a game of survival satisfying (a)e). We then have

(3.1) V%G) = inf sup P[A;,y]
AseBs y

and

(3.2) Vi(G) = sup inf P[T, z].
TseB) z

(Here “‘sup’ means the sup taken over all admissible controls for the player y;
y
similarly for “inf”.
Proof. From Theorem 2.1, it is easily seen that
(3.3) V%(G) = infsup P[A;, ],
As ¥
and

(3.4) Vs(G) = sup inf P[T;, z].
T's z
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We will use (3.3) to prove (3.1). Statement (3.2) will follow similarly from
(3.4).

Let ¢ > 0 be given. Then (3.3) implies the existence of A, such that
(3.5) VG) = P[A;, y] — &
for all controls y = y(¢).

Given any Lebesgue measurable function r valued in R? on an interval I,
there exists a Borel measurable function, say b[r], which agrees with r almost
everywhere on I. We will use the above fact in order to modify A; into A, which
is a member of B3.

Let y = ¥y, ¥z, -+ ya) be any control for player y. Define

(1) A“ = b(Z,], where Z; = A‘, -
(i) Aa 21, 1) = bl2,], Where I = Aa 2215 1), -
(iii) Aa,(zuyhzz’)’p T h, 15 Y1) = b[Z;], where Z; = A; {z1,¥1, 25, )2,
T Zje1s Y- D, for2<j<n

Define A, = (A N 1,A6 5., A, ). Tt is not difficult to see that P[A,, y]
= P[A,;, y] for all controls y. ThlS fact and the fact that ¢ in (3.5) was arbitrary
yield (3.3). Statement (3.4) follows similarly.

DEFINITION 2. S is the class of I'; such that for any A, the y-outcome, y;, of
(Ts, A% is a step function. We define S} similarly.

LEMMA 3.2. Let G be a game of fixed duration satisfying (a)~(e). We then have

(3.6) VG) = znf sup P[A;, y],
AdeS

and

(3.7) V(G) = sup inf PTy, 2.
l",sesg z

Proof. Let y > 0 and a > 0 be given. Given any Lebesgue measurable
function r valued in R on an interval I, there exists a step function s{r] and a
measurable subset J = I such that

Is(r]—H <y foralltel —J
and meas J < o

We will prove (3.6), the case for (3.7) being similar. Let A, be as in the proof
of Lemma 3.1, where ¢ > 0 was given. Proceeding as we did there, we can define
a lower d-strategy A, with the following property : given any control y, there exists
a measurable set J < [¢,, Ty] such that

(3.8) |Z;, — 2| <y foralltel — J,
and
(3.9) meas J < no,

where Z, is the z-outcome of (A,, y) and 2, is the z-outcome of (Z‘,, y). We claim
that

(3.10) [P(y, Z;) — P(y, Z5)] < O(y, na)

for a positive function O( -, - ) which does not depend on the control y and tends
to zero with its arguments.
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Statement (3.10), (3.5) and the arbitrariness of ¢, y and o will yield (3.6).
Thus it remains to establish (3.10) from (3.8) and (3.9). We will show that for a
positive constant C,

(3.11) sup [X5 — X,| < C(y + na),

tefto,Tol

where X; is the trajectory associated with ( A,,y)and % 5 1s the trajectory associated

with (A;, y). Verification of (3.10) is then quite routine upon making use of the
continuity of h. To verify (3.11) we write

a1 %5 — Xol = 1f(t, %50y, %) — f(t, %5, 9, %)
' S, R5 9, 25) — ft %50 9, B + (8, %509, 55) — f(t, %50, 25

From (3.8), (3.9), the continuity of f, the fact that the family of trajectories
of G is uniformly bounded, and condition (c) of § 2, we have the existence of a
positive constant B and a positive integrable function k(t) such that

(3.13) %5 — %5 < B(y + na) + k(0)|%, — %.

From a fundamental inequality of differential equations (see [1, p. 37]),
we then obtain
To
(3.14) sup |X; — Xs| < B(y + no)exp ( k(1) dt),
telto, Tol t

0

completing the proof.

4. Transformed survival games. Let G denote the game of survival introduced
in § 2. Let R, denote a uniform bound on the family of trajectories for G. Let

c= max Lf@t, x,y,2)l
[to,Tol X {|x| S Ro} x ¥ X Z
We will require the following condition in much of what follows:

(F,) OF is represented by an equation t = r(x) where r is continuously
differentiable on {|x| < R,} and is piecewise twice continuously differentiable
on {|x| £ R,}. Furthermore, the gradient of r satisfies

max |r(x) < 1/c.
{|x| £ Ro}
Remark 2. An elementary argument shows that (F,) implies (f) of § 2.

We now define a certain coordinate transformation (t,x)— (t', x') which
transforms OF into the surface t' = r(x,), via the relations

4.1) =1t 4 r(xy) — r(x)
and
4.2) X' = x.

Let y(t) and z(t) be a given pair of control functions, and let x(t) be the corres-
ponding trajectory. Using the above transformation, let us write

(4.3) (t, x(1)) - (¢, x'(t')).
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Define
4.4) t'(t) =t + r(xq) — r(x(t)).
Notice that
x(1) = x'(t'(¢)).

LeEMMA 4.1. Let G satisfy assumptions (a)~e) and (F,). Then the following all
hold :
(1) t'(¢) is strictly monotone increasing on [t,, Ty].
(1) x'(t") is uniformly Lipschitz continuous on [t, r(x,)] and thus is differentiable
almost everywhere on [tq, r(x,)].
(iii) At almost every t' € [t,, r(xy)], we have

dx'(¢) _ ft' = rxo) + r(xX'(£), X'(£), (' — r(xo) + r(x'(£)), 2(t" — rl(xo) + r(x'(t')))]
dre 1 —r X ()]SIt — r(xe) + r(x'(t)), X(£),
W = rxo) + r(X'(t)), z(t" — r(xo) + r(x(¢))]

(iv) P(y,z) = g(x'(r(x,)))

f " R[L — r(xg) 4 HX(£) X'(¢), Y(t' — r(xo) + r(x'(t), 2(t' — r(xo) + r(x'(t))]
w 1= rIX(O)]fI = r(xo) + r(x'(t), x'(t),
W = r(xo) + r(X'(t), 2(t" — r(xo) + 1(x'(1)))]

dr.

Proof. Let t, > t,, where ¢, and ¢, are in the interval [t,, Ty]. We have
(4.5) [r(x(22)) — rx(t)) = ¢ max [rdl(t; — 1y) < t; =y,
x| =Ro

by (F,). This proves (i).
Let ¢, and ¢, be in the interval [t,, r(x,)]. We have

IX'(£5) — X)) = |x(t5 — r(xo) + r(x(t2)) — x(t}y — r(xo) + r(x'(t))

S dey — ty] + ¢ max [r(x) - [x'(t3) — x(¢)],
flx| = Ro}

(4.6)

and therefore

(4.7) IX'(t') — x'(¢y)] = ty — 1yl

This proves (ii).
We have, by the chain rule,

dx(¢) d , d,
— = @x(t (t))'ztt(t)

dt
_d dx(t)
= X() [1 - rx(x(t»-jit—].

4.8)

Straightforward substitutions now yield (iii) and (iv), completing the proof.
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Define now the following functions :
f(tl - r(xo) + r(x,)9 xl7 y,7 Z,)

L= rdx)- f(t' = r(xo) + r(x), X, ), 2)
h(t — r(xy) + r(x"), X,y 2)

1 —r (X)) f(t = r(xy) + r(x),x,y,2)

f,x,y,2) =

h(t',x',y,z) =

We now will define a certain game of fixed duration, G'. The dynamics of G' are

(4.9) dx'/dt’ = f(¢, %, ¥, 7),
with initial condition
(4.10) X'(to) = Xgq-
The payoff is given by
r(xo)
4.11) Py, 2) = g(x(r(x,))) + f R(t,x',y',2)dt.
to
Lemma 4.1 implies that
(4.12) P(y,z) = P'(y,2),
where
(4.13) ) = y(E'@), zt) = z((@).

THEOREM 4.1. Let G satisfy conditions (a)-(e), (2.3), (F,), and let G’ satisfy
conditions (a)—(e). Then

(4.14) V(G) £ VHG)
and
(4.15) V=(G) £ VHG).

Proof. We will give the details for the proof of (4.14). The proof of (4.15) is
similar.
Let # > 0 be such that

(4.16) '11I1ax Irx) = 1/c + 9.
{Ix| = Ro}
Let 6 = (T, — to)/n and &' = (r(x,) — to)/n’, where n’ and n are taken to be
such that
4.17) B+cmo 9.

Since the upper and lower values of G and G’ are guaranteed to exist by
Theorem 2.2, then (4.14) will hold if it can be proven that

(4.18) sup mfP’[l“(s ,Z] < 1nf supP[A‘,,y]

s €Sy z' AseBj

Let I'; €S} and A;e Bj be arbitrary. Then (4.18) will hold if there exist
controls z’ and y such that

(4.19) P'[Ts,z7 = P[A;, y].
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Let y" denote the y-outcome of (I';., z’') and let x’ denote the corresponding
path. Let z denote the z-outcome of (A;, y), and let x denote the corresponding
path. Suppose we can construct z’' and y such that

(4.20) Z(1(1) = z(1), teto, Tol,
and
4.21) y(E'@) = y1), tety, Tol,

where t'(t) = t + r(x,) — r(x(t)).

By Lemma 4.1, we then would have (4.19), which is all we require.

Denote the intervals of game G by I;, j = 1, ---, n, and denote the intervals
of G'by I, j=1,---,n'. Here I; = (t;,_,,t)) and I}, = (tj_;,1}).

The component I';, | of I';, determines y'(t') on I, and this is a step function

given by
k
y(r) = Zci.llh‘.,,-
i=1

Here ¢, , is the characteristic function of C; ; i = 1, - -, k. The C; ; are disjoint
intervals C; ; = (t;_, t; ;) such that
k
UcC,=I,.
i=1
Here t, , = t,and t; ;, = t}. The ¢, ; are constants.
The component A; ; of A; determines z(t) on I,. We will now construct y(t)

on I, making use of the trajectory x(t) as it evolves.
By Lemma 4.1(i), we can define the following:

i(t; ) = the unique t such that t; | =t + r(x,) — r(x(t)).
Now define the following function on I, :
¢,y forty =t Sty ),
(422) y(t) — CZ.,I for t(tll,l) é t é t(tlz,l)v

¢ for (ty_1,1) St ty,

p.1

where p < k due to
(4.23) |t;',1 - t'i—1,1| =2+ C’7)|t(t;,1) - t(t;“1,1)|

and (4.17).
The inequality (4.23) follows from

@24) ) = tiog ) = by — Gy R L)) — et y)))

and assumption (F,).

Thus y(t) has been constructed on I, by using y'(¢') on only the first part of
the interval 1.

The map A; , gives z(t) on I,. We continue in the above manner until y(t)
has been constructed up to time #(t;_ ;), which occurs in some interval I,,, m > 1.
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In the construction we made use of the maps A; ;,j = 1, -- -, m, and the trajectory
X up to time t(t; ;).
We now use z(t), t € [t,, tt;, )] to define z'(t') on [¢,, t; - ,], as follows:

(4.25) Z(t) = 2t — r(xg) + r(x(t(t')))), tel].

The Borel measurability of z implies that z’ thus defined is a measurable function.

Thus y(¢) is constructed on I, I,,---, I,, and Z(¢') is constructed on I.
We continue in this fashion until ¢ = #, which implies t'(t) = r(x,).

The controls which have been constructed can be seen to satisfy relations
(4.20) and (4.21), completing the proof of (4.14). The proof of (4.15) is analogous
to the arguments above.

Remark 3. By Theorem 4.1, it is clear that if both G and G’ have value, then
their values are equal.

S. Applications. In the first two examples which follow, Theorem 4.1 is
applied to certain classes of differential games, and insights are readily obtained.
In the third example, a specific type of “attrition-attack’ model is analyzed by
employing Theorem 4.1, and a synthesized saddle point is obtained. (See [3] for
terminology.)

Example 1. Let G be a game of pursuit-evasion. It follows that in this case,
we have

r(xo) dt’
P/ /’ !’ — .
v2) J:o L —rdx)- f(t' = r(xo) + r(x), x, ¥, 2))

Suppose G has value. We immediately obtain the following estimate for V(G):

. . V(G
max min min Wi, x,y,z) £ ____(_)__
Y Z  [to,r(x0)] % {|x] =Ro} r(xo) —tq
< min max max Kt,x,y, 2,

z Y [to,r(x0)] X {|x| < Ro}

where h' is the integrand of P'(y', z').

Example 2. Let G be survival game with linear terminal set, let w denote the
gradient r (x) of the terminal surface, where this is now a constant vector. Further-
more, assume that the game has integral payoff and that x does not appear in
f or h. In other words, the trajectory is manifest in the payoff only via t = #(x).
It then follows that the payoff of G’ is given by

r(xo) h( y/ 7)) r(xo)
P(y,z) = f 2t = f KWy, z)dt.
W L—w-f(y.2) o 0. 2)
Thus the problem G’ is dynamics free, and the value, if it exists, is given by
infsup P'(y', z') = supinf P'(y, ).
2y yoz
In the next example, we consider a game which is not of the type mentioned
in the preceeding example. Nevertheless, a dynamics free transformed game

results. This enables us, as will be seen, to give a synthesized saddie point for G
(see [3] for terminology.)
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Example 3. Consider the following game. The dynamics are given by
Xy = fiy) — p:(2) + my
=d(y, ),

Xy = f5(2) — p(y) + my
x,(0) = x,,,
x,(0) = x50,

and the payoff is given by

i(x)

Py, z) = h(x (1) — x,(1)) dt,

0
where 7 is the first ¢ such that x,(t) = x,(t). This is a type of attrition-attack game.
Other attrition-attack models are analyzed in [3] and [6]. The quantities x(t)
may bethought of as weapons on hand at time ¢. The quantity f'is the part of a
player’s effort devoted to increasing his weapons level, while p denotes his effort
at destroying the weapons of the enemy. We will assume that x,, > x,,, and that
for any controls, the path eventually satisfies x; = x,; at this time y will “sur-
render”. The payoff may be thought of as the overall damage y inflicts upon z.

Notice that we allow h to take negative values. Let w = ( 1) .

The capture time of this game is the first instant such that w- x(t) = 0. Next
we will put the above game into the form of the survival games discussed in the
previous sections. Write

W= , d= and X(1) = ,
ka 1/ka t/ka

where a and k are positive numbers. We have w- £ = a’*w-x + .
Let G be the game with dynamics

% =d0.2) ﬂm:V@y
0
with payoff given by
i
P(y,z) = ) h((t — W - R(¢e))/a®) dt,

0

where 1 is the first time the trajectory %(t) enters F. The boundary of F is given by
t = w- X. As easily verified, the numbers a and k may be chosen to guarantee that
condition (F,) holds. We now apply Theorem 4.1 to the game G. The transformed
game, which is of fixed duration, has a payoff given by

oo [ W + - x(0)/a?)
P(y > Z) = 7 7’ ’ ’
o 1—=10)—p0)+ f(@)+ p(2)
Thus G’, the transformed game, is dynamics free. This game obviously has value

and an open-loop saddle point which is determined as follows: at times t" when
the numerator of P’ is positive, y chooses a vector in Y which maximizes f; + p,;




GAMES OF SURVIVAL 177

when the numerator is negative, he minimizes f; + p,, and when the numerator
is zero, he plays any control. Player z’s optimal control in G’ is similarly computed.
Denote by {y'(t'), z/(¢')} the saddle point for G’ thus constructed. By the proof of
Theorem 4.1, we have that a synthesized saddle point for the original game in
this example is given by {y'(t + w-x(0) — w- x(¢)), Z'(t + w-x(0) — w- x(t))}.
In the attrition-attack setting, the interpretation of this saddle point is as follows:
when the argument of h is positive, player y maximizes the sum of his attrition
and attack effort; when the argument of h is negative, he minimizes this sum,
thereby hastening the termination of the game, or the entry of the trajectory into
aregion where h again becomes positive. Player z’s behavior under his rule may be
described similarly.

Acknowledgment. The author thanks Avner Friedman and Richard Scalzo
for their stimulating comments.
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LUCIEN W. NEUSTADT—IN MEMORIAM

Lucien W. Neustadt, who was managing editor of this journal from 1964
until his death in 1972, was one of the principal contributors to the vigorous
growth and development of optimal control theory in the last twenty years. This
issue of the SIAM Journal on Control is dedicated to the honor of his memory
and contributions.

Lucien Neustadt was born in 1928 in Berlin, Germany, where his father
practiced medicine. After the Nazis came to power, the family moved to France
and then to the United States. He received his high school education in New York
and his B.A. degree in mathematics from New York University in 1948. He
received his M.S. degree from the University of Wisconsin in 1950 and his Ph.D.
in mathematics from New York University in 1960. From 1948 to 1964 his studies
and research overlapped his work in industry as a mathematician at Aberdeen
Proving Grounds, Bell Aircraft Corporation, Reeves Instrument Corporation,
T.R.W. Space Technology Laboratories and Aerospace Corporation. During 1964
he was a professor of electrical engineering at the University of Southern California.
He spent the 1971-72 academic year on sabbatical leave at the Center for Dynam-
ical Systems, Brown University. Lucien Neustadt died in Los Angeles, California
on October 9, 1972 at the age of 44.

As a person, Lucien Neustadt was kind, warm, good-natured and considerate
of others. He was also very courageous. Although he suffered from leukemia for
five years or so before his death, he carried on a full and active scientific life and
maintained his good humor. In fact, some of his most important work was done in
the five years preceding his death. His death came as a shock, even to those of us
who were aware of his condition. Those of us who knew him personally sorely
miss a friend and colleague.

Lucien Neustadt made two types of important contributions to the growth
and development of optimal control theory. First, there were his own important
scientific contributions. These will be discussed later. Second, there were his
contributions connected with what could be summarized as ‘‘communication” in
the sense of disseminating scientific knowledge and communicating with other
workers in the field. Probably his best-known contribution in this area was his
work as managing editor of this journal. He was a member of the original editorial
board and became managing editor with Volume 2 in 1964. He served the journal
with extreme dedication. He insisted on high standards for all papers and for
fair and rapid service to contributors. Nevertheless, he always dealt tactfully with
authors and members of the editorial board. The present editorial board feels that
the present status of this journal is due, in large measure, to Lucien Neustadt’s
stewardship.

Lucien Neustadt also helped organize several international symposia and
conferences on optimal control theory and other areas related to optimization. He
edited or assisted with the editing of the proceedings of many of these conferences.

His circle of friends in the scientific community was large, and his knowledge
of their work was extensive. He shared this knowledge freely and warmly with all
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who were interested. He was personally responsible for establishing and developing
important and lasting contacts and avenues of communication between American
and Soviet workers in control theory. He developed strong personal friendships
with some of the leading Soviet contributors to the field. These led to ever-widening
contacts and interactions between American and Eastern European workers in
control theory. He was also a vigorous advocate of freedom of movement for
scientists and others.

In the early sixties Neustadt edited the translation from the Russian into
English of the important book, The Mathematical Theory of Optimal Processes, by
Boltyanskii, Gamkrelidze, Mishchenko and Pontryagin. In this book, these
authors summarized their important work to date. In editing the translation,
Neustadt brought the material up to date, corrected some errors, and pointed out
the relationship of this work to other works. The translation of this book into
English was an important stimulus to the growth of interest in optimal control
theory in this country and in Western Europe.

He also edited the translation into English of the book, Necessary Conditions
for an Extremum, by B. Pshenichnyi. This book is concerned with necessary
conditions for general optimization problems, and is related to Neustadt’s own
interests from the mid-1960’s onwards.

Lucien Neustadt was also a member of the SIAM Council and the SIAM
Program Committee.

His enthusiasm for his subject and for communicating ideas extended into
the classroom. In 1967 he received a University of Southern California Associates
Award for excellence in teaching. The award was given by a vote of his students,
who paid him high tribute.

We now turn to a brief survey of Lucien Neustadt’s scientific contributions.
A complete list of his scientific publications is given at the end of this article. The
numbers in square brackets refer to this list.

His early papers were closely related to applications and were motivated by
his industrial experience. One of the most important and influential of these was
[3], in which a computational procedure for solving a minimum time control
problem is presented. It was the first general method for computing “"bang-bang”
controls and was based on a geometric idea which he later exploited in solving
other optimal control problems [7]. In the early to mid-sixties he was particularly
interested in minimum effort control problems, which originated in aerospace
applications. See [6], [7], [16] and [20]. In [16] and [20] a rigorous mathematical
basis was established for fuel optimal impulsive controls.

Another important paper in this period is [14]. Here Neustadt showed that
for systems of the form

(1) dx/dt = A(t)x + h(t, u(t)), x(0) = x4,

subject to constraints u(t) € Q, where Q is compact, it is true that the set of attain-
ability is compact and convex. Note that no assumption is made as to the convexity
of the sets h(t, Q(t)). From this result one gets that the problem of minimizing

T
f [<a(t), x(t)y + h°(t, u(t))] dt
0

subject to (1) has a solution.
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From the mid-1960’s until his death, Neustadt was concerned with developing
a general theory of necessary conditions for optimization problems. This ranks
among his most important work. It appeared in various papers ([21]-[26], [29],
[30], [31], [34], [39)) and is summarized and refined in the posthumous book [40].

By the mid-1960’s several writers had noted similarities in the techniques and
results concerned with necessary conditions in various areas of optimization.
These similarities were not always on the surface, especially in the techniques used
to obtain the results. The program that Neustadt and others—notably Halkin,
Hestenes, Gamkrelidze, and Dubovitskii and Milyutin—had embarked on was
the following:

First, formulate a very general optimization problem that would include as
special cases all optimization problems of interest, such as ordinary control
problems, control problems with bounded states, control problems with lags,
control problems with distributed parameters, nonlinear programming problems,
etc., etc.

Second, develop a meaningful set of necessary conditions for the general
problem under reasonable hypotheses. The necessary conditions must be such
that one obtains useful necessary conditions for the special problems when
appropriate specializations and identifications are made. One of the difficulties in
the formulation of the general problem is that the hypotheses must be specific
enough to yield necessary conditions with some structure, yet they should be
general enough to include all the special problems of interest.

Neustadt’s contributions to this unified theory have been numerous. He has
introduced or sharpened several of its key concepts, and in many technically
difficult papers he has given the detailed application of this theory to specific hard
problems. On the conceptual side, one of Neustadt’s most important contributions
was his introduction of “‘convex differentials”. If an optimal control problem with
bounded states is expressed as a mathematical programming problem in infinite-
dimensional space, then the corresponding inequality constraints are not differ-
entiable, i.e., they cannot be approximated by affine functions. Neustadt observed
that those inequality contraints could, however, be approximated by convex
functions. The exploitation of this observation led to a better and more profound
theory of necessary conditions for optimal control problems with bounded states.
Neustadt also applied the unified theory to control problems governed by a very
general class of Volterra-type operator equations which includes certain differ-
ential difference equations, functional differential equations, and Volterra integral
equations as special cases. All this material can be found in [40]. In addition to his
own work, Neustadt encouraged and influenced others who were applying the
theory to problems involving hereditary systems.
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Abstract. In this paper,' necessary conditions are obtained for optimal control problems con-
taining equality constraints defined in terms of functions of the control and phase variables. The control
system is assumed to be characterized by an ordinary differential equation, and more conventional
constraints, including phase inequality constraints, are also assumed to be present. Because the first-
mentioned equality constraint must be satisfied for all ¢ (the independent variable of the differential
equation) belonging to an arbitrary (prescribed) measurable set, this problem gives rise to infinite-
dimensional equality constraints. To obtain the necessary conditions, which are in the form of a maxi-
mum principle, an implicit-function-type theorem in Banach spaces is derived.

1. Introduction. This paper is devoted to a study of necessary conditions for
optimal control problems with mixed control-phase variable equality constraints.
Specifically, we shall consider optimal control systems whose evolution is de-
scribed by an ordinary differential equation of the form

(1.1) X(0) = f(x(0),u(0),1), 1 StSty,

where x is an n-dimensional ““phase” variable and u is an m-dimensional “‘control”

variable. We shall suppose that x and u are further constrained by equalities of the
form

(1.2) pi(x(t), u(t),t) = 0 for almost all tel,, i=1,---,1,
1, being some given measurable subset of [¢,,t,]. Additional, more conventional
constraints of the form
Xi(x(‘cl),-'~,x(‘ca))=0 fori:l,"',k,
x(x(ty), -, x(t,) £0 fori=k+1,---, k+k,,

(1.4) q'u(t),t) £0 fori=1,---,rand almost all te[t,,t,],

(1.3)
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as well as phase inequality constraints of the form

7(x(t),t) <0 foralltel,, i=1,---,1,
will also be allowed in our problem (z,, - -, 7, are fixed points in [t,,t,], and
I, -, I} are given closed subsets of [t,,t,]).

The constraint (1.2) is unorthodox in that it represents an “‘infinite-dimen-
sional” equality constraint on the problem. We shall investigate the problem by
viewing it as a mathematical programming problem over a Banach space with
generalized inequality and equality constraints. These constraints are defined
in terms of functions which take on their values in appropriate infinite-dimensional
Banach spaces.

The fact that the equality constraint takes place in an infinite-dimensional
space causes very serious complications in the analysis. In order to obtain necessary
conditions for mathematical programming problems with nonlinear equality
constraints, it is generally necessary to invoke implicit function theorems (or
fixed-point theorems) in the space which contains the range of the function defining
the equality constraint. When the equality constraint is finite-dimensional, then
this space is Euclidean k-space (for some positive integer k), and the Brouwer
fixed-point theorem has turned out to be the appropriate fixed-point theorem to
use for optimal control problems (see, e.g., [1], [2]). Here, with equality constraints
of the form (1.2), (1.3), it is necessary to use not only the Brouwer theorem,
but also an implicit-function-type theorem in L' (I,) (the space of all essentially
bounded functions from I, into Euclidean l-space). The latter implicit function
theorem is based on the fixed-point theorem for contraction mappings in a
Banach space.

As is to be expected, we shall have to make certain “‘regularity” assumptions
on the constraints (1.2). Roughly speaking, we shall have to suppose that the /
equality constraints (1.2) are independent with respect to the control variable (at
least to first order, near the optimum control and trajectory) as well as compatible
with the control inequality constraints (1.4). This means that the functions p’
must all depend explicitly on u, which makes it appear that we are excluding from
consideration pure phase equality constraints of the form pi(x(¢), t) = 0. However,
it turns out that pure phase equality constraints can often be transformed to
equality constraints of the form we require if we simply differentiate the phase
equality constraint with respect to t.

In the language of the classical calculus of variations, in our proofs, it will be
necessary for us to make both “‘strong” and ‘“weak” variations in the controls,
whereas weak variations generally are redundant in problems with finite-dimen-
sional equality constraints.

Our necessary conditions will be in the form of a maximum principle, much
like the Pontryagin maximum principle. Results similar to ours have previously
been obtained, primarily by Hestenes [3], [7] and Virsan [4], [5], but under more
restrictive assumptions and in a somewhat weaker form. Virsan’s approach to the
problem had much in common with ours, but Hestenes used a finite-dimensional
implicit function theorem to reduce the problem to one with finite-dimensional
equality constraints. A detailed discussion comparing our results with earlier ones
is given in § 15.
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Problems in which the equality constraints (1.2) are supplemented by similar
inequality type constraints of the form

pi(x(t), u(t),t) < 0 for almost all te I,

are touched upon in § 14. In fact, we shall show that such inequality constraints
can be formulated in such a way that they become equality constraints, but at the
expense of creating additional constraints of the form of (1.4).

2. Problem statement. Let there be given positive integers n, m, k, k,, 1 1,,r,
and o, where | < m. Let R denote the real line, and let R’ (for each integer j > 1)
denote Euclidean j-space. Further, let there be given a compact interval I = [t,,¢,],
an open interval I > I, a Lebesgue measurable subset I, of I, closed subsets
I, ---, I, of I, a finite subset {t,,---,7,} of I such that ¢, =1, <71, <---
< 1, =t,,and open sets G and U, in R" and R™, respectively. Finally, let there be
given functions f:G x Uy, x [ > R p=(p',---,p"):G x U, x I > R,
x =%t -, (G — RFP Rt (where (G) denotes the direct product of
G with itself ¢ times), ¢ =(q",---,q):Uy, x [-> R, and 7= F',---, "):
G x I - R".

Let %, denote the set of all measurable functions u: I — R™ such that (possibly
neglecting a subset of I of measure zero) the closure of the set {u(f):tel} is a
compact subset of U,. Let % denote the set of all functions u € %, such that

2.1 ¢ut),t)£0 forj=1,---,rand almost all teI.

The elements of % will be called admissible controls.
Let 4 denote the set of all continuous functions x:I — G.
We shall be concerned with ordinary differential equations of the form

(2.2) x(1) = f(x(1), u(®), 1),

where u € %,. By a solution of (2.2), we mean an absolutely continuous function
X € 9 such that (2.2) holds for almost all ¢ € I. The absolutely continuous functions
x € 9 which satisfy (2.2) for some admissible control u, i.e., some ue %, will be
called admissible trajectories.

Our problem consists in finding a pair (x, u) € 9 x % such that

x is a solution of (2.2),

K(x(ty), -, x(t,)) =0 fori=1,---,k,
(2.4) x(x(ty), -, x(t,) 0 fori=k+1, -, k+ky,
(2.5) pi(x(t), u(t), ) = 0 for almost all te I, and eachi=1,---,1,
(2.6) Fi(x(t),1) <0 foralltel;andeachi=1, -, I,

(2.3)

and which, in so doing, achieves a minimum for ¥°(x(z,), - - - , x(z,)).

In § 14, we shall also investigate problems where I, is replaced by I; in (2.5)—
I,,---, I, being given Lebesgue measurable subsets of [—as well as problems
where there are additional constraints of the form

pi(x(t), u(t), ) £ 0 for almost all t€ I, and each i.

We shall show that such problems can be reduced to the problem just described.
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In order to obtain meaningful results for this problem, we shall have to make
certain smoothness and continuity assumptions on the functions f, p, x, ¥, and q.
These are as follows:

Al. The function y is continuously differentiable.

A2. The function ¥ is twice continuously differentiable.

A3. For each tel, the functions (x,u) - f(x,u,1):G x Uy — R" (x,u)
- plx,u, t):G x Uy > R', and u — q(u,t):U, - R" are continuously differ-
entiable.

A4. The continuity of the function (x, u) - f(x,u,t):G x U, - R"is uniform
with respect to te I, and similarly for f replaced by p, f,, f.. p,, and p, (where
S, etc., denote the evident matrices of partial derivatives). Also, the continuity of
the functions u — q(u, t) and u — q,(u, t) is uniform with respect to t € I.

AS5. For each (x,u)e G x U,, the functions t— f(x,u,t):] > R" t—>p
(x,u,t):I - R', and t — g(u, t): I - R" are measurable.

A6. For each compact subset C of G x U, there is a number { > 0 such that,
for all (x, u) e C and almost all te I,

@ |fCe,w, O + 1 £ u 0 + 1 flx w0l = L,
(b) Ip(x, u, ) + Ip(x, u, O] + |p(x, u, 1) = C,
(©) lq(, O + lg,(u, 0 = L,

where the vertical bars are used to denote Euclidean norms for vectors and matrix
norms for matrices.

Assumptions A3-A6 ensure that, for any u € %,, equation (2.2) has a unique
local solution for any given initial value x(t,) € G.

Note that if A3 holds, and if, in addition, the functions £, p, 4, f;, f» P> P, and
q, are continuous in all of their arguments, then A4-A6 automatically hold.

For each positive integer j, let €7 (resp., L’ , L) denote the linear vector
space of all continuous (resp., essentially bounded, integrable) functions from
I into R/. We shall define the following norms on %7, L/ , L}, respectively :

x|l = max|x(t) for xe %, Iyl = esssup |y(t) for ye L’ ,
tel

tel

t2
lzll = f |z(t) dt for ze L .
ty

With these norms, %7, L’,, and L] become Banach spaces. The spaces ¢, L., L1,
will simply be denoted by ¥, L, L,. If I is replaced by a Lebesgue measurable
subset I’ of I in the preceding definitions, then the corresponding spaces will be
denoted by €/(I'), L (I'), etc.

Note that 4 is an open set in ¢” and that %, is an open setin L7 . In the sequel,
unless the contrary is specified, ¥ and %, are to be considered as sets in ¥" and
L” | respectively.

For ease of notation in the subsequent developments, we shall define the
functions P:9 x ¥, —» L (I,) for i=1,---,L Xs:9 > R X,:9 > R" X,:
4 — R“ Q:Uy— Lfori=1,---,r,and X':9 - Gfori = 1,---, 1, asfollows:

(2.7) Pi(x(-),u(-)) is the function t — pi(x(t), u(t),t):1, = R,
(2.8) Xo(x(+)) = xolx(zy), - -+, x(z,)), where xo = x°,
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(2.9) X, (x(+) = xy(x(zy), -+ x(z,)), where x; = (', -+, ¥,
(210)  X(x(-) = 1a(x(m). - x(5,), where ;= (<F oo, £R),
(2.11) Q'(u(-)) is the function ¢ — q'(u(t),t):1 - R,

(2.12) Xi(x(-)) is the function ¢ — y¥(x(t),t):I —» R.
Also, let us denote (P!, ---, P))by P,(Q',---, Q") by Q,(X*!, ---, X")by X, and
(Xo, X, X,) by X.

Further, let us define the following sets (each of which is easily seen to be
convex):

(2.13) Rb = (= (&', -, &) <Oforeachi=1,---, k,},
Y={y=0p" ,y")ye®",y(®) s Oforall te

(2.14) andeachi=1,.--,1,},
Yo={y=0% ,y")ye®", yt) <0forall tel;
(2.15) and eachi =1, .-, 1},
W= {w=(w! -, w)welL  esssupw() < 0
tel
(2.16) foreachi=1,---,r},
Wy ={w= W' -, w)welL esssupwi() <0
tel
(2.17) foreachi=1,---,r},
W, ={w= W', w)welLl, ess sup wi(t) <0
tel
(2.18) foreachi= 1, --,r},
W, ={w=w! -, w)welL esssupw() <0
tel
(2.19)

foreachi=1,---,r}.

Note that Y, W, and W, are all closed, and that Y, = int Y, W, = int W, and
W, = int W,, where int denotes interior. Further, R*! is open and

(2.20) clRM = {&= (&, -+, &) 8 <0 foreachi=1,---, k,},

where cl denotes closure. Also, # = {u:ue,, Qu)e W}.

Our basic problem may now be restated as follows : Find a pair (x, u) € 4 x %,
such that (i) x is a solution of (2.2), (i) Q(u) € W, (iii) X ,(x) = 0, (iv) X ,(x) € cl R¥!,
(v) P(x, u) = 0, and (vi) X(x) € ¥, and which, in so doing, achieves a minimum for
X o(x).

It easily follows from Assumptions A3 and A4 that the map P is Fréchet
differentiable at each (x,u)e ¥ x %,, with partial differentials at any (x,u)e ¥
x 9Uy,—which we shall denote by D,P(x,u;-),i = 1,2—given by the following
formulas:

D, P(x,u;0x) is the function ¢t — p(x(t), u(t), )ox(t):I, - R

(2.21) for all éx e &",
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2.2 D,P(x,u;du) is the function t — p,(x(t), u(t), )ou(t):1, - R
' for all oue L.

Further, A3 and A4 imply that Q is Fréchet differentiable at each ue %, with
Fréchet differential (at any u € %,) given by

DQ(u;du) is the function ¢ — g, (u(t), )ou(t):1 - R”

(2.23) for all oue LT .

Finally, Al and A2 imply that X,, X,, X,, and X are Fréchet differentiable at
each x € ¢, with Fréchet differentials (at any x € %) given by

DX (x: 0x) Z i (X(T1), -+, x(15))0x(T)
(2.24)
for all 6xe€"and j =0,1,2,
DX(x:dx) is the function t— F.(x(t), t)ox(t): —» R"
2.25) ( T(X(

for all ox e €".

3. Admissible control variations. Let (X, %) be a solution of our problem. Our
aim is to find necessary conditions which (X, ﬁ) must satisfy.

Let us denote by f the function ¢t —f(x(t), i(t), t): ] — R" (so that feL" ), and
similarly define the functions p, g, f;, f,, P> Du» and g, Further, we shall denote
DP(xu)forl-—IZbyDP()DX( -), for j=0,1,2, by DX(-);DX(x;-)
by DX(-); and DQ(ii;-) by DQ(-). Also, let Xx(X(ty), -+ -, X(7,)) be denoted by
X, foreachi=1,---, 0.

Let % denote the set of all ue % such that P(X,u) = 0; i.e., % consists of all
admissible controls which, together with the optimum phase trajectory X, satisfy
the problem constraint P = 0. Note that i e %.

We shall largely confine our attention in what follows to controls u € % which
satisfy the following condition:

Condition Cl. For almost all tel,, the I x | matrix p,(X(t), u(t), t)-(p(x(t),
u(t), 1))"—where T denotes transposition—is nonsingular, and the function
t — [pJx(t), u(t), O)(pX(1), u(t), ))T]"*:1, —» R is in LE(I,).

In order to obtain our necessary conditions, we shall have to suppose that i
satisfies Condition C1 (as well as Condition C2, which is described later in this
section). As we shall see, the strength of these necessary conditions is directly
related to the number of controls in % which satisfy C1 and C2.

The first part of C1 is equivalent to the assertion that the matrix p,(X(¢), u(t), t)
has, for almost all t € I,, maximum rank, i.e., rank . Consequently, C1 cannot hold
for any ue %, if, for example, some component of the function p is independent
of u. Thus, it appears that if we require i, as well as a reasonable number of other
controls in %, to satisfy C1, then we shall have to exclude from consideration
many interesting types of equality constraints. However, it turns out that, by a
suitable reformulation, we can often transform our problem from one in which
Cl1 is violated to one in which C1 holds. For example, suppose that I, is a sub-
interval of I and that p is independent of u, so that we can write (2.5) in the form
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p(x(t), t) = 0. Then, differentiating this last equation with respect to ¢ and using
(2.2), we see that it is equivalent to the equations

(3.1) p1(x(t), u(t),t) = 0 for almost all te,,
(3.2) p(x(®),1) =0,
where p, is the function defined by
pi(x,u,t) = px,t)f(x,u,t) + plx,t), xeG, uel,, tel,

and { is an arbitrary point of I,. Thus, we may replace constraints (2.5) by the
equivalent pair of constraints (3.1) and (3.2). Evidently, (3.1) is of the same form as
(2.5), and (3.2) may be adjoined to (2.3). Further, if p is twice continuously differ-
entiable, and A1-A6 hold, then these same assumptions hold with p replaced by
p,. Hopefully, when p is replaced by p, in C1, then this condition will be satisfied
by a broad class of functions in %, including &. If p, also turns out to be independent
of u, then the just indicated procedure may be repeated.

If only some components of p are independent of u, then the procedure which
we have described must be applied to only those components.

Let us return to Cl. If u e % satisfies C1, then we may consider (for almost
every t € I,) the m x [ matrix

(3.3) (PUX(), u(t), )T [pX(2), u(z), ) (p(X(1), u(t), )T] ™"

This matrix is commonly referred to as the pseudo-inverse of p (x(t), u(t), t) because,
if the matrix (3.3) is premultiplied by p,(x(t), u(t), t), the result is the identity
matrix.

For each ue % satisfying C1, let us define the continuous linear operator
D,P(%,u:-):L' (I,) - L™ as follows: For any ze L'.(I,), let D,P(X, u;z) denote
the function ou in L” defined by

0 forte I\I,,
(Pu(X(2), u(t), )" [p,(X(2), u(t), ) (p,(X(2), u(t), )] 'z(t) fortel,.

Clearly, Dﬂz\l/’(i, u) behaves like a pseudo-inverse of D,P(X, u) in the sense that
(see (2.22)) D,P(x, u)o D,P(X, u) is the identity operator on L' (I,).
For the special case where u = i1, we shall refer to the function (3.3) as j(¢);

ou(t) = {

ie,

(3.4) () = @) PP fortel,.

For convenience, let us extend the function p to I by setting

(3.5) p(t)=0 forte I\I,.

Note that

(3.6) p()P(t) = the | x [ identity matrix for almost all te I,
and that —~

D,P(x,i:z)(t) = p(t)z(t) forall teland ze L' (I,).

Not only shall we confine ourselves to admissible controls u such that
P(X, u) = 0 and which satisfy C1, but we shall impose yet another requirement on



OPTIMAL CONTROL PROBLEMS 191
the controls that we shall consider. To describe this requirement, we must intro-
duce some new sets. For each ue %, let us define the set 2(u) as follows:

(3.7) I(u) = {ou:due L",[Qu) + DQ(u; su)le W,}.

It ii easily seen that, for each u e %, 3(u) is an open convex set in L™ and a9 (u)
< 9(u)for all ¢, 0 < a < 1. Let 2(u) denote the cone spanned by 9(u), i.c.,

(3.8) 2u) = {adu:a > 0, ue I(u)}.

Since Z(u) is open and convex, 2(u) is an open convex cone, which implies (as is
easily seen) that

(3.9) 2u) + cl 2(u) = 2(u).

Finally, let

(3.10) Ao = {ou:oue L, ou(t) = O for almost all te I\I,}
and

2o(u) = 2(u) N A,.

It is easily verified that 2,(u) and A, are also convex cones.

We now state our second requirement on the admissible controls u which
we shall consider.

Condition C2. {D,P(x,u; du):oue 2yu)} = L, (I,).

We shall denote by 4 the set of all u e % which satisfy Conditions C1 and C2,
and shall confine our attention to controls in %. Indeed, when constructing
“‘strong variations” of @ in the derivation of our necessary conditions, we shall
only allow variations to functions in 4%, so that the maximum principle—which
will be the form that our necessary conditions will take— which we shall obtain
will be valid only for such u. (We shall also allow ‘“weak variations’’ of & from
2(@).)

Remark 3.1. Note that if u, and u, belong to % and if u, € % is such that, for
some measurable subset I' of I, u,(t) = u,(t) for all te I' and u;(t) = u,(t) for all
te I\I', then also u, € %.

We shall suppose that i satisfies C2 as well as C1, so that i e .

Conditions C1 and C2 should be interpreted as regularity conditions or as
compatibility conditions—to ““first order” in u— of the constraints p = 0 and
g’ < 0forj=1,---, r. They replace conditions found, for example, in [6] and [7]
on the linear independence of the vectors pi(x(t), u(t), t) for j=1,---, [, and
qi(u(t), t) for those j = 1, -- -, r for which g/(u(t), t) = 0.

We close this section with two lemmas regarding the sets 2(u) which we shall
need in the sequel.

LEMMA 3.1. For every i€ % and any o6 € 9(§)), there is an £>0 such that
(i + edu)e U whenever 0 < ¢ < & 0ue Ay, and ||ou — ol|| < &.

Proof. If fie % and on e 9(1), then ot = &@dii for some & > 0 and some
diie 9(f). Since %, is open, there is an ¢, > 0 such that (i + edu)e %, for all
e,0 < & < &y, and all due L” such that |du — dii|| < &,. By definition of ()
(see (3.7) and (2.18)), there is an # > 0 such that
(3.11) ess sup [QU(@)(t) + DQI(@;da) ()] < —n forj=1,---,r.

tely
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Because DQ(fi;-) is the Fréchet differential of Q at 4, it easily follows that, for
every Sue L” andj=1,---,r,

Q/(d + edu) — Qi)

& e

5> DQ(@: ou),

with the convergence uniform with respect to du in any bounded subset of L™ .
From this, we can easily deduce that there is an ¢, € (0, 1) such that ¢, < ¢, and

QY@ + edu) — Q'()

&

(3.12) 4

— DQ@: 6d) <g for j=1,---,r

whenever 0 < ¢ < ¢, and |ou — dif < ¢,.
If we write

Q'@ + edu) — Q'(@)

&

Qi(fi + edu) = 8[: — DQj(ﬁ;éﬁ)]

+&[Q/@) + DQ(@; om)] + (1 — £)Q/(R),

and take into account (3.11), (3.12), and the fact that @t € % (so that Q/(@)(t) £ 0
for almost all t e I and each j), we quickly conclude that, if 0 < ¢ < ¢, dueA,,
and ||éu — dii|| < &, then (i + &du) € U, and

Qi@ + edu)(t) £ 0 for almost all t€ I, and each j,
Q’(@ + edu)(t) = Q’(a)(t) £ 0 for almost all te I\\I, and each j,

ie., (& + edu)e % for all ¢ and dou as just indicated. Setting & = min {¢,&, ¢,/d},
we arrive at our desired conclusion.

Using a standard compactness argument, we can strengthen Lemma 3.1 as
follows.

LemMaA 3.2. For any @i € % and any compact subset 2, of 9(i1), there is an g, > 0
such that (ft + edu)e U whenever 0 < ¢ < g,,0uc Ay, and |ou — || < ¢, for
some Sli€ 2,.

4. Linearized equations. For each finite subset H = {(8", u,), - - -, (B, u,)}
of R, x % —where R, denotes the set of nonnegative numbers—Ilet us define
the function Afy € L" as follows:

Afult) = ZS: BLA(X(0), uf), £) — f(X(0), a(0), )],  tel.

The set of all such functions A f;, as H ranges over all finite subsets of R, x %,
will be denoted by M. Evidently, M is a convex cone in L” , and 0 e M.
We shall consider linear inhomogeneous differential equations of the form

4.1) Ox(t) = f(t)ox(t) + f()ou(t) + Af(2), tel,
where due L and Afe M. Equation (4.1) may be viewed as a “linearization”

of the basic equation (2.2) about (X, #1). Let us denote by Z the set of all pairs
(0x, ou)e " x L7 such that dx is absolutely continuous and dx and du satisfy
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equation (4.1) for some A fe M. Since M is a convex cone, it follows at once that
Z also is.

Foreachze L (I,), let dx, € " denote the function which satisfies the linear
inhomogeneous ordinary differential equation

(4.2) 0%,(t) = f()0x(t) + fOP(O)[2(t) — p(1)ox.(1)] ae. on I
with initial value
4.3) 5x.(t,) = 0.

(In (4.2), z(¢) is undefined for t € I'\I,, but this does not matter because p(t) = 0
for t e I'\I,, by definition—see (3.5).) Equation (4.2) may be looked upon as a
differential equation with a “feedback law” expressed by the term in brackets.
Indeed, if we denote this term by du,, i.e., du, € L” is defined by

(4.4) ou (1) = po)[z(t) — p()dx,()],  tel,
then we have (see (3.6)) that

(4.5) Do(1)0x,(t) + p(t)ou,(t) = z(t) for almost all tel,,
or, equivalently, that
(4.6) D,P(6x,) + D,P(éu,) = z forall ze L' (I,).

In fact, the feedback law was specifically designed in order that (4.5) (or (4.6))
hold.

Note that dx, satisfies the linear inhomogeneous differential equation
4.7) 0x,(1) = f(1)0x,(1) + ft)du(r), tel;  &x,(t;) =0,

where du, is defined by (4.2)(4.4), so that (dx,, du,) € Z. Also note that (see (4.4),
(3.5), and (3.10)),

(4.8) du,eA, forall zeL' (I,).

LEMMA 4.1. The map z — (6x,, du,): L' (I,) — Z is linear and continuous.

Proof. Since 0x, is defined by the linear inhomogeneous differential equation
(4.2) with zero initial value (see (4.3)), the map z — éx,: L' (I,) — %" is evidently
linear. Using the variations of parameters formula for the solution of (4.2), (4.3),
we at once see that this map is also continuous. Because the map (z, dx,)
—du,: L (I,) x €" — L™ defined by (4.4) is evidently linear and continuous,
our lemma follows at once.

COROLLARY 4.1. If z,, denotes the function in L' (I ) which vanishes identically,
then 6x,, = 0 and éu,, = 0.

We observe that equations (4.2) and (4.3) have a solution not only for every
ze L' (I,), but also for every ze L'(I,), and the resulting function du, given by
(4.4) is then in L. Further, the map z — (6x,, éu,):Li(I,) > " x L7 is con-
tinuous.

5. The basic theorem. We can now state our main theorem, on the basis of
which we shall obtain our necessary conditions.
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5.1) v Z, = {(6x,6u):0x €B", 5ue,@o(f),X2()'c) j— DX ,(6x)e R,

() + DX(%;0x) € Yy, DXo(dx) < 0},
(52) Z, = {(dx,0u):0x € 6", due L™, D, P(6x) + D,P(du) = 0},
(5.3) Z,=2,NZ,NZ.

Roughly speaking, Z, consists of those perturbations of (X,#) which, to first
order, satisfy all of the problem constraints except (2.3), and also yield a lower
value for the cost functional X,. Note that Z; is convex for i = 1, 2, 3 because
94(1), R*, Y,, and Z are.

Our main theorem is the following.

THEOREM 5.1. The origin is not an interior point (in R¥) of the set

(54) K = {DX(6x):(6x,0u)e Z; for some due L7 }.

In § 11, we shall employ Theorem 5.1 to appeal to a series of separation
theorems on the basis of which we shall obtain our necessary conditions. Note
that K is convex because Z; is.

Theorem 5.1 essentially asserts that, to ““first order,” there is no perturbation
of (X, ) which satisfies all of the problem constraints while at the same time
yielding a lower value for X,.

We shall argue by contradiction. Indeed, we shall prove that if 0 eint K, i.e.,
if to “first order”” one can improve X, while satisfying the problem constraints,
then one can improve X, even including higher order terms, while satisfying the
problem constraints (again including “higher order” terms), which violates that
(X, u) is a solution of our problem.

6. An auxiliary lemma.

LEMMA 6.1. If Oeint K, then there are a simplex S = R* with vertices
Uiy, Ups g and with 0 eint S, functions A, f, - -, Mgy 1 f in M, elements (dx;, du;),
fori=1,--- k + 1,in Z with du; € 2,(it), and a number ¢, > 0 with the following
property:

Foreachy = (y',---,y**YYe S* = {y:ye R** ',y = 0 foreachi, Y ** 1y = 1}
and each ze L' (I,) satlsfymg Izl < &g, there are pairs (6x.,,,,du, ) € Z such that
(for all such z and y)

k+1
(6.1) 0x,, = fi0x,, + fdu,, + Y VA f, ae onl,
i<
kel
(6.2) 0x, (1) = 3 y'ox{ty)
i=1
_ k41
(6.3) DX ,(6x,,,) = Y. v'v;, where z, is the origin in L' (I,),
i=1
(6.4) D1P(5xz,y) + sz(éuz,y) =z,
(6.5) X,(%) + DX,(0x,,,)eR* and X(%) + DX(X;0x,,,) € Yy,

(6.6) DX(5x,,,) <0,
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k+1 )
6.7 8x,, = 0x, + Y, y'0x,,
i=1
k+1 .
(6.8) du,, = ou, + Yy y'éu,
i=1
(6.9) (i + edu,,)e U whenever 0 < ¢ < ¢,
(6.10) ou, , €Aq.
Proof. If 0 eint K, then there is a simplex S = K such that O eint S. Let the
vertices of S be vy, - -+, v, . Since each v; € K (see (5.1)~(5.4)), there are functions

A.feM and (6x;, 6u;) € Z with éu, € 24(u), for i =1, ---, k + 1, such that, for
each i,

DX ,(6x;) = v;,
8%; = f0x; + f,0u; + Af ae.onl,
X,(X) + DX,(6x)eRY,  X(X) + DX(x;0x)e Yy  DXy(dx) <0,
D,P(dx,) + D,P(du;) = 0.

For each ze L, (I,) and ye S, let dx,, and du,, be defined by (6.7) and (6.8).
Taking into account the properties of dx, and du, discussed in § 4 (in particular,
see Corollary 4.1 and relations (4.3) and (4.6)—(4.8)), we easily deduce that (6.1)—
(6.6) and (6.10) hold. (Recall that Y, and R*! are convex.) Thus, it only remains
to show that, for a suitable ¢, > 0, (6.9) holds for all y € S*, so long as |z| < &g.
But, since {} ] y'0u;:y = (', ---, y*T1)eS*} is a compact subset of 2(ii), the
existence of such an ¢, follows directly from (6.8) and Lemmas 3.2 and 4.1.

Lemma 6.1 essentially asserts that if 0 € int K, then there is a simplex S < Rk,
having Oin its interior, with the following property : For any ¢ € S (with barycentric
coordinates y, - - -, y** 1), there is a *‘perturbation” (dx, du) of (X, it) (6x should be
chosen as 6x,,, and du as du,, ,, where y = (y*, -, y**1)) such that, to “first
order,” at the perturbed x and u, (i) the basic differential equation is satisfied,
(if) X, takes on the value &, (iii) the problem inequality constraints are “strictly”’
satisfied, (iv) the equality constraint P = O is satisfied, (v) the perturbed control
is admissible, and (vi) X o takes on a lower value than it does at X. Further, there is
a neighborhood of 0 in L' (I,) such that, for any z in this neighborhood, we can
make an additional small perturbation (dx,, ou,) of (X, #) which, “to first order,”
will achieve P = z while only slightly perturbing the values of Xy, X, X,, and
X, will still satisfy the basic differential equation, and will result in an admissible
control.

In what follows, we shall show that, for each & € ¢S (where ¢ is some sufficiently
small positive number), (X, #) can be perturbed in such a way that (i) the perturbed
u is admissible and, together with the perturbed x, satisfies the basic differential
equation (2.2) as well as the equality constraint P = 0, (ii) the perturbed x satisfies
the problem inequality constraints and assigns to X, a value less than X (X),
and (iii) the perturbed x assigns to X, (with a ““small”” error) the value &. All these
assertions are true exactly, not just to first order.
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Armed with the preceding intermediate result, we shall, in § 10, use the
Brower fixed-point theorem to show that we can find a perturbation of (X, #1) which
has properties (i) and (ii) described in the preceding paragraph, and, in addition,
assigns O to X ;. But then this perturbation satisfies all of the problem constraints
while giving a lower value to X, than X does, which contradicts the fact that (X, &)
is a solution of our problem. As a result, we shall be able to conclude that 0 ¢ int K.

The next two sections are devoted to the construction of some suitable
“perturbations” of our optimal control .

7. Chattering controls. Continuing with our contradiction argument, let
Ay f, -+, Ay;, f be the functions in M whose existence is asserted in Lemma 6.1.
By definition of M, this means that there are functions u,, - - -, u,€ % and non-
negative numbers fi (i=1,---,k + 1;j =1, ---, s) such that

MO = Y BLAED. 0.0 — fEO. 0,00, tel, i=1,- k+ 1.
j=1

Thus, equation (6.1) for dx,, can be rewritten as follows:
0%,,,(1) = f1)0x, (1) + [u(1)u. (1)

+ ) B (R(0),u;(0), 1) — f(X(2), @), 1],
j=1
where, for each y = (y!, .-+, y** 1) eSS,

k+1

po) = 3 78, j= s,
i=1

so that

k+1
0<pBi(y) < ) pi forallyeS*andj=1,---,5s.

i=1
Now, for any ¢ = 0 and y € S*, consider the differential equation

x(1) = f(x(1), u(t), 1)

(7.1) s
+ ¢ Z B (x(t), uft), 1) — f(x(1),(r),1)] ae.onl

with initial condition

k+1

(72) x(t) = (1) + € Y yox(1y),
i=1

where the dx; are as indicated in Lemma 6.1. For ¢ = 0, X is the solution of (7.1)
and (7.2). It follows directly from conventional theorems on the differentiability
of solutions of ordinary differential equations with respect to parameters that
there is an £ > 0 such that (7.1) and (7.2) have a unique solution defined on the
entire interval I for all ¢ € [0, £) and y € S¥, and that, if we denote the corresponding
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solutions by X, , then

X,,— X
V€
— ox,
e

(7.3) —- 0 uniformly with respect to y S*,

where dx,, for each y € S*, is the solution of the linear inhomogeneous differential
equation
k+1

0x%,(1) = f(1)ox,(1) + Z YA f(t) ae. onl,
(7.4) =l

k+1

0x,(t;) = Z Yox(t,).
i=1
Now, in general, %, , will not be an admissible trajectory because there is no
reason to expect the existence of a function u € % such that

S, u), 0 + ¢ ‘; B (x, u1), t

— f(x,u(t), )] = f(x,u(t),t) forallxeGanditel.

However, X, . may be approximated by an admissible trajectory in the following
way. (The idea of this approximation is due to Gamkrelidze in [2] who coined
the term quasiconvexity in connection therewith.)
Without loss of generality, we shall suppose that & is sufficiently small that
(i) 1%, . — XIl < po for all yeS* and £€[0,¢), where p, > 0 is such that xe G
whenever x € R” and |x — x(t)] £ 2p, for some t €1, and (ii) £8(y) < 1/s for all j
and y e S*. For each ¢€[0,£), we perform the following construction. We first
partition (in a manner to be specified later) I into a finite number of subintervals
FEREEIN J‘v(g,. For each y e S¥, we then partition each J¢ into s + 1 subintervals
Jid, JiY, -+ -+, Jil—these subintervals are indexed in such a way that J77 is
immediately to the left of J§, ; for all i, j—such that, for each i,

IJ5el = (1 - Zl ﬁ’(v))lJ”il and |J3 = ey
=

foreachj=1,---,s,

where vertical bars here denote lengths of intervals. Now set

v(e)
(7.5) I, = L_J Ji7 forevery j=0,---,s, £€[0,8), andyeSt

and define the function u, , € % as follows:

N

(7.6) u, (1) = Z ej.,(Duft), where u, =,

and where, for each j,¢,7,¢;, , is the characteristic function of I, ,, i.€.,

Jies7?

Ji,y?

0 f I\,
17 j”(t)—{ ortel\

1 fortel;,,
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Since u, (t) = ut) for all t € J3? for each i, u, , is often referred to as a *“chat-
tering combination” of &, u,, -+, u,, or as a “chattering” control. Note that
u,o = uforally ES". Also, by Remark 3.1, u,, el = % < U for all y, ¢, so that
(by definition of %)

(7.8) P(x,u,,) =0 forally,e.

We show in the Appendix that if, for each ¢, the partition of I into subintervals
is sufficiently fine, i.e., if max; |J¢ is sufficiently small, then, for each y, the equation

(7.9) X(1) = f(x(1), u, (1), 1)

with initial condition x(t,) = X, (t,) has a solution on the entire interval I such
that, if we denote this solution by x,, ., then

(7.10) 1

We shall suppose that such a partition of I has been made for each ¢€ [0, £). By
definition,

e — X0l <& forallyeSt

X, 1) = f(x,.(0),u,,(t),t) aeonl,
k+1

X, (t) = X, (t;) = X(t;) + ¢ Z Yox(t,).

i=1

(7.11)

Thus, x, , is an admissible trajectory for all y € Sk and ¢ € [0, 8). Also, note that, for
all [0, &) and y e S¥,

;.| = ef| foreachj=1,---,s;
ol = (1 - ﬁ"(v))lll,
j=1

so that (see (7.6) and (7.7))

(7.12)

(7.13)  [{t:tel,u,t) # u@)}l —57 0 uniformly with respect to y € Sk,

Combining (7.3) and (7.8), we conclude that

Xye — X

(7.14) ——0  uniformly with respect to y e §*.

- 5Xv e—~0

8. Perturbed admissible controls. In the preceding section, we described one
way to “perturb” (or make a variation in) the optimal control #—by constructing
a chattering control. Note that the chattering control coincides with i1 = u, except
for tin a set whose measure is proportional to ¢ (see (7.6), (7.7),and (7.12)). However,
at those ¢ where the chattering control differs from #, this difference is in no sense
“small of the order of ¢.”” Thus, chattering controls correspond, in the language
of the calculus of variations, to strong variations of .

We shall also admit another kind of perturbation of i—the addition of a term
of the form edu, where du € A,. This, of course, is a ““weak variation.”” Further, we
shall consider combinations of the two kinds of perturbations, i.e., we shall first
add a term of the form ¢du to @, and then shall replace # + ¢du by a chattering
control, with a term of the form &du; added to u; (where ou and du;eAo). The
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resultant control functions, which, for sufficiently small ¢ > 0, will be in %, will
be called perturbed admissible controls.

Note that, in our chattering controls, the functions u; are not only in %,
but also in %. The reasons for this will now become apparent

Perturbed controls will be constructed for each y ¢ S¥, £ € [0, &),and ze L (I)
with ||z|| < &g, where g3 > 0 is specified in Lemma 6.1 and & is some sufficiently
small positive number. Let

By = {z:ze Li(I,), 2]l < o).

We begin by constructing functions du
j=1,---,5) such that (see (6.4))

(8.1) D,P(x,u;;0x,,) + D,P(X,u;; ou,, ) = D, P(6x,,) + D,P(bu,,) = z,
(8.2) (u; + edu,, ) e for all ¢ > O sufficiently small,

2y, €L (for each y e §*, ze By, and

where dx, ,and du, , are the functions specified in Lemma 6.1.
To do this, we define the continuous linear operators P: %" x L% — L™ for
j=0,1,---, s by the relations

P(5x, 6u) = D,P(X, u;; D, P(6x) — D, P(%, u;5 %) + D,P(3u),

(83) j—_—l,"',S,
' B(6x, 6u) = éu,

and set

(84) o, = P(ox,,, 6u,,) forallzeB,, yeS, andj=0,---,s
Ysd v 57

Note that, by definition of D P and (6.10), for every z,y, and j, oii, , ;€ A,. Since
D,P(xX,uj) o D,P ,P(X, uj) is the identity operator on L! (I,) for each j, we have
®.5) D,P(%,u;; P(6x,6u)) + D,P(xX,u;; 6x) = D P(6x) + D,P(6u)
' for all 0xe¥”, ouell, j=1,---,5,
so that, in particular, (8.1) holds with du, , ; replaced by i, , ;. Inasmuch as there
is no reason to expect that (8.2) also holds (with this substitution), we must modify
Ot ;.
Since (for each j) u; edl, so that u; satisfies C2, we can find a function
Ouy ;€ Zo(u;) such that D 2P(X, uj; 0uy ) = O By Lemma 3.1, there is an £; > 0
such that (u; + edu) e % whenever 0=e<§;,duelhy, and [ou — duy ;| < éj.
Now it follows from the conclusions of Lemmas 4.1 and 6.1 and from (8.3)
and (8.4) that the set

{oi1,,;:z€By,yeS  j=1,---,s}

is bounded ; say |0, , ;| < uforall z,y, j. If we set (for all z, y)

ou

2,74

=0, ; + géue,j forj=1,---,s,
J

(8.6)
Ou, , 0= 0U,,,
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then it is easily seen that (for all z,y, j) (8.1) holds and éu, , ;€ A,. Hence, if we
set &=min[{&/u:j=1,---, s} U {g, £}], we easily conclude, recalling (6.9),
that (setting uy, = @)

(uj + €du,, ;)€U whenever 0 < e <& forallyeS: zeB,,

®7) and j=0,---,s.

Note that (see (6.7) and (6 8)) the maps y — du,, ;: k¥ —» L™ are continuous
foreachzeByand j =0, ---, s, and that this contmulty is umform with respect
to z.

We can now define the perturbed admissible controls. Namely, for each
yeS,e€[0,8), and zeB,, let the perturbed admissible control u,, €L be
defined by

(8.8) u
where (see (7.7))

2y = Uy T 85“”,6’

(8.9) U, () =Y ej. (Nou,, (1), tel.

j=0

Observe that (see (7.12) and 8.6))

I{t:tel,du,, (1) # ou, (D} =00

uniformly with respect to z e B, and y € S*.

(8.10)

Further, it is evident that (see (7.6))

N

T Z € o (Dujt) + edu,, (1] (where i = u),

(8.11)

so that, by (8.7), u, , . is a chattering combination of functions in %, and is there-
fore itself in %, for all ze B,y € S, and ¢ € [0, ).
Note that u, , , = i for all ze B, and y € $¥, and that

sup {|lu.,.|:z€By,ye S e€[08)} < o0,
6.12) {llu,, 0 }

sup {||6u,, |l:zeBg, €S, £€[0,8)} < 0.

It is also worth noting that, by virtue of (8.9), (7.6), (7.7), (8.1), (2.21), and
(2.22), we can conclude that
(8.13) DP(X,u,,;0x,,) + D,P(X,u,,;0u,, )= D,P(dx,,) + D,P(éu,,).

It follows directly from the continuous dependence Theorem A.l in the
Appendix, by virtue of (7.13) and (8.12), that the differential equation

X(1) = f(x(1), u,, (), 1) = f(x(2), u,(t) + eou, , (t),t) ae.onl

with initial value

k+1

x(ty) = x(t;) + ¢ Z y'ox(ty)

i=1
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has a solution in ¥ (for all y € S* and z € B,) so long as ¢ = 0 is sufficiently small
(for convenience, and without loss of generality, we shall say for all ¢,0 < ¢ < §),

and that, if we denote this solution by x, , ., then
(8.14) Xz, — X 55570 uniformly with respect to z and y.

In the same way (see Remark A.11in the Appendix) we can also conclude—recalling
the construction of the sets I;, ,—that

0

”xz,y,s - stYl,t" amg'A!
Sk

YE:

(8.15)
uniformly with respect to ze B, and y, € S¥, for each £€[0, §).

Note that x, , , = X for all z and y.

It follows from Theorem A.2 in the Appendix that, if we denote by 0%
the solution of the equation

0X(t) = filx, (1), u, (1), )x(t) + fi(x, (1), u, (1), )ou, , (1),  Ix(t;) =0,
then

Z,7,¢

z,7.6
&

(8.16) v 5%

2,7,¢

—50 forallyeS* and zeB,.

It is a consequence of the mean value theorem of differential calculus in Banach
spaces (see [8, Thm. (8.5.4), p. 155]), as well as Theorems A.1 and A.2 in the Appen-
dix, that the convergence in (8.16) is uniform with respect to z and y. On the other
hand, it follows from the continuous dependence Theorem A.1 in the Appendix
(see (7.13), (8.10), and (8.12), and note that, because of (7.14), |[x,, — X[ = 0 as
¢ — 0 uniformly with respect to y € $*) that, if we denote by d%, , the solution of
the equation

(8.17) Ox(t) = fu1)ox(r) + f(1)du, (1) ae.onl,  Ox(t;) =0,

then

(8.18) 0%, — 0%X.,] 75570 uniformly with respect to z,y.

Note that, by (7.4), (6.1), (6.2), and (8.17),
(8.19) ox,, = ox, + 0%, ,.
Combining (8.16), (8.18), (8.19), and (7.14), we conclude that

Xeye =X Sx
e 2,y

(8.20) —— 0 uniformly with respect to z,y.

£—0

9. An implicit function type theorem. For each y € S* and ¢ € [0, &), we shall
consider the mapping

z > P(X,,0u,,,):Bo = L(,).
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Let us denote this map by P, ,, so that

Vs€2
(91) Py,e(z) = P(xz,y,ea uz,y,e)a Z EBO'
Note that

P, o(2) = P(x,,0,U,,0) = P(x,ii) = 0 forall zand y.

Continuing our contradiction argument, we shall prove the following result,
which is a special kind of implicit function theorem.

TueoreM 9.1. IfOeint K, then, for every p €(0,¢,), there exist an ¢, € (0, &)
and functions z,, € L' (I,) defined for each y € S* such that

(i) 1z, < p for all ye S,

(i) P, (z,,) = O forallye s

(iii) the mapping y - x,, .. : Sk — @" is continuous,

(iv) 0 <¢, < p.

Note that the pairs (x,, ., U, .,.,) of Theorem 9.1 are admissible and
satisfy equation (2.2) as well as the equality constraint P = 0.

Our proof of Theorem 9.1 will be carried out by showing that—for an arbi-
trary p €(0,&,)—for every & > 0 sufficiently small, the mapping (for any y € S¥)
P,.:By — L., (I,) defined by

- 1
(92) Py,s(z) =2z - ';:Py,e(z)a zZE€ BO’

has a fixed point in {z:ze LL(I,), ||z] < p}. To do this, we shall use the fixed-
point theorem for contraction mappings.

(Actually, to first order in ¢, the mapping (9.2) vanishes identically. In fact, the
functions x, , , and u, , , were specifically constructed to achieve this. Indeed (see
9.1), (7.8), (8.20), (8.8), (8.13), and (6.4)),

Py,e(z) = P(xz,y,ea uz,y,a) - P(f, u%a)
= P(Xx + &dx,, + -+, u,, + &du,, ) — P(x,u,,)
= ¢(D,P(dx,,) + D,P(du,.) + --- = ez + --- forall yeS*,

where three dots denote terms of higher than first order in ¢.)
Proof of Theorem 9.1. For each y € S¥, let us define the map V,: B, » 6" x L%
as follows:

93) V(2) = (0x,,,, 04, ,).

Further, for each y e $* and ¢€[0, §), let H,  be the function from " x L7 into
L% defined by (see (8.3))

94)  H,0x,00) = Y E,, |u + eP(ox,ou) + séﬁaug, i+ Eo (@ + edu),
ji=1 J

where, for each j=0,---,s,¢€[0,£), and y e S, E;,, is the continuous linear

function from L7 into L7, defined by (see (7.7))
9.5 (Ej e ,w)(0) = e, (Du(?), tel, uell.

18,7

&7
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Also, let F,, be the map which assigns to each u € %, such that equation (2.2),
with initial condition x(ty) = X(t;) + &€ Y.¢2 1 '6x(t,), has a (necessarily unique)
solution defined on all of I, this particular solution. We point out that (see (8.4),
(8.6), and (8.11)) H, o V,(z2) = u,,, and that F, (u, )= x,,, for all ¢€[0,8),
y € S* and z e B,, from which it immediately follows that (see (9.1))

(9.6) P, (z) = P(F,,cH, o V(z),H, o V/(z)) forallz,vy,e.

Note that the maps V, and H, . are continuous and affine (see (6.7), (6.8),
and Lemma 4.1), and therefore Fréchet differentiable with constant differentials.
Further, it follows from Theorem A.2 in the Appendix that F,, is Fréchet dif-
ferentiable, and we have seen in § 2 that P also is. Hence, P, ,is F rechet differentiable,
and by the chain rule of differentiation, its differential at any z € B, is given by

DPy,e(Z) = D P(xz VY€ uz A s) ° DF}’,E(uz,}',S) ° DH}’,8 ° DI/Y
+ D,P(x,, . U, ;) o DH, o DV, forall z,y,e.

9.7)

Let us evaluate each of the differentials in the right-hand side of (9.7), in
order to obtain estimates for ||DIA’M(z)I| . In fact, we shall show that both || D}A’y‘z(z)n
and ||ﬁ [(0)] tend to 0O as ¢ — 0%, for all y e S* and z € B, which implies that, for
e>0 suﬂicwntly small, P . 1s a contraction mapping on B,. We shall thus be
able to conclude, by the ﬁxed-point theorem for contraction mappings, that
P, ,—for all ye S* and & > 0 sufficiently small—has a fixed point in By, i.. (see
(9.2)), that P, , has a zero in B,,.

Recall that D, P and D, P are given by (2.21) and (2.22), and (see (9.3), (6.7),
(6.8), and Lemma 4.1) DV, is the map 6z — (9x,,, Ous,), lndependent of y. Also,
since the maps P and E;, , are linear (see (8.3) and (9.5)), DH, , is given by

N

9.8) Z jenPi

Finally, DF, (u,, ) is the map which assigns to each u e L7, the function dx € €"
which is a solution of (see Theorem A.2 in the Appendix)

O%(t) = fulX25,6(0), Uy 5 o(1), )OX(E) + filX, . 8), Uy, 0), DOU(E),  tEI,
x(t,) = 0.

9.9)

It follows from our continuous dependence Theorem A.1 in the Appendix,
by virtue of (8.14), (8.8), (7.13), and (8.12), that the solutions of (9.9) tend, as
¢ — 0%, to the solution of

9.10) 3x(t) = f.(t)ox(t) + f(t)ou(t), ox(t,) = 0,
uniformly with respect to tel, ye S*, ze By, and due L™ with ||du|| < 1. This
means that, if we denote by F, the linear continuous map from L7, into ¢” which

assigns to each ou e L" the dx defined by (9.10), then

9.11) |DF, (u,,.) — Fol 555> 0 uniformly with respect to y € S* and z € B,,.
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Further, since DH, , is given by (9.8), it is a consequence of (9.5), (7.7), (7.12),
and (8.3) that
[{t:tel, DH, (0x, ou)(t) # edu(t)}| ~——57>0

0+
uniformly with respect to y e S*,

from which we conclude that

1
EFO o DH, (x, du) — Fy(du)

—_—
-0+ 0

9.12) . .
uniformly with respect to ye S*, due L™, and

oxe®”, |ox|l <1, [oul =1
Combining (9.11) and (9.12), we obtain that

0

|
g—0+

1
HEDFM(“LM) oDH, oDV, — FyoD,V,

(9.13)
uniformly with respect to ye S* and ze B,,

where (for any y) D,V, denotes the map 6z — du,,: L. (I,) — L% .

Also, by virtue of (2.21) and (2.22), Hypothesis A4 on the function p, and
(8.14), and because |u,,, — u, ]| = 0 as ¢ > 0* uniformly with respect to y € S*
and z € B, (see (8.8) and (8.12)), we have

IDP(X.,; .00 Us,.0) — DiP(X, u, )l 75570

g0t

(9.14) ‘ .
uniformly with respect to y,z for i=1,2.

It follows from (9.7), (9.13), and (9.14) that
1 _ 1 _
HEDP)’,E(Z) - DIP(xa uy,s) ° FO ° DZI/y - EDZP(x9 uy,e)o DHy,E ° DVy TO

(9.15)

uniformly with respect to ye S* and ze B,.
But, for any éze L' (I,) and y € S* (see (9.10) and (4.7)),
(9.16) Foo D,V(02) = Fy(dus,) = 0xs,,

and, for any £€[0,£) and 6ze L. (I,), (1/e)D,P(X,u,,) o DH, o DV/dz) is the
function (see (2.21), (2.22), (9.8), (9.5), (7.6), (7.7), and (8.5))

S

t— pu(g(t)’ u Z } £ y(t)[ P((sx&z’ 5“52 )(t)]

il
i

€. (OPU(D), 1), [P0, , Su45)) (1))

J

= Z } € y(t) [(D P(X u} ’ )(6x&z’ 5“&)))(0]
=0 (cont.)

«
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j € ‘y( )[(D P(éxéz) +D P((subz) DIP(xa uj;éxéz))(t)]

Il
.M“

ji=0

= (D,P(0x,.) + D;P(dus,) — D, P(R,u, .5 0x,,)(1): I, R,

1e.,
%sz(a—c, u,.)e DH, o DV(dz) = D ,P(dx,,) + D,P(du;,) — D P(X, u,,; 6x;,)
0.17) for all ye S*, ¢€[0,8), and dzelL'(I,).
Combining (9.15)~(9.17), and taking into account (4.6), we see that
H DP, (z) — ” —=5-0 uniformly with respect to ye S* and ze B,,

where E denotes the identity operator on L (I,), or (see (9.2))

IIDPN(Z)H :;0—30 uniformly with respect to ye S* and ze B,.

Hence, there is an &, € (0, §) such that ||DI3M(Z)I| < 4 forall ze By and y e S,
as long as 0 < & < &,. Applying the mean value theorem of the differential
calculus (see [8, Thm. (8.5.4), p. 155]), we conclude that

”Py,a(zl) - Py,a(zl)“ < %”ZI - ZZ” for all 21,2, EBO,'})ESk, and 86(0,51).

Let us arbitrarily fix a number p € (0, ;) for the remainder of the argument,
and let us show that, for all ¢ > 0 sufficiently small,

(9.18) 1P, 0)| < p/2 forall yeS*.
Now (see (9.1) and (9.2))

P, (0) = ——P(le)“, cond) for all ze B,, yeS*, and e€[0,3),

(9.19)
where z, = 0.

But (see (8.8), (7.8), (8.13), and (6.4))

P(x u

20,7,€° ZO,Y,E)

920) = P(x + edx,,, + s(’”—b_f -

5x20.7) ’ uY,s + 85“:0,7,8)

- P(x,u,,) — e[D,P(x,u,,:6x,,,) + D,P(x,u,,:du, ).

It follows from Assumptions A3 and A4 (also see (2.21) and (2.22)) that the map P
is continuously differentiable and that, because cl {u, (t):tel, ye Sk, e€[0,8)} is
a compact subset of U, (by definition of %), the map (x, u) » D,P(x, u) (for i = 1
or 2) is uniformly continuous on the set {(X, u,,):y€S* ¢€(0,£)}. Appealing to
an evident corollary of the mean value theorem of the differential calculus (see
[8, Thm. (8.6.2), p. 156]) and recalling (8.12) and (8.20), we see that (9.19) and (9.20)



206 KAROL MAKOWSKI AND LUCIEN W. NEUSTADT

imply that

P, 0) 0 uniformly with respect to y € S¥,

-0t
so that we may choose an ¢, € (0, ,) such that ¢, < p and such that (9.18) holds
whenever 0 < ¢ < ¢,.

We may now apply the fixed-point theorem for contraction mappings—see
[8, Thm. (10.1.2), p. 261]—to the maps 13”9 (for y € S}), and conclude that, for each
y € S*, there is a unique element z,e L (I,) such that |z, < p and such that
Pwp(zy) = z,, i.e. (see (9.2)), such that P, , (z,) = 0. Since the elements z, depend
on p, we shall write z, , in place of z,.

It only remains to prove that the map y —» x
Let us examine the map

(Z’ 3’) - Py,sp(z):BO X Sk i Lloo(Il)

:S*¥ — " is continuous.

Zp,y:Y:€p "

Unfortunately, this map is not continuous. However, if we consider the L)(I,)-
topology on B, (rather than the L' (I,)-topology), and similarly for the elements
P,, (z), then this map is continuous; i.e., the map

(9.21) (z,7) = P, (2):By x $* = Li(I))
is continuous when B, is considered to be a subset of L(I,). Indeed (see (9.2),
(9.6), and (9.3)), it is sufficient to show that the maps
9.22) (z,7) = (dx,,, 6u, ,): By x S* > €" x LY,
(9.23) (0x,0u,y) = H, , (0x,0u):{(dx,,,,0u, ):z€ By,ye ¥} x S* = L},
(9.24) (u,y) > F,, w):{u,,  :z€By,ye S} x §¥ - &",
(9.25) (x,u) > P(x,u):9 x {umep :z€ By, ye S — Li(I))
are continuous when B, and {u,,, :z€ By, 7€ S*} are considered to be subsets
of Li(I,) and LY, respectively, and {(dx, ,, du,,):z € By, y € §*} is to be considered
a subset of " x LT.

But the map (9.22) is continuous by the remarks at the end QL §4 and by
(6.7) and (6.8). Further, by (8.3), (2.21), (2.22), and the definition of D,P(X, u;), the
maps P;, when considered from " x LY into LY, are continuous, so that, by (9.4),

9.5), (7.7), the construction of the sets I and the boundedness in the L7 -
norm of the sets

z,7?

Jiesy

{(u,- + apf’j(éxz,y,éuz‘y) + spéﬁ.éua,j :zeBy,yeS*,j=1,---, s},
J

{i + ¢,0u,,:z€ By, y €S},

the map (9.23) is continuous as well. Finally, we observe that, in any subset of L,
which is bounded (in the L”-norm), convergence in measure is equivalent to
convergence in the L! -norm, and similarly with L™ and L} replaced by L' (I,)
and L!(I,), respectively. This is easily seen to imply, by virtue of (8.12) and
Assumptions A4 and A6 in § 2, that the map (9.25) is continuous and, by virtue of
the continuous dependence Theorem A.1 in the Appendix, that the map (9.24) is
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continuous as well. Thus, (9.21) is continuous when B, is considered to be a
subset of L'(I,).

Now the elements z, ,, which are fixed points of the contraction mappings
Py‘ep, may be constructed through a Picard iteration process as follows (see
(8, pp. 260-261)):

0) _
Z,, = 0,

j+1) _ j -
Z(pj,v )= Pv,ep(z(pj,)v)’ Jj=0,1,---,

and z,, = lim;_, , z’,, where the limit is to be understood in the L!(I,)-norm.
Arguing as in [8, pp. 260-261], we can show that the continuity of the map (9.21)
implies that the map y - z,,:8* — B, is continuous, when B, is considered a
subset of L'(I,). Since the map (z, y) — X, .0, Bo X Sk — @™ (with B, considered
a subset of L' (I,)), which is the composite of the maps (9.22)-(9.24), has already
been shown to be continuous, this means that the map y — x Sk > @ is

continuous, as was to be shown.

Zp,ysVsEp

10. The completion of the contradiction argument. We shall now complete our
contradiction argument for the proof of Theorem 5.1. Indeed, we shall show that,
for some p e (0, ¢y) and some 7 € S¥, when we denote Xy555.65 0y Xand u,, 5 . by
ii (so that Xe & and e %, and X and & satisfy equation (2.2)), then X,(X) = 0,
P(%, @) = 0, X,(%X) e R, X(X)e Y, and X (X) < X,(X), contradicting the fact that
(x, u1) is a solution of our problem.

Since X ,(X) = 0, we have that (for all z€ B, y € S, and ¢ € (0, &)

1
-X,(x

“X,(x.,.) = DX, (0x. )

Z,7,€

“xz,y,s - i” Xl(xz,y,c) - Xl(i) - DX—I(xz,y,s - )_C)

+ -
& ”xz,y,s - X“

— [x - X
+ DXI(% — 6xm),

so that, by (8.20) and the definition of DX, and because the set {0x,,:z€ By,
y € S} is bounded (see Lemma 4.1 and (6.7))

1 -
EXI(xz,y,s) £ 0+ DXl(axz,y)

il

(10.1)
uniformly with respect to ze B, and ye Sk.

In the same way, we can prove that

Xi(xz,y,s) - Xx(i)

»DX(0x,,) fori=0,2

e e—0*
(10.2)
uniformly with respect to z,y,
X - X(x S
(10.3) (x”‘“l ) —5°DX(X;0x,,) uniformly with respect to z,7y.
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Since (see (6.7)) the set {dx,, ,:y€S*} is compact, it follows from (6.5) and
(6.6), because R** and Y, are open, that there is a number {, > 0 such that
(10.4) D)_(O((sxzo’},

(10.5)  &eRY whenever e R* and |& — X,(X) — DX,(0x,,.,) < (o

)y < =, forallyeSk,

for some y e S*,
(10.6)  yeY, whenever ye4" and |y — X(X) — DX(x;0x,, ) < (o
for some y e S*.

Let S be the simplex in R* with vertices v,, - -+, v, , whose existence was
asserted in Lemma 6.1. Since 0 € int S, there is a 8, > 0 such that the 6,-neighbor-
hood of 0 in R¥ is contained in S. Let p (0, &,) be such that (see (10.1)~10.3))

1 _ 0
(10.7) ;Xl(xz,w) - DX ,(6x,,)| < 7"
X, — X(x _
(10.8) ‘M — DX (0x,,) | < %0 fori=0,2,
&
¢ - X -
(10.9) —X(xm)g O pge:ox.,)| < %9

for all ze B, and ye S* whenever 0 < ¢ < p, and, in addition, such that (see
Lemma 4.1)

(10.10) IDX,(6x,)| < 6,/2,
(10.11)  |DX(Sx,)| < {o/2 fori=0,2, and [DX(X;0x,)| < (/2

whenever | z|| £ p. Without loss of generality, suppose that g < 1.
Note that (see (6.7) and Corollary 4.1),

(10.12) 0x,, = 0x, + 0x,,, forallzeB, and yeSk

It now follows from (10.7), (10.10), (10.12), and (6.3) that

k+1

1 .
_Xl(xz,y,s) - Z ylvi
& i=1

< 0, whenever ||z| < p,

(10.13) 1 K+ 1 k ~
y=@", -,y )esS, and 0<e<p.

Further, it follows from (10.8), (10.9), (10.11), and (10.12) that
Xi(xz,y,e) - Xz(i)
&

X(xz,y,a) - Xv(f)
&

(10.14) — DX 0x,, )| <y fori=0,2,

20.7)

(10.15)

— DX(X;6x

20,'y) < cO

whenever ||z|| < g, ye S*, and 0 < ¢ < p. But (10.14), (10.4), and (10.5) imply that
(10.16) Xo(x,,.) < Xo(%),
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(10.17) + X,(X)eRM.

XZ(xz,y,e) - Xz(g)
&

Since X,(X)ecl R¥ and (1 — ¢)[cl R*'] + eR** = R* whenever 0 < ¢ < 1, (10.17)
implies that

(10.18) X,(x,,.) R,
Similarly, we can show that, if 0 < ¢ < 1, then (see (2.14) and (2.15))
(10.19) X(x,,)eY.

Hence, (10.13), (10.16), (10.18), and (10.19) hold whenever |z| < p, ye Sk,
0<e<p.

Appealing to Theorem 9.1, we can conclude that there are a number
¢;€(0,&) and functions z; , € L (I,), defined for all y = (y, ---, y** ') e S, such
that, if we denote x,; .. by x,, and similarly define u, (for each y), then

1 k+1 )
(10.20) ;—Xl(xy) = Y Y| < 0,
P i=1
(10.21) Xolx,) < Xo(X),
(10.22) X,(x,)eR* and X(x)eY,
(10.23) P(x,,u) =0
for all y € S, and such that the map
(10.24) y = X,(x,): Sk > R¥

is continuous.

Now let us consider the map I which assigns to each point n € S, with bary-
centric coordinates y',---, y**!, the point [n — (1/6;)X,(x,)] in R*, where
y = (y%, ---, y**1). Since the map (10.24) is continuous, I" also is. By (10.20), T’
maps S into itself, so that, by the Brouwer fixed-point theorem, I'(/j) = 7 for some
fes, ie.,

(10.25) X,(x,) =0 for some je S*.

But, by (10.22), (10.23), and (10.25), x; and u; satisfy all of the problem equality
and inequality constraints. Since also x; € %, u; € %, and x; and u; satisfy equa-
tion (2.2), (10.21) contradicts that (x,u) is a solution of our problem, which
completes the proof of Theorem 5.1.

11. A multiplier rule. In this section, we shall show that Theorem 5.1 leads to
a generalized multiplier rule. In § 12, we shall expand this multiplier rule to obtain
a maximum principle.

THEOREM 11.1. Let (X, it) be a solution of our optimal control problem subject
to Assumptions A1-A6 on the problem data, and suppose that u satisfies Conditions
C1 and C2. Then there exist a vector p = (B° B, ---, B**) e R¥*\* 1 and
continuous linear functionals I'e (L' )*, " e (L' (I,))*, and 1" € (¢")* (where the
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asterisk denotes dual space), not all zero, such that
B-DX(6x) + (I'e DQ + " o D,P)(6u) + I" o D, P(6x) + I" o DX(X;6x) < 0
(1L1) for all (6x,5u)e Z  with SueA,,

(11.2) <0 forj=0,k+1,---, k+ky,
(11.3) (BEFL, - TR Xo(X) = 0,
(11.4) I'w) =0 forallweW,,
(11.5) "(y) 20 forallyeY,
(11.6) I'oQ@@) =1"o X(%) = 0.

Proof. By Theorem 5.1,0 ¢ int K. If0 ¢ K orifint K # (¥, then by the separa-
tion theorem in finite-dimensional spaces (see [9, p. 162, Lemma 2] and recall
that K is convex), there is a nonzero vector o = (a!, - - -, o*) e R* such that

(11.7) a-DX ,(6x) <0 whenever (0x,du)e Z, for some due L™ .

If0e K and int K = ¢, then K lies in a linear manifold in R* of dimension less
than k, and there is consequently also a nonzero vector a € R* such that (11.7)
holds—even with equality.

Now consider the set

K = {(D,P(6x) + D,P(5u),a- DX (dx) — y):(ox,ou)e Z, N Z,y > 0}.
Since Z, and Z are convex, K is a convex set in L' (I,) x R. By (11.7), (5.2), and

(53),
KRN0} x R,]1= (&,

where R, denotes the set of positive numbers. Note that because 2(i1), R**, and
Y, are open and DX (-) (j = 0,2) and DX(x;-) are continuous, Z, (see (5.1)) is
open in the relative topology of €" x A, (see (3.10)). Recalling that Z and A, are
convex cones, and taking into account (4.6), (4.8), and Lemma 4.1, we at once
conclude that K is open.

Hence, by the principal separation theorem for convex sets in linear topo-
logical spaces (see [10, Thm. V.2.8, p. 417]), there is a nonzero continuous linear
functional e (L' (I,) x R)* such that I(z, ) < 1(0, ) for all (z,{)e K and y > 0,
i.e., there are a continuous linear functional [” e (L' (I,))* and a number o°, not
both zero, such that

I"o D,P(6x) + I" o D,P(6u) + o« - DX ,(6x) <0 for all (6x,du)e Z, N Z.

By definition of Z, (see (5.1), (3.7), (3.8), and (3.10)), this means that the
convex sets

(118 {(Q(@) + DO(du), X ,(X) + DX,(6x), X(X) + DX(X; 0x), DX o(9x),
"7 1o D,P(6x) + "o D,P(6u) + aa- DX ,(6x)):(0x, du)€ Z, du € Ay}

and

(11.8) W, x R4 x Yy, x R_ x R
1 0 +
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(where R_ denotes the set of all negative numbers) in L", x R** x ' x R x R
have an empty intersection. Also, observe that because 0 € Z and (X, 1) satisfies
the problem constraints, (Q(ii), X ,(X), X(X), 0, 0) belongs to the set (11.8) as well
as to the closure of the set (11.8’). Since the set (11.8') is open, we may again appeal
to the principal separation theorem for convex sets in linear topological spaces,
and conclude that there are continuous linear functionals I e (L' )* and [ € (¢'1)*,
avector f = (B, ---, f*)e R, and numbers $° and °, not all of them zero, such
that,ifweset ' = B%%uifori = 1,---, k,f**' = fifori=1,---, k,,B = (B° B,

, T*y, and I' = p°I” (so that I"e (L' (I,))* and fe R¥*¥1*1) then (11.1)
holds, ', I”, I, and f are not all zero, and

(11.9) I'w)y=1loQ) forallweW,,
(11.10) B-&=PB-X,(%) forall éeclR*,
(11.11) I"(y) = 1" X(X) forall yeY,
(11.12) %% =0 forally® <0,

Since 4Q(i1) and 2Q(i) both belong to W,, (11.9) implies that I’ o Q(#) = 0 and that
(11.4) holds. Similarly, (11.10) and (11.12) imply that (11.2) and (11.3) hold, and it
is a consequence of (11.11) that (11.5) holds and that [” o« X(X) = 0, so that (11.6)
holds.

THEOREM 11.2. The linear functionals I’ and l” in Theorem 11.1 may be extended
to L, and to L'(I,), respectively, in such a way that the extensions belong to (L7)*
and to (L\(I,))*, respectively.

Proof. For each j = 1, ---, [, let z¥ denote the function in L' (I,) whose jth
component is identically equal to one on I, and whose other components

identically vanish. Since u satisfies C2, there are functions éujand ouj (j = 1, ---, )
in 2(u1) N A, such that D,P(éu)) = z} and D,P(éu}) = —z} foreachj=1,---, 1L
Ifz=(z', -, zYe L (I,), then clearly

!
= ) (hz¥ —zlz¥),

i=1

where (for each j) 2/, (t) = max {0, z/(t)} and zZ(t) = max {0, —z/(¢)} for all te I,.
Let us extend the functions z/, and z. to I by setting them equal to 0 on I\I,.
Then (see (2.22))

1

(11.13) D,P( Y (2, 0u; + zLou))| = z.

Foreachz = (z', .-+, z)e L' (I,), let
oo\" 1

1

(11.14) i, = Y (2, u) + 2 oul).

It is not difficult to verify that there is an o > 0 such that Q(ii) + DQ(«dd,) e W,
(see (3.7), (3.8), (2.18), and (2.19)), so that, by (11.4) and (11.6),

(11.15) I'o DO(Si1,) = 0
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Now let dx, be the solution of

(11.16) ox = f.0x + f,01,, ox(ty) =0

so that (0X,, 06i,) € Z. Also, dii, € A,. Hence, (11.1) and (11.13)«(11.15) imply that
I'z) £ —B-DX(6%,) — I" > D,P(6%,) — I - DX(X; 0%,)

(11.17) for all ze L. (1,).

By the variations of parameters formula for the solution of (11.16) and by (11.14),
the map z — 6%,:L! (I,) » %" is continuous, even with the L)(I,)-topology on
LL.(I}). Also, 6%, = 0, where z, = 0. Hence, (11.17) implies that ["(z) - 0 as
z—0,zeL! (I,), where z — 0 is to be understood in the L'(I,)-topology. Thus,
I" is continuous on L' (I,), when L’ (I,) is viewed as a linear manifold in L(I,).
Hence, by the Hahn-Banach theorem, [” can be extended to L)(,) in such a way
that the extension belongs to (L' (I,))*.

We now turn to I'. Let du, be an arbitrary fixed function in J(@5) N A,, so
that there is a constant o, > 0 such that Q(i1) + DQ(Su,) + aow, € W,, where w,
is the function in L’ all of whose components are identically equal to 1. For every
we L', let |w| denote the function t — |w(t)|:] — R. Note that, for every we L' ,
|w|Q(u1) e W, (since Qi) € W,), so that, by (11.4), I'((w|Q(#1)) = 0. On the other
hand, if we L", and w # 0, then evidently

—WIWIQ(u) + Q) e W,,

from which it follows, by virtue of (11.4) and (11.6), that I'(w|Q(&1)) =< 0, so that

(11.18) I'((wlQ@) =0 forallwel!,.
Further, for each we L!_, let 8%,, be the solution of
(11.19) Ox(t) = f(0)ox(t) + f(0)w(t)duy(t), Ox(t;) =0,

so that (8%,,,|w|ouy) € Z and |w|duy, € A, for all we L.
Now, for every we L,

Wl [Q(@) + DQ(Juo) + agw,] = [wWIQ(@) + DO(wldu,) + aolwlw, € W,
—aglWw, + agwe W,.
Hence, by (11.4) and (11.18),
—apl(w) < I'e DO(IW|duq).
Appealing to (11.1), with du = |w|du, and dx = J%,,, we obtain that, for all
well ,
—aol(w) £ —p-DX(6%,) — I"(D,P(w|duy) + D,P(6%,))

(11.20) N

— "o DX(X;0%,).
As before, examining equation (11.19), we conclude that the map w — 6%,,: L), — €"
is continuous, even with the L’ -topology on L’ . On the basis of (11.20) and the
previously derived continuity property of [” with respect to the L!(I,)-topology
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on L' (I,), we then obtain that I'w) —» 0 as w — 0, we L",, where w — 0 is to be
understood in the L' -topology. Appealing to the Hahn-Banach theorem as
before, we obtain our desired conclusion.

12. The maximum principle. In this section, we shall expand the necessary
conditions of Theorem 11.1 by taking into account the special character of the
problem data X, P, etc.

Indeed, using the standard representation theorems for L*, (L,(I,))*, and €*,
we conclude, on the basis of Theorems 11.1 and 11.2, that there exist functions
A=A AT > RY, =, -, w)el,and v=(v',---,V)e L with
the properties that (i) 4 is of bounded variation and is continuous from the right
in (t,,t,), (i) A(t,) = 0, and (iii) v(¢) = O for almost all te I'\I,, together with a
vector B = (B%, B, -+, fT¥)e R** M1+ 1 gych that (see (2.21)—(2.25) and (2.8)-
(2.12))

S B 7.0x(1) + f " 0)- G05ult) di + f W(0)- [Pu005ult) + pu)Ox()] di
i=1 t

ty 1
(12.1) t2 ,
+ Z FL(X(2), )ox(t) dA(t) < 0 for all (6x,du)e Z with SueA,,

j=1Y1

(12.2) f u(t)-wt)dt 20 forallwe W, and f wt)-g(tyde = 0,
t ty

1

Z j(t)di’ ()= 0 forally=("', --,y)eY

(12.3) e
and Z ’(x 1), t) di(t) =
Jj=19vy
k+ky
(12.4) Y Br(x(y), -, X(t,) =0,
Jj=k+1
(12.5) P<0 forj=0k+1,-- k+k,

and such that 5, 4, 4, and v do not all vanish.

It easily follows from (12.3) and (2.14), because #(x(t),t) < 0 for all te I;
and each j, that (for each j) A/ is nonincreasing on I and is constant on any sub-
interval of I which does not meet the set

(12.6) {t:irel}, P(x(1), 1) = 0}.

Further, (12.2) and (2.19) are easily seen to imply that, for each j =1, --- r,
wi(t) £ 0 a.e.on I and pi(t) = 0 a.e.on I\I,, and, because §/(t) < 0 a.e. on I, that
FOu(t) = 0ac.on I.

Recall that Z = {(dx, ou): dx € 6", due L, ox and du satisfy equation (4.1)
for some Af € M}. By the variations of parameters formula, the solutions of (4.1)
can be written in the form

(12.7) ox(t) = ®O(t)ox(t,) + D(t) fl @7 (s)[ f(s)0u(s) + Af(s)] ds, tel,
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where © is the absolutely continuous (n x n)-matrix-valued function defined on I
which satisfies

(12.8) d(t) = f()D(t) ae.on I, ®(t,) = the identity matrix.

Using (12.7) in (12.1), we obtain that

a

Z B X @(z)C + Z B 1x®(%) CD H($)[fls)ouls) + Af(s)] ds

+ f [u(®) - gule) + v(2) - p,(0)Joult) dt + Jz V(1) - pL)®(2) diC

(12.9) f 0 5ult) f O () [(s)ou(s) + Af(s)] ds dt

+ Z ’ t), Yd(t) dA ()¢

Jj=1v1

t2

1y t
+ X | BEO,000) | @7 fls)duls) + Af ()] ds dA(t) £ 0
forall e R, duel,, and AfeM.

Let us define the n-vector-valued functions y;,i = 1,2, 3,and «,Z on [ asfollows:

(12.10) U= 3 B p®(r)0 ()

Jj=i+1

fort; <s<rt,, and i=1,---,0—1,

(12.11) i(t2) = B X

(12.12) Yy(s) = fz (1) - p(t)D(t) dtD ™ (s), sel,

(12.13) Z ’ U, D00 PO (s), sl
. 3

(12.14) Y= ‘Z. W

If we interchange the order of integration in the double integrals of (12.9),
we easily conclude that this inequality holds if and only if (recall that 7, = ¢,)

(12.15) W) = =B,

(12.16) frz [lﬁ(s)-f;(s) + u(s) - g (s) + v(s)- ps)]ou(s)ds < 0 for all dueA,,

(12.17) f ; W(s) [ (R(s), u(s), s)ds < f ? Y(s) f(x(s), ii(s), s)ds for all ue .
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Integrating by parts in (12.13), and taking into account that A(t,) = 0, we
obtain that

(12.18) W(s) + As) - Z(X(s), S) = Wuls),
where

1> d o .
(12.19) Yals) = ~f A1) - Zt[xx(X(t), D)®(1)] dt®™ *(s).

Further, if we differentiate the identity ®(t)®~ !(t) = the identity matrix, and take
into account (12.8), we obtain
d

E(cb”(t)) = —® Y(t)f(t) ae.onl,

(12.20)

®~!(t,) = the identity matrix.
Ifwesety =y, + ¥, + Y ,and take into account (12.8), (12.10)+(12.12),(12.19),
(12.20), and the fact that X and # satisfy equation (2 2) a.e. on I, we quickly
conclude that, on each of the intervals [t,, 7,), [T, T3), - "+ 5 [Ty—25To—1)s[To—15t2]>
Y is absolutely continuous and satisfies the linear mhomogeneous ordinary
differential equation

(12.21) Y(e) = — () f(X(0), @(1), 1) + AOPX(2), u(z), 1)
— v(t)px(x(t), i(t),t) almost everywhere,
where p is the function from G x U, x I - R'* defined by
(12.22) PO, u, t) = T x, ) f(x,u, t) + ji(x,1), xeG, uelU,, tel

(in (12.21), ¥, 4, and v are to be regarded as row vectors), and that, in addition
(see (12.14), (12.15), and (12.18)),

(12.23) Yt) = — B Jx, + AMEDILX(1), 21),
(12.24) W(ty) = B+, »
(12.25) W(t) — () = =BG, fori=2,---,0—1.

Further, (12.17) and (12.16) take the forms

f () — AR, 01 R0, o), ) de
(12.26)

= f [W(8) — ADFX(0), 0] f(R(2), (e), 1) dt for all ue 4,

I,

(12.27)
=0 forall dueA,.

But (12.27) can hold only if

(1) — AD)xLx(1), ] fuX(2), u(t), t) + p(t)q.(@(2), t)
+ v)p(x(t),u(t),t) =0 ae. onl,.

(12.28)
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Let us show that # and A cannot both vanish. Indeed, suppose that A and
are both zero. Then (see (12.10)~(12.13) and (12.18)) ¥, = ¢ = Y, = 0, and

12

(1229) (1) — AOF(F0), 1) = () = Yalt) = fV(S)ﬁx(S)(D(S)dS(D_I(t), tel.

Since u satisfies C2, there is a function du, € 2,(#) such that

{v(t)/|v(t)| ifv(t) #0, tel,,

12.30 p1)ou, (1) =
(12.30) P1)ou, (1) ifve) =0, tel,.

Hence, (12.28)—(12.30) imply that

o) = — f T )B()B(s) dsd (), (0)5

(12.31)
—u(t)g (t)ou,(t) a.e.on I.

Since the functions p,, ®, ®7 ', f,, and du, are all essentially bounded on I, it
follows from (12.31), the properties of u and the definition of 2,(&1) that, for some
7 >0,

v(t) = Jtz yv(s)lds a.e.on I,

which is possible only if v = 0 a.e. on I. But then (12.31) implies that u(t) =
a.e.on I, ie, f, 4, u, and v all vanish, which is a contradiction.

Thus, we have shown the following theorem.

THEOREM 12.1. Let (X, #t) be a solution of our optimal control problem, subject
to Assumptions A1-A6 on the problem data, and suppose that u satisfies Conditions
C1 and C2. Then there exist a vector B = (B° B*, ---, p***)e R*"** 1 and func-
tions A =AY, .-, A T > R pu=(ut--- ,,u)eL;), v=! -, vW)el , and
W1 — R all of them to be considered row-vector-valued, such that

(i) 181 + 14(,)) > 0;

(i1) on each of the intervals [ty,7,), -, [Ty—2Ts—1)s [To—1> L], ¥ is abso-
lutely continuous and satisfies (12.21), where p is deﬁned by (12.22);

(iii) ¥ satisfies the boundary (transversality) conditions (12.23) and (12.24) as
well as the “jump” conditions (12.25), where ., = y,.(%(t,), -+, X(t,)) for each i;

(iv) @ satisfies the maximum condition (12.26), where % consists of all functions
u € U such that p(X(t), u(t), t) = 0 a.e. on I, and which satisfy Conditions C1 and C2;

(v) relation (12.28) holds;;

(vi) for eachj=1,---,1,, A is nonincreasing on I and continuous from the
right on (t,,t,), satisfies A/(t,) = 0, and is constant on any subinterval of 1 which
does not meet the set (12.6);

(vil) |u(t)| = |v(t)] = O for almost all te I\1,;

(viii) for each j=1,---,r and almost all te I, , p/(t) < 0 and p/(t)q'(@(1),1) = 0;

(ix) B satisfies (12.4) and (12.5).

13. The pointwise maximum principle. We shall now show that if we
strengthen Assumptions A3-AS5 by requiring that the functions f; p, ¢, and p, be
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continuous, then the maximum principle (12.26) in Theorem 12.1 can also be
written in a pointwise, rather than in an integral, form.

For each xe G and te I, let w(x, t) denote the set of all ve U, such that

(i) ¢/w,t) £0for j=1,---,r,

(i1) p(x,v,t) =0,

(iii) p(x, v, t)[px, v, t)]" is nonsingular,

(iv) {pux,v,t)dv:0v€ R™, qi(v,1)0v < 0 for each j=1,---,r such that

¢(v,t) = 0} = R".

Note that @(t) € w(X(t), t) for almost all ¢ € I, because # satisfies C1 and C2.

If e is any function from I into R, then tye [ will be called a regular
(or Lebesgue) point for e if, for every neighborhood O of e(t,),

) meas (J N e~ 1(0))
lim =
meas J—0 meas J

1,

where J is an arbitrary subinterval of I such that ¢, € J. (A regular (or Lebesgue)
point for a function u: 1 — R™ is similarly defined.) If ¢:I — R (resp., u:1 — R™) is
measurable, then almost every point of I is a regular point for e (resp., u) (see [11,
pp. 255-256)).

Now, for each t,e I, let U(t,) denote the set of all ve U, for which there
exists a function u € % such that (a) u(t,) = v and (b) t, is a regular point for u.

Note that, if ue %, then u(t) € U(t) for almost all t e I.

If the function ¢ is independent of ¢ € I, then evidently

U(t) = {v:ve Uy, ¢(v) £ Oforj=1,---,r} foreverytel.

More generally, it is not difficult to verify that, if g is continuously differentiable,
then, for every te I,

U(t) > {vive Uy, ¢/(v,t) £ 0 forj =1, -, r, there exists a
dv e R™ such that ¢/(v, t)dv < 0 for all
j=1,---,r for which ¢/(v, t) = 0}

> {v:iwve Uy, ¢(v,t) £0forj=1,---,r, the vectors ¢i(v, t),
for those j = 1, ---, r for which ¢’(v, ) = 0, are linearly independent}.

THEOREM 13.1. Suppose that the hypotheses of Theorem 12.1 hold, and that, in
addition, the functions f, p, q, and p, are continuous. Then the conclusion in Theorem
12.1 that (12.26) holds can be replaced by the conclusions that

(o) f(X(1), u(e), 1) = max (o) f(x(1), v, 1)
(131) vew(x(t),t)
for almost all tel,,

W) f(X(1), u(t), t) = max W) f(X(1), v, 1)

(13.2) for almost all te I'\I,,

where

P(t) = Y(t) — Mg (x(t),t), tel.

Proof. We first point out that, since each component of 4 is monotone, 4
has at most a countable number of points of discontinuity. Since i is continuous
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at all t e I except possibly 7,, ---, 7,_,, and j, and X are continuous, the set of
points of discontinuity of Y form a set of measure zero.

Let us show that (13.1) holds. We argue by contradiction and thus suppose
that, for some t, € I, which is a point of continuity of i as well as a regular point
for @ and for ¢, (the characteristic function of I,) and for some v, € w(X(t,), to),

(13.3) Ylto) f(X(to), vos to) > Wlto) f(X(to), i(to), to)-
Consequently, v, € U, and
qj(009t0)§0 for.j'_“l’”‘ar’

(13.4) -
p(x(to), vo, to) = 0,

(13.5) PuX(to), Vo, to) - [PuX(to), Vo, to)]" is nonsingular,

and there is a vector dv, € R™ such that

(13.6) PuX(to), vg, to)ovg = 0,
(13.7) qivo, to)0vy <0 foreachj=1,---,r such that ¢i(v,,t,) = 0.
First let us suppose that ¢/(vy, t,) = 0 for some j = 1, ---, r. Then we must

have that m > [ and that dv, # 0. If m = | + 1, let us consider the system of
[ + 1 = m equations (for ve U,, with 6 a real parameter)

(%(ty), v, to) = 0, i=1,---,1,
(13.8) i’v(—( Z)) -(500) —0=0
0 0 =Y,
which, for 6 = 0, have the solution v = v,. Because the vectors pi(X(t,), v, to),
i=1,---,1, and dv, are linearly independent in R™ (recall that p,(x(t,), vy, to)
has rank [, and see (13.6)), we may appeal to the conventional implicit functions
theorem (see, e.g., [12, Thms. (9.3) and (9.8), pp. 122-125]), and conclude that
there is a continuously differentiable function # from some neighborhood N of
0 e R into U, such that #(0) = v,, and such that 0 = p'(x(t,), 6(0), t,) = B(6) — v,)
-0vy — 0 =0 for all e N and each i = 1, ---, . Differentiating the last set of
equalities with respect to 0, and setting 8 = 0, we conclude that p,(X(t,), vo, £,)0'(0)
= 0 and 9'(0) - dv, = 1, which means—since p'(x(t,), vy, t,), fori = 1,---, 1, and
ov, span R™, and (13.6) holds—that 9'(0) = a,dv, for some ay > 0.

If m > | + 1, then we choose any m — [ — 1 vectors ov,, -+, ov,,_,_, which
span the orthogonal complement in R™ of the (/ + 1)-dimensional linear manifold
spanned by dv, and the vectors p(X(t,), vg, o), i = 1, ---, [, and adjoin to (13.8)
the m — | — 1 equations

v—1vy)-00;,=0 fori=1,---, m—1—1.

In the same way, we can then conclude that there is a continuously differentiable
function # from some neighborhood N of 0 e R into U, satisfying the relations
9(0) = vy, p(X(ty), (0), ty) = 0 for all 0 e N, and 9'(0) = ayov, for some oy > 0.
Consequently, by virtue of (13.3)(13.5) and (13.7) and the continuity of f
and p,, we can conclude that there is a 8; > 0 such that v; = 9(0,) € U, has the
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following properties :

(13.9) ¢'(v,,t)) <0 foreachj=1,---,r,

(13.10) p(X(to), vy, to) = 0,

(13.11) (o) f (X(to), vy 5 o) > Plto) f(X(to), (o), to),
(13.12) P(X(to), vy, o) - [Pu(X(to), 1, to)]" is nonsingular.

Note that (13.12) implies that p(x(¢,), v,, ;) has maximum rank, i.e., rank L.

If ¢'(vy, t,) < O for every j = 1,---, r, we simply set v, = v,, in which case
(13.9)+(13.12) are immediately seen to hold.

Because the functions p, ¢, p,, and X are continuous in all of their arguments,
we may again appeal to the implicit functions theorem, and conclude that there
are a negative number 0, a closed interval I, containing t,, and a continuous
function @ from I, N I into a compact subset of U, such that (i) #(t,) = v, (ii)
(13.13) p(x(t), a(t),t) =0 foralltel, NI,
and (see (13.9)) (ii1)

(13.14)  ¢'(a(t),t) <0 <0 foralltel, NI andeachj=1,---,r.
Further, because of the continuity of p,, X, and #, and because the matrix
(13.15) pUE(D), 4(2), 1) - [p(X(0), (t), )]"

is nonsingular for t = t, (see (13.12)), we may suppose that this matrix is non-
singular for all te I, N I, and that the elements of its inverse remain in some
bounded set as ¢ ranges over I, () I.

For any function ze L' (I,), let us define the function dv, e L™(I, N I,) as
follows:

dv,(t) = [pJX(t), &), )] {p(%(1), 0(t), 1) - [pX(0), &), )"}~ '2(r), telo NI,
Evidently, then
pX(©), (1), )ov,(t) = z(t) foralltely, N I,.

Fipally, by (13.11) and the continuity of the function f and of the functions ,
X,and ¥ at ty,and because t, is a regular point for both iiand e, , we can conclude
that, for some subset J,, of I, M I, of positive measure,

(13.16) W) f(X(D), (e, 1) > Y(o) f(=(t), u(), 1) for all ted,.
If we now define the function &€ L™ by the relation
_ ) forteld,,
(13.17) W) = {am for te I\Jo,

then it follows directly from what we have shown (see (13.13) and (13.14)) that
i€ %, and that @ satisfies Conditions C1 and C2, i.e., that @i e %. But (13.16) and
(13.17) imply that

(13.18) f 0 SEO, a0, 0de > [ w0 £, A, 0 d,

L5}

which then contradicts (12.26). Consequently, (13.1) holds.
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To prove that (13.2) holds, we again argue by contradiction, and thus sup-
pose that there are a point t, € I and a function @ € % such that (i) t, is a regular
point for @, # and e, (the characteristic function of I'\I,) as well as a point of
continuity of ¥, and (ii)

‘//(to)f(x to), i(ty), ty) > ‘// (to) f(X(to), U(ty), to)-

Hence, there is a subset J, of I'\I, of positive measure such that (13.16) holds.
Defining @ by (13.17), we immediately obtain that i€ % and that (13.18) holds,
again contradicting (12.26). Thus (13.2) holds. The proof is complete.

Recall that #(t) € w(X(t), t) for almost all tel,, and note that (for each
(x,t)e G x I,)thesetofall ve U, that satisfy conditions (iii) and (iv) in the defini-
tion of w(x, t) is open. Hence, (13.1) may be interpreted as follows: For almost
every t € I, there is a neighborhood O of @(t) such that #(t) solves the problem of
maximizing the function v — ¥(t)f(X(t), v, ):0 — R subject to the constraints
¢(v,t) £ 0 for j=1,---,r and p(x(t), v, t) = 0. Thus, conclusions (v) and (viii)
of Theorem 12.1 show that, for almost all te I, ul(¢), ---, @), v(t), - -+, v(t)
may be interpreted as Lagrange multipliers for this finite-dimensional constrained
maximization problem. If, for some t eI, for which (12.28) holds, the vectors
qit),i=1,---,r, and pi(t),i = 1,---, 1, are linearly independent, then (12.28)
uniquely determines u(t) and v(t). If, in addition, iﬁ and # are continuous at f,
f.» Pu» and g, are all continuous functions, and teint I, then u and v are also
continuous at t.

The requirement in Theorem 13.1 that the functions f, p, ¢, and p, are con-
tinuous can be relaxed. For example, the theorem remains in force if there is a finite
subset I, of I such thatf, p,¢q,and p,are continuousatall (x, u, t)e G x Uy x (I'\I)).
(Of course, A3-A6 must still hold.)

14. Some generalizations. The problem wherein the equality constraints
(2.5) are replaced by the more general constraints

(14.1) pi(x(t), u(t),t) = 0 for almost all tel,, i=1,---,1,

where I,,---, I, are given Lebesgue measurable subsets of I, is also of interest,
and can, by a straightforward reformulation, be included in the problem studied
in the earlier sections of this paper.

Let us indicate how to do this. For simplicity, let us suppose that [ = 2. Let
I, =1, UI,, and let us adjoin to u = (u!, u™) two new scalar ‘“‘control”
variables u™ "', u"*2 Let u = (u,u™*?, er2) let UO = U, x R?, and define the
functions f:G x Uy x I » R", p:G x Uy x > R? and q:U, x [ > R" as
follows:

f(x,u,t) = f(x,u,t) and qu,t) = q(u,t) forall (x,u,t),
(14.2) i u, 1) = p(x,u,t) forall (x,u)and all tel; U (I\I,),
PG D =ym+ for all (x,u) and all tel NI forj=1,2.

It is easily seen that the generalized problem reduces to our original problem with
I,,u, U, f, p,and g replaced by I, etc., and that if f, p, and g satisfy A3-A6, then
f, p, and q also do. Further, if u € % satisfies Conditions C1 and C2, modified in
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an evident manner, then (u, 0, 0) also satisfies these conditions with p replaced
by p.

Appealing to Theorem 12.1, as applied to the “expanded” problem, we can
easily convince ourselves that the necessary conditions of this theorem carry
over to the problem where (2.5) is replaced by (14.1)—provided that we replace
I, by Uj~=11j, redefine % in an evident manner in conclusion (iv), and add the
conclusion that v/(t) = 0 for almost all te I\I;, foreachj=1,---, 1L

As another generalization, suppose that the equality constraints (2.5) are
replaced by equality and inequality constraints of the form

(14.3) (iva) p'(x(t), u(t),t) £ 0 for almost all te I, and eachi=1,---, 1,

(144) (ivb)  pi(x(t), u(t),t) = 0 for almost all te I, and
' eachi=1+1,---,1,

where I’ is some positive integer with I’ < | (and we replace the restriction that
| £ m in the problem statement by the inequality | — I' < m).

We shall show that the problem in which (2.5) is replaced by (14.3) and (14.4)
can, by a simple reformulation, also be included in the problem which we investi-
gated in the preceding sections.

We first introduce some notation. Let p, = (p*, ---, p) and p, = (p"*},

.-, p", and define P, = (P',---, P"), P, = (P"*', ..., P"), where the P’ are
defined by (2.7). If (X, @) is the solution of the problem for which we wish to obtain
necessary conditions, let

€ = {utue, pi(x(t), u(t), t) < 0 for almost all t€ 1,

(14.5) and each i = 1,---, I, pi(x(t), u(t), t) = O for almost all te I,
andeachi=10 +1,---,1},
and, for each u e @7, let

= {ou:due L7, ess sup [p(X(t), u(t), 1)
(14.6) (el
+ pi(E(t), u(t), ()] < O for i =1, -+, I'},

(14.7) P(u) = {adu:o > 0, due P(u)}.

Corresponding to Conditions C1 and C2 we introduce the following conditions:
ConditionC1’. Foralmostallte I, ,the(l — I') x (I — I')matrix p, (X(t), u(t), t)
- [p,, ((t) u(t), t)]" is nonsingular, and the function t — [P, (X(8), u(t), t)- (p,,
(mmanIIHR“WmmU“wn
Condition C2'. {D,P,(X, u; du):0ue(2,u) N Pu)} = L';"(1,), where 2(u)
is given by (3.7), (3.8), and (3.10).
Conditions C1' and C2' should (as were Conditions C1 and C2) be interpreted
as regularity conditions, or as compatibility conditions—to “first order” in u—
for the constraints (14.3), (14.4), and (2.1).
Now let us reformulate our problem. We adjoin to u = (u!, ---, u™), I’ new
scalar *‘control” variables u™*! ... u"*'. Let u= (uu™", -, "), let

U, = U, x RY, and let the functions f:G x Uy x I - R", p:G x U, x I - R,
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and q:U, x I - R"*" be defined as follows:

f(x’u’ t) = f(x’u’ t),

pi(x,u, t) = pi(x,u,t) + u*' fori=1,.--,1,

pi(x,u, 1) = pi(x,u,t) fori=10+1,---,1,
q'(u,t) = q'u,t) fori=1,---,r,

q i, )= —umt fori=1,---,/0,

for all (x,u,t)e G x U, x I. It is then easy to see that the problem in which (2.5)
is replaced by (14.3) and (14.4) is equivalent to the original problem, provided that
we therein replace m by (m + I'), r by (r + I'),and u, U, f, p, and g by u, U, etc.
Further, if f, p, g, and U, satisfy A3-A6, then f, p, q, and U, also do.

Let us consider the set # defined in terms of p, q, etc. in the same way that %
was defined in terms of p, g, etc. Then one may convince oneself witbout too much
difficulty that w = (u,u™*!, ..., u™*")e 4/ if and only if (i) ue %, (ii) for each
i=1,---,I, u""ieL,, u"*(t) = 0 for almost all teI\I, and u™"(t) + p’
-(X(¢), u(t),t) = O a.e. in I, and (iil) u satisfies Conditions C1’ and C2'. If | = [,
$O that ~the constraints (14.4) are absent, then (iii) is to be replaced by: (iii')
2w N Pu) # &.

Appealing to Theorem 12.1 for the reformulated problem, we can quickly
obtain the following theorem.

THEOREM 14.1. Let (X, i1) be a solution of our optimal control problem with (2.5)
replaced by (14.3) and (14.4), where 1 < I' < |, and suppose that Assumptions A1-A6
hold. Further, suppose that u satisfies Conditions C1’ and C2' if I' < I, and that
Yu) N Pu) # & if I =1. Then there exist a vector B = (B° B, ---, p7*1)
€ R*" M+ 1 and functions A = (A*, -+, A): I - R, p=(u', -, u)el, ,v= ("
<, WeLl, and y:1 - R", all of them to be considered row vectors, such that
conclusions (i}(ix) of Theorem 12.1 hold, except that, in (iv) (i.e., in (12.26)) % is to
be the set of all u € 9 which satisfy Conditions C1' and C2' if | < I’ and the set of all
ue @ such that Pu) N Iw) # & ifl =1 (see (14.5) and (14.6)), and, in addition,
(x) for each j =1, ---, 1" and almost all te I,, vi(t) £ 0 and v/(t)p’(x(t), i), t) = O.

In order to obtain here a pointwise maximum principle which is analogous to
Theorem 13.1, we introduce the set w,(x, t). Indeed, for each xe Gand te I, let
(%, t) denote the set of all ve U, such that

(i) ¢(v,t) £ 0forj=1,---,r;
(14.8) (i) pl(x,v,t) £ O0forj=1,---,1;
(14.9) (i) plix,v,t) =0forj=1+1,---,1;
(iv) p, (%, 0,0 - (py,(x, v, 1))" is nonsingular;
(va) {p, (x,v,0)0v:5ve R™, gi(v, t)0v < O for each j=1,---,r
such that ¢/(v, t) = 0, pi(x,v,t)0v < 0 foreach j=1,---, I
such that pi(x,v,£) = 0} = R""Vif I' < |,
(vb) {0v:dve R™, gi(v, t)0v < O foreachj=1,---,r
such that ¢i(v, t) = 0, and pi(x, v, t)dv < 0 for each
j=1,---,1'such that pi(x,v,t) = 0} # Fif I' = L.
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If we define @(x, t) in terms of p, q, and U, in the same way that w(x, t) was
defined in terms of p, ¢, and U, then it is easy to see that v = (v, v™ "', ..., v™*")
ea(x, t) ifand only if ve w,(x, t) and v™*/ = —pi(x,v,t)forj=1,---,I.

Appealing to Theorem 13.1 for the reformulated problem, we arrive at the
following pointwise maximum principle.

THEOREM 14.2. Suppose that the hypotheses of Theorem 14.1 hold and that, in
addition, the functions f, p, q, and p, are continuous. Then the conclusion that (12.26)
holds can be replaced by the conclusion that (13.1) and (13.2) hold, but with w
replaced by w, in (13.1).

As before, relation (13.1)—with w replaced by w,—together with conclusions
(v), (viii), and (x) of Theorem 14.1 allow us to interpret (for almost every te I,)
u'@), -, w@),v'(t), -- -, v'(t)as Lagrange multipliers for the problem of maximiz-
ing the function v — () f(X(t),v,t):0 — R (where O is some neighborhood of
ii(t)) subject to the constraints of ¢/(v,t) < 0 forj = 1, ---, r; pi(x(t),v,t) £ 0 for
j=1,---,I;and p(X(t),v,t) = 0 for j = I' + 1, ---, I. The statements made in
§ 13 regarding the uniqueness and continuity of the functions u and v carry over
here essentially unchanged.

The two types of generalizations of our basic problem which we described
in this section may of course be combined, but we shall leave the details of the
analysis to the interested reader.

15. Comparison with earlier results. Optimal control problems of the type
examined in this paper were first studied by Gamkrelidze (see [13] and [6]).
Gamkrelidze primarily investigated the problem with constraints of the form
(2.1)-(2.3) and (2.5), and confined himself to the case where I, is a closed interval,
where f, p, and ¢ are independent of ¢ (in which case Assumptions A4-A6 auto-
matically hold), and where y has a particularly simple form. He also assumed that
the solution (X, i1) of the problem was such that # was piecewise-continuous and
piecewise-smooth, and that, for each t e I, u(t) € d(X(t), t), where (for each (x, 1))
@(x, t) differs from our w(x, t) in that conditions (iii) and (iv) (in our definition of w)
are replaced by the much stronger requirement that the vectors

pix,v), j=1,---,1, and ¢i(w) forallj=1,---,rsuch that g/(v) = 0

are linearly independent. All this implies, as is not hard to see, that the function
i satisfies our Conditions C1 and C2. The necessary conditions obtained in [6]
and [13] under these stronger assumptions are essentially the same as those in our
Theorem 13.1, except that the maximum condition (13.1) was shown to hold only
for all ve @(X(t), t) (rather than for all v in the larger set w(X(z), t)). Gamkrelidze
also investigated the problem with constraints of the form (14.3) by using essen-
tially the same device as we used, but under the previously indicated stronger
assumptions on the problem data. Finally, he also considered the problem with
constraints of the form of (2.6), but only for the case where 7(xX(t), t) = 0 on some
subinterval of I}, in which case he could reduce this constraint to one of the form
of (2.5), by using the procedure we described at the beginning of § 3.

Hestenes, in [3, pp. 256-260] (also see [7]), considered problems with
constraints of the form of (2.2)+2.5), where f and p are continuously differentiable.
He also confined himself to piecewise-continuous control functions u. (An exten-
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sion to the case of more general fand p—much as indicated in A3-A6—and to
measurable u was made by Guinn in [14].) Finally, he supposed that I, = I and
that the function y had a particularly simple form. Under the additional assump-
tion that, for all t€ I, o(X(t), t) = {v:ve Uy, p(X(t), v, t) = 0} (which implies that &
satisfies our Conditions C1 and C2), he obtained necessary conditions essentially
the same as those in our Theorem 13.1. In [3, pp. 260-262], the problem with
constraints of the form (2.2)-(2.4) and (14.3), (14.4) was also considered, and
necessary conditions which are the same as those in Theorem 14.2 were obtained,
under the very strong assumption that, for all te I and all ve U, that satisfy
(14.8) and (14.9) with x = X(t), the vectors pi(X(t), v, t), for those j = 1, - - -, I such
that pi(x(t), v, t) = 0, are linearly independent. This assumption implies that
0,(X(1), 1) = {vive Uy, pP(X(t),v,1) £ 0 for j=1,---, ' and p/(x(t),v,t) = 0 for
j=1U+1,---,1} and that u satisfies Conditions C1' and C2’, but the converse is
far from true.

Virsan in [4] considered problems with constraints of the form (2.2), (2.3), and
(2.5), under the assumption that f and p are continuous and continuously
differentiable in x and u and that I, is a subinterval of I. He also confined him-
self to piecewise-continuous controls. Under the additional assumption that
u(t) € w(x(t), t) for all t € I, (which implies that # satisfies Conditions C1 and C2),
he obtained necessary conditions essentially the same as those in our Theorem
13.1. Virsan’s approach to the problem had much in common with ours. Namely,
he viewed the constraints (2.5) as an equality constraint in the function space
L'(I,),and brought to bear the tools of functional analysis much as we did in § 11.

In [5], Virsan extended his results to measurable controls under the addi-
tional assumptions that I = I,, that the functions f and p are independent of ¢,
that, for each tel, w(x(t),t) = {v:ve Uy, p(x(t),v,t) = 0}, and that the sets
w(X(t), t) are uniformly bounded. His approach in this paper was even closer to
ours than it was in [4].

Dubovitskii and Milyutin, in [15], considered a problem containing both
equality and inequality constraints of the form (14.3) and (14.4), under assump-
tions much like our Conditions C1' and C2' in § 14. However, their necessary
conditions did not include the maximum principle (12.26) (or (13.1)) but only the
“local” maximum condition (12.28). Earlier, in [16], they had obtained similar
necessary conditions for problems without the equality constraints (14.4).

Appendix. We first prove that, in the notation of § 7, if max; |Jj| is sufficiently
small (for each ¢€[0,8)) then |x,, — X, .|| < ¢? for all ye S*. Let us denote the
compact set {x:x € R", |x — X(t)| < 2p, for some t € I} by G,. By definition of p,,
G. < G, and by choice of &, [|X,, — X|| < p, for all ye Sk and £€[0,8). Let us
arbitrarily fix ¢ € [0, &) for the remainder of the argument.

For each y e S¥, let us define the function 6f(-,- ;7):G x I — R" as follows:

of (x,t57) = f(x,u, (1), 1) — f(x,u(t), )
— e Y POl 0) — fix, a0, ).
ji=1
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It follows from Assumption A6 of §2 that there is a number { > 0 such that
(see (7.1))

LA, u, (0,0 S &0 1ofx, )l < 8, 1%, (0 = ¢

for all x € G, and y € S* and almost all ¢ € I, independent of the way in which the
J¢ are chosen.

For each y, equation (7.9), with initial condition x(t,) = £, (t,)€ G, has a
solution which takes on its values in G,—at least for ¢ in some neighborhood of
t;. Let us denote this solution by x, ,. Then, for all ¢ in this neighborhood of ¢,
we have (see (7.9) and (7.1))

|xy,£(t) - gv,e(t)l é f If(xv,e(s)7 uy,s(s)’ S) - f(gy,e(s)a uy,e(s)’ S)' ds

(A.1)
‘fwy»ny
But
fm%m%wmwﬂ&m%ﬁmws
(Az) g (ri%x l.fx(xa uy,e(s)’ s)‘)‘xy,s(s) - iy,z;(s)l ds

é f Clxy,e(s) - )zy,e(s)l ds.

Also, if we denote by X, , some step-function approximation to X, ,, we similarly
obtain

+ C(tZ - tl)“xye - ye”

(A3) \jwymsy fﬁVMsww

Combining inequalities (A.1)A.3), we arrive at the inequality

InM~%M@fﬂmm~%&ws
(A.4) "

+ 0ty — )X, — %l + U Of (X, s),s:7) ds|.

Note that inequality (A.4) holds for every y € S*, for every step function X, . taking
on its values in G,, for any choice of the J¢, and for every t € I such that x, (s) € G,
for all se(t,t]. Applymg the Gronwall inequality to (A.4), we can conclude
that, for every y e Sk, x,, is deﬁned and takes on its values in G, for all t e I and
satisfies the inequality ||xy = X, EH < ¢2, provided that we can show that, by a
proper choice of the step functions X, , (depending on y) and of the J¢ (independent
of y), we can make the last two terms in the right-hand side of (A.4) arbitrarily
small in magnitude, for all t e I (and y € S¥).
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But ||X,, — X, || can evidently be made arbitrarily small by a suitable choice
of X, .. We may evidently suppose that X, , takes on its values in G,. Further
(since |§7,£(t)l < (forall y and almost all t) for a given upper bound on | X, , — X, .|,
we may even choose the points of discontinuity of the X, , to be the same for every
ye Sk

According to a lemma of Gamkrelidze (see [2, Lemma 4.1]), for any {, > 0,
there is a choice of the J{ such that

<{, forallt,t"el,yeS*, and xeG,,

f of (x,s;7)ds

which means that the last term in (A.4) can be made arbitrarily small by a suitable
choice of the J%, which completes our proof.

Let us denote by & the set of all functions F:G x I — R"(where G is an open
set in R" and I is the compact interval [t,, t,]) such that (i) for almost every tel,
the function x — F(x,t):G — R" is continuously differentiable, (ii) for each
x € R", the function t - F(x, t):] - R" is measurable, and (iii) for every compact
subset G, of G, there is a number { > 0 such that, for almost every t € I, |F(x, t)|
+ |B(x, t) < {for all x e G,. Thus we have the following continuous dependence
theorem for ordinary differential equations.

THEOREM A.1. Let Fe & and X(-)e %" be such that %(-) is absolutely con-
tinuous and satisfies the differential equation X(t) = F(X(t),t) a.e. on I. Then there
is a compact subset G, of G with the following property: For every ¢ > 0, there is a
d > 0 such that, whenever F € & and &, € R" satisfy the inequalities

| " sup F(e, ) — Fixa o) ds < 8, 160 — S| < 6,

' xeG,

the differential equation x(t) = F(x(t), t), with initial condition x(t,) = &, has a
solution defined on all of I satisfying |x(t) — X(t)] < eforalltel.

Proof. Choose 6, > 0 such that the compact set G, = {x:x e R", |x — X(t)|
< ¢, for some t € I} is contained in G, so that, for some ¢ > 0, |F(x,t) < ¢ for
all xe G, for almost all te I. If Fe & and |, — X(t,)| < J,/2, then the equation
x(t) = F(x(t), t), with initial value x(t,) = &,, has, at least in some neighborhood
of t,, a solution satisfying |x(t) — X(t)] = J,. For each t € I such that |x(s) — X(s)|
< 6, for all se[¢t,,t], we then have

Ix(t) — X(1)] =

Lo — (1)) + f [F(x(s), s) — F(%(s), )] ds
< 1o — 501 + [ 1P, ) = Flxt), o) ds

+ Ji |F(x(s),s) — F(%(s), s)| ds

1

t2

S 18o — X(ty) + | (sup |F(x,s) — Flx,s))) ds

t xeG,

T f {xls) — %(6)| ds.
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and our desired result follows at once from the Gronwall inequality.

Remark A.1. In the preceding theorem, 6 depends on F only in that § is a
function of (.

We also have the following differentiable dependence theorem.

THEOREM A.2. Let I, G, Uy, f, 9, U, , and U be as described in § 2, and suppose
that f satisfies Assumptions A3-A6 of § 2. Suppose that X(-)€ % and i( - ) € U satisfy
the differential equation %(t) = f(X(t), ii(t), t) a.e. on I, with X absolutely continuous.
Then there is a neighborhood N of i in L such that, for all ue N, the equation
x(t) = f(x(t), u(t), t), with initial value x(t,) = X(t,), has a solution which is defined
on all of I, and (denoting this solution by x, to emphasize its dependence on u)

X, = X + 0x, + o(u — i),
where (for each ue ¥) dx, denotes the solution of
OX(t) = fdX(1), d(t), )ox(t) + fuX(2), u(t), t)(u(t) — d(t)),  Ox(t;) =0,

and

%4“")—.7:0—’ 0 in the €"-norm.

Proof. Let us denote by T the mapping from ¥ x %, into ¢" defined by
(T(x, u)(z) J f(x(s), u(s), s) ds, tel, xe9, uei,.

Then the differential equation x(t) = f(x(t), u(t), t) with initial value x(t,) = X(t,)
is evidently equivalent to the equation x = T(x,u), so that X = T(X, &). It easily
follows from Assumptions A.3—A.6 that T is continuously (Fréchet) differentiable.

Our result now follows directly from the conventional implicit function
theorem in Banach spaces (see [8, Thm. 10.2.1, p. 265]).

Acknowledgment. The authors wish to acknowledge some fruitful conversa-
tions with Leonard M. Silverman. Indeed, the construction of the functions dx,
and ou, in § 4 are based on suggestions made by him.
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IMPLICIT FUNCTIONS AND OPTIMIZATION PROBLEMS
WITHOUT CONTINUOUS DIFFERENTIABILITY OF THE DATA*

HUBERT HALKIN?t

Abstract. Let ¢ be a function from a normed linear space X into a finite-dimensional Euclidean
space Y and let 4 be a continuous linear mapping from X onto Y. We assume that ¢ is continuous in
a neighborhood of some point £ € X and that ¢ admits A as its differential at the point £. In this paper
we prove that under those conditions there exist a neighborhood U of £ and a mapping { from U
into X such that ¢(x + {(x)) = ¢(%) + A(x — £) for all x € U and such that lim, o, Sup._ ¢ <,I{(x)I/n
= 0. Besides the above *‘correction function theorem” this paper contains related implicit and inverse
function theorems. The correction function theorem is applied to the proof of the multiplier rule for
mathematical programming problems with equality and inequality constraints without assuming the
continuous differentiability of the data in a neighborhood of the optimal solution.

1. Introduction. If ¢ is a function from a normed linear space X into a
normed linear space Y and if a continuous linear mapping A from X into Y is the
differential of ¢ at a point % € X, then by definition we have

(1L.1) P(x) = (%) + A(x — £) + g(x),
where lim, o, sup|,_ <, 1g(x)l/n = 0. In other words, the relation
(1.2) Plx) = ¢(£) + A(x — %)

is “‘almost’’ correct and to obtain the “‘really’’ correct relation (1.1) we have added
to the right side of relation (1.2) a “little” term g(x). Instead of making the above
classical correction we might try a correction of another type by shifting the argu-
ment x in the left side of relation (1.2) by a “little”” amount {(x) in order to obtain
a relation of the type

(1.3) P(x + {(x) = ¢(%) + Alx — X).

The fact that such a correction is possible whenever ¢ is continuous in a neighbor-
hood of %, Yis a finite-dimensional Euclidean space and A maps X onto Y consti-
tutes the ““correction’ function theorem stated below! as Theorem F and proved in
§ 2 of this paper.

THEOREM F. Let X be a normed linear space and let Y be a finite-dimensional
Euclidean space. Let ¢ be a mapping from X into Y, let X€ X and let A be a con-
tinuous linear mapping of X onto Y such that

(i) ¢ is continuous in a neighborhood of %,

(i) A is the differential of ¢ at the point X.

* Received by the editors April 10, 1972.

t Department of Mathematics, University of California, La Jolla, California 92037. The first
version of this article was written at the Center for Operations Research and Econometrics (CORE),
Louvain, where the author was on sabbatical leave from the University of California supported in
part by a Guggenheim fellowship. Preliminary research for this paper was supported by a grant from
the U.S. Air Force Office of Scientific Research. The final version of this paper was written while the
author was a visiting member of the Centre de Recherches Mathématiques, Université de Montréal.

! The results of this paper are given in Theorems A through G. The order A through G corresponds
to the logical order of construction of the proofs given in § 2. In the Introduction we state Theorems F,
C, E and G in that order for ‘“‘motivational” reasons. Theorems A, B and D are stated only in § 2.
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Then there exist a neighborhood U of X and a mapping { of U into X such that

() d(x + {(x) = P(X) + A(x — X) for all xe U and

(B) lim, -, SUP|,—g <, 1L/ = O.

In § 2 we first prove a string of theorems including the two implicit function
theorems stated below as Theorems C and E, and then we use Theorem E to prove
Theorem F.

THEOREM C. Let X be a metric space, let Y be a normed linear space, let Z be
a finite-dimensional Euclidean space, let ¢ be a mapping from X x Y into Z, let
(X, 9)e X x Y and let B be a continuous linear mapping of Y onto Z such that

(i) ¢ is continuous in a neighborhood of (%, 9),

(ii) ¢ admits B as its differential with respect to the second variable at the

point (%, 9), i.e.,
lim sup |§(X, 9) + B(y — ) — @(%, y)l/n = 0.
n>0+ |y=$l=n
Then for any neighborhood V of § there exist a neighborhood U of X and a function
Y from U into V such that

(@) WD) = 9,

(B) d(x, ¥(x)) = d(X, 9) forall xe U, and

(y) ¥ is continuous at the point X.

THEOREM E. Let X and Y be normed linear spaces, let Z be a finite-dimensional
Euclidean space, let ¢ be a mapping from X x Y into Z, let (%, )€ X x Y, let A be
a continuous linear mapping from X into Z and let B be a continuous linear mapping
from Y onto Z such that

(i) ¢ is continuous in a neighborhood of (%, 9),

(i) (A, B) is the differential of ¢ at the point (%, 9), i.e.,

lim  sup  |@(%, ) + A(x — %) + B(y — §) — ¢(x, yl/n = 0.

n=0+ |x=%|+|y=9|=n
Then there exist a neighborhood U of %, a mapping ¥ of U into Y and a continuous
linear mapping C from X into Y such that

(@) Y(£) = 9,

(B) o(x, ¥(x)) = $(%, 9) for all xe U,

(y) C is the differential of ¥ at the point %, and

() A+ BC =0.

In § 2 we also apply Theorem E to the proof of the following inverse function
theorem.

THEOREM G. Let X be a finite-dimensional Euclidean space, let ¢ be a map-
ping from X into X, let £ € X and let A be a linear mapping of X onto X such that

(i) ¢ is continuous in a neighborhood of % and

(i) A is the differential of ¢ at the point X.

Then there exist a neighborhood U of ¢(R) and a mapping { from U into X such that

(o) {(@(%)) = %,

(B) ¢(L(y) =y for all ye U, and

(p) ¢ admits A1 as its differential at the point ¢(X).

The implicit and inverse function theorems stated above, Theorems E, C
and G, are closely related to their “classical”” counterparts (see, for instance,
Dieudonné [1, p. 265]) in which the given functions are assumed to be continuously
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differentiable and in which the resulting functions are themselves guaranteed to
be continuously differentiable. There does not appear to be any “classical’ cor-
rection function theorem stated explicitly in the literature. We give below the
statement of such a theorem which can be proved as an easy corollary of the
“classical” implicit function theorem.

CLASSICAL CORRECTION FUNCTION THEOREM. Let X and Y be Banach spaces,
and let T be a closed linear subspace of X. Let ¢p:X — Y, let X€ X and let A be a
continuous linear mapping of X into Y such that

(1) ¢ is continuously differentiable in a neighborhood of %,

(1)) A is the differential of ¢ at the point X and

(ii1) A maps T one-to-one onto Y.

Then there exist a neighborhood U of % and a continuously differentiable mapping
{ of Uinto X such that

(o) d(x + L(x)) = Pp(R) + A(x — R) for all xe U, and

(B) lim, o4 sup,_z <, 1{(x)l/n = 0.

In § 3 we apply Theorem F, the correction function theorem, to the proof of
the multiplier rule for a mathematical programming problem with equality and
inequality constraints without assuming the continuous differentiability of the
data in a neighborhood of the optimal solution. If the data is assumed to be con-
tinuously differentiable in a neighborhood of the optimal solution, then this
““classical” multiplier rule (which combines the results of Carathéodory [2, p. 177]
and John [3]) can be found in Mangasarian [4]. In Mangasarian [4] the classical
multiplier rule is derived from the classical implicit function theorem. The proof
of the classical multiplier rule would be greatly simplified by patterning it on § 3
of the present paper, i.c., by using the classical correction function theorem instead
of the classical implicit function theorem.

The proofs of § 2 are based on the Brouwer fixed-point theorem.? The result
of § 3 is a particular case of some general necessary conditions in mathematical
programming (Halkin—Neustadt [5], Halkin [6]). Those necessary conditions are
all derived by a specific application of the Brouwer fixed-point theorem. This type
of application of the Brouwer fixed-point theorem to optimization problems was
introduced in Halkin [7].

2. Proofs of the implicit, correction, and inverse function theorems.

THEOREM A. Let X be a metric space, let Y be a finite-dimensional Euclidean
space, let ¢ be a mapping from X x Y into Y, let (%, §)€ X x Y and let B be a linear
mapping of Y onto Y such that

(i) ¢ is continuous in a neighborhood of (%, ),

(i) ¢ admits B as its differential with respect to the second variable at the point

(% 9), ie.
lim sup |@(%, 9) + B(y — §) — o(%, y)l/n = 0.

n—-0+ |y—Jl=n
Then for each neighborhood V of 9 there exist a neighborhood U of % and a function
Y from U into V such that ¢(x, Y(x)) = (X, 9) for all xe U.

2 The key use of the Brouwer fixed-point theorem is in the proof of Theorem A. The assumption
of finite-dimensionality of space X in Theorem G, of space Y in Theorems A, B, D and F and of space Z
in Theorems C and E is conditioned by that use of the Brouwer fixed-point theorem.
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Proof of Theorem A. We may assume without loss of generality that § = ¢(X, 9)
= 0. For any ¢ > 0 let
N = {x:xe X,d(x, %) < ¢},
where d( -, -) is the metric on X, and let

={yyeY,yl s ¢
Let ¢ > 0 be such that B, = V and such that ¢ is continuous over N (%) x B,.
Let a €(0, ] be such that

lp(%,y) — B(y)l = «/(2IB™"|)
whenever ye B,, and let® € (0, o] be such that
lp(x, y) — ¢, Y)| = «/2IB™1))

whenever x € Ny(%X) and ye B,. For all x e Ny(X), let h, be the mapping from B,
into Y defined by

hx(y) =y - B—1¢(X, Y)

The mapping h, is continuous and maps B, into itself since for all y € B,, we have

(Wl =y = B™'$(%, 9 + [B™'d(%,y) — B™'dlx, )l £ 0/2 + /2 = a.

Let y(x) be the fixed point of h, given by the Brouwer fixed-point theorem. For
all x € Ny(%) we have then y(x)e B, = V and \//(x) B '¢(x, Y(x)) = Y(x), ie.,

P(x, Y(x))
This concludes the proof of Theorem A.

THEOREM B. Under the assumptions of Theorem A then for any neighborhood
V of y there exist a neighborhood U of % and a function y from U into V such that

a) Y(R) = P,

(B) d(x, Y(x)) = ¢, p) for all xe U, and

(y) ¥ is continuous at the point X.

Proof of Theorem B. Let V;, i = 1,2, --- , be a sequence of neighborhoods of
psuchthat V.=V, V., < V, for alli = 1, 2 - and such that for all ¢ > 0 there
isann < 4+ oo with V, @ B,. Forevery i = 1, 2 --- we know by Theorem A that
there exist a neighborhood U; of £ and a function ; from U, into V; such that
O(x, Y{x)) = (%, 9) for all xe U;. We may assume without loss of generality
that U;,, < U;foralli = 1,2, --- and that for all ¢ > O there is an n < + oo with
U, < N/(%). Let U=U,,let l//()%) = pand let Yy(x) = Y(x) whenever xe U; ~ U, ,
for some i = 1,2, ---. The function  satisfies conditions (), (8) and (y). This
concludes the proof of Theorem B.

THEOREM C. Let X be a metric space, let Y be a normed linear space, let Z be
a finite-dimensional Euclidean space, let ¢ be a mapping from X x Y into Z, let
(X, 9)e X x Y and let B be a continuous linear mapping of Y onto Z such that condi-
tions (i) and (ii) of Theorem A hold. Then the conclusions of Theorems A and B are
still valid.

Proof of Theorem C. Let T be a finite-dimensional linear subspace of Y and
let B! be a linear mapping from Z onto T such that BB~ 'z = z for all ze Z.
This is possible since B maps Y onto Z and Z is finite-dimensional. The spaces

3 This is possible since ¢ is continuous and B, is compact.
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T and Z are thus finite-dimensional Euclidean spaces of equal dimension and
may be considered as the same space. We conclude the proof of Theorem C by
applying Theorems A and B to the restriction of the function ¢ to the domain
X x T.

THEOREM D. Let X be a normed linear space, let Y be a finite-dimensional
Euclidean space, let ¢p: X x Y- Y, let (X,9)e X x Y, let A be a continuous linear
mapping from X into Y and let B be a linear mapping from Y onto Y such that

(i) ¢ is continuous in a neighborhood of (%, 9),

(i) (A, B) is the differential of ¢ at the point (%, ), i.e.,

lim sup |P(%, §) + A(x — %) + Bly — §) — ¢(x, y)/n = 0.

=0+ |x—x|+|y—Jlsn

Then there exist a neighborhood U of X, a mapping ¥ of U into Y such that

(@) Y(X) = §,

(B) d(x, Y(x)) = (X, 9) for all x e U, and

(y) ¥ admits —B~'A as its differential at .

Proof of Theorem D. We may assume without loss of generality that X = 0,
$ = 0and ¢(0, 0) = 0. By Theorem B we know that there exist a neighborhood U
of £ = 0, a mapping Y of U into Y such that conditions («) and (f) hold, and such
that s is continuous at £ = 0. It remains to prove that this function s satisfies
condition (y). For all x e U we have Ax + By(x) + g(x, ¥(x)) = 0, where g(x, y) is
a function such that

lim sup |g(x,y)/n =0.

N0+ |x|+|yl=n

We have then
W(x) = —B 'Ax — B 'g(x, ¥(x)) whenever xe U.
It remains to prove that
lim sup |B™'g(x, y(x))|/n = 0.

=0+ |x|sn

This will be done by first proving that v is Lipschitz continuous at X = 0. Let
o > 0 be such that {x:|x] £ o} < U and |g(x, y)| = (Ix| + IV)/(2|B~!|) whenever
|x] and ly| < 0. Let a €(0, 6] be such that |(x)| < o whenever |x| < «. We then
have

W(x)| < [B™Allx| + [B™ | |g0x, W) < (IB™1A| + D)Ix| + 2(x)l,
ie.,
[y(x)] < (1 + 2|B~'A4])|x|] whenever |x| £ a.
We then have
lim sup |B”'g(x, Y(x))/n < lim sup IB~'g(x, y)l/n = 0.

n=0+ |x| =g n—-0+ |x|+[y|S2(1+ B~ 4Dy

This concludes the proof of Theorem D.

THEOREM E. See the statement given in the Introduction.

Proof of Theorem E. From Theorem D one obtains immediately Theorem E
in the same manner as Theorem C was obtained from Theorems A and B.

It is possible to prove Theorem E directly, i.e., without first proving Theorems
A, B and D. The direct proof of Theorem E given below combines, but also
obscures, several aspects of the proofs given above.
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Direct proof of Theorem E. Let T be a finite-dimensional linear subspace of
Y and let B™! be a linear mapping from Z onto T such that BB~ !z = z for all
ze Z. This is possible since B maps Y onto Z and Z is finite-dimensional. Without
loss of generality we may assume that £ = 0, § = 0 and ¢(%, 9) = ¢(0, 0) = 0. For
t >0 let

glt) = sup |Ax + By — é(x, y)|.

[x] + |yl =t

Let ¢ > 0 be such that ¢ is continuous on {(x, y):|x|, |y| < ¢}. Let € (0, ¢) be such
that for all x € X with |x| < # we have

IB~YE (x) S ¢ and Ex(x|) < E(x]),
where
E(x) = 2g(2(1 A + Dx]),
E(Ix]) = E(x) + |Al|x] + g(x]),
E5(Ix) = g(lx]) + g(IxI + E,(Ix1)).

This is possible since g is nonnegative, nondecreasing and such that lim,_, o, g(¢)/t
= 0. Let x e X with |x| < 7, let

S, ={z:zeZ,|z| £ E(x))}
and let h, be a mapping from S, into Z defined by
hy(z) = z = ¢(x, B~'(z — $(x, 0)).
For |x| = n and ze S, we have
Izl + lp(x, 0) = E(x]) + |4} x| + g(lx]) = E,(x])
and hence (i) the mapping h, is continuous since
Ix|<e and |B7'(z — ¢(x,0) < [B7E(Ix]) < e,
and (ii) the mapping h, maps S, into S, since
lh(2) < |z — Ax = (z = @(x, )| + gllx| + Iz| + |P(x, O))
= g(xD) + gllxl + Ey(Ix1) = Ex(Ix) = E(Ix]).

From the Brouwer fixed-point theorem we know that there exists a point z, € S,
such that h(z,) = z,, ie, such that ¢(x, B~ '(z, — ¢(x,0)) = 0. Let (x)
= B (z, — ¢(x,0)). We have

lW(x) + B™'Ax| < |B™ Y|z, — ¢(x, 0) + Ax]|
< 1B (2 + g(ixD) = [B™'1(28(2( Al + Dix]) + g(Ix])

which implies that  is differentiable at the point 0 and admits —B~ !4 as its
differential. This concludes the direct proof of Theorem E.

TureorEM F (Correction function theorem).*

TueoreM G (Inverse function theorem).*

4 See the statement given in the Introduction.
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Proof of Theorem F. Let T be a finite-dimensional subspace of X such that
A maps T one-to-one onto Y. Let ¢, be a mapping from X x Tinto Y defined by
¢,(x,y) = ¢(x + y) — A(x — R). Let (4,, B,) be the differential of ¢, at the point
(%,9=0). We have 4, = 0 and B, = A. We apply Theorem D at the point
(%, § = 0) for the function ¢, . There thus exist a neighborhood U of £, a mapping
Y of U into Tand a continuous linear mapping C, from X into T such that (x)
Y(R) = 0,(B) d1(x, Y(x)) = ¢4(%, §) = ¢p(R) forall x e U, (y) C, is the differential of
at the point £ and (§) 4, + B,C, = 0. By letting { =  we obtain ¢(x + {(x)) =
oK) + A(x — &) for all xe U. Moreover we have C,; = 0 (since 4, = 0 and since
B, = A maps T one-to-one onto Y) and hence lim,_, o, sup,_z <,/{(x)/n = 0.
This concludes the proof of Theorem F.

Proof of Theorem G. We are given a finite-dimensional Euclidean space X,
a mapping ¢ from X into X, an element £ € X and a linear mapping A from X
onto X such that

(i) ¢ is continuous in a neighborhood of £ and

(ii) A is the differential of ¢ at the point X.
Let ¢, be a mapping from X x X into X defined by ¢,(u,v) = u — ¢(v). Let
(A4,, B,) be the differential of ¢, at the point fi = ¢(%), ? = £. We have 4, = I,
the identity mapping, and B, = — 4. We apply Theorem E at the point (4, 9) for
the function ¢, . There thus exist a neighborhood U of i = ¢(X), a mapping i of U
into X and a linear mapping C, from X into X such that

(o) Y(@) =D, ie, Y(P(X) = %,

B) d1(u, Y(u) = ¢, 0) for all ue U, i.e., ¢(Y(y)) = y for all ye U,

(y) C, is the differential of y at the point # and

(o) A, + B,C, =0.
We have C, = A™ ! since A4, = I and B, = — A is onto. By letting { = we
conclude the proof of Theorem G.

3. Multiplier rule for optimization problems with equality and inequality
constraints which are not assumed to be continuously differentiable. We are given

a normed linear space X and functions ¢_,,---, d_,, g, Py, -+, ¢, from X
into R'. The problemistofindanfe A = {x:xe X, ¢{(x) < Ofori = —u, ---, —1
and ¢(x) = Ofori =1, ---, m} such that ¢4(X) < ¢(x) for all x € 4. An element

X € A satisfying this condition will be called optimal. We shall prove the following
result.
MULTIPLIER RULE. If X is an optimal solution, if ¢, - - -, b, are continuous in
a neighborhood of %, and if ¢_,, -+, ¢,, admit differentials a_,, ---, a,, at the
point %, then there exists a nonzero vector A = (A_,, -+, A,) € R*"™* ! such that
(1) Zi= —,c,m Aiai = 0,
(i) 4 =0 fori=—p --,0,

(i) Aigpf%) =0fori= —p,---, —1L
Proof of the multiplier rule. We may assume without loss of generality that
% = 0. We may also assume that the continuous linear functionals a,, -- -, a,, are

linearly independent. Indeed, if > ,;_; .., wa; =0 for some (uy, ---, p,) #0,
then by letting A, =0fori= —pu,---,0and A, = y; fori =1, ---, m we obtain
the required multiplier rule. If the continuous linear functionals aq, ---, a,, are
linearly independent, then by Theorem F there exist a neighborhood U of £ and
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a mapping { from U into X such that

lim sup |{(x)l/n = 0,

n=0+ |x|=n

and such that ¢(x + {(x)) = a/x) for all xeU and for all i=1,---, m. Let
S={x:xeX,a(x) < —¢R) for i = —pu,--+, —1; ag(x) < 0 and a(x) = 0 for
i =1, ---, m}. We shall first prove that S is empty, or equivalently that S N U
is empty. If x*e S N U, let g(t) = tx* + {(tx*) for all t € [0, 1]. Let fi(t) = ¢p{g«?))
foralli = —pu,---, mandall ¢t € [0, 1]. The functions f; have one-sided derivatives
at t =0 and we have f{(0+) = a;(x*) for i = —u,---, m. Since ¢/(X) < 0 for
i= —pu, -+, —1 there thus exists a te€(0,1] such that ¢,g(r)) <O for
i=—u, -, —1;¢02r) < ¢po(X)and ¢,(g(r)) = Ofori = 1, - - -, m. The existence
of g(t) contradicts the optimality of X. We have thus proved that S is empty. Let
Ky ={z=(z_,, -, z,):for some x € X we have z; = a(x) for i = —p, ---, m}
and let K, ={z=1(z_,, -, 2,2, < —¢(%) for i= —pu,---, —1; 2, <0
and z; = Ofori = 1, ---, m}. Since S is empty the sets K, and K, are convex dis-
joint subsets of R**™*! Moreover we have Oe K,; N K,, hence there exists a
nonzero vector A = (A_,, ---, 4,) such that

(@) A-z=0forallze K,,

(b) A-z=0forallze K,.
From (a) we know that for all x € X we have

Z j’iai(x) = 0’
i: = Uy,m
which implies (i). From (b) we have immediately (ii) and (iii). This concludes the
proof of the multiplier rule.

Acknowledgment. I thank the referee, Gérard Debreu and Freddy Delbaen
for valuable comments on this paper.
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ON THE APPROXIMATION OF ITO INTEGRALS USING
BAND-LIMITED PROCESSES*

A. V. BALAKRISHNANY}

Abstract. Ito integrals involving observed data arise in many applications where we idealize the
observation noise to be white. Since the Wiener process is not realizable, and any observed process
must be smooth, the need arises for approximation in terms of a smooth process such as a band-limited
process which has no frequency components outside a finite band. We show that under a sufficient
condition, such an approximation is possible provided we also add suitable “‘correction’ terms.

1. Introduction. Let W(t; w), —o0 < t < + o0, denote a standard Wiener
process, say one-dimensional for simplicity, and let f(t) denote the associated
“growing” sigma algebra of sets (that is the sigma algebra generated by
W(s;w),s < t). Let f(t; w) be a function jointly measurable in t and w, measurable
p(¢) for each t, and further with say (for simplicity),

flElf(t;w)Izdt < 0.
0

In many problems of filtering and control, we need to evaluate the Ito integral

1
(1.1) fo f(t; w)dW(t; w).

The standard approximation is to use partial sums of the form
(1.2) LSt o)Wty g, 0) — Wt w)).

However, in practice, there is a serious difficulty with this procedure because, in
dealing with Ito integrals with respect to observed data, one does not have a true
Wiener process to work with (see the application in § 2.1 for more details on this).
What one has rather is a “‘smooth” approximation to the Wiener process. A most
convenient approximation is the ‘“band-limited” version, by which is meant,
precisely, the process

o) = [ M- Wi w),
where
[ emmmwar =y
vanishes outside a finite interval, and is thus “limited” to the finite band

(1.3) W(H=0, [fI>m>0,
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t Systems Science Department, School of Engineering and Applied Sciences, University of
California at Los Angeles, Los Angeles, California 90024. This research was supported in part by the
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and!

wWNH=1 |fl=m.

For any function g(-) in L,(0, 1) we note that | o 8(t)(t ; w) dt converges as m goes
to infinity with probability one and in the L,-mean to

1
(1.4) f g(t)dW(t; w).

0
However, the situation is quite different in the case in which g( - ) is not deterministic.
To take a classic example, consider the Ito integral

1

(1.5) J W(t; w) — WO, w)dW(t; w).
0

If we approximate

1 pt
(1.6) L f ys;w)ds y(t;w)dt
0

by the band-limited processes above, the limit as m goes to infinity is
(L.7) (W(1;0) = W(0; w)*/2,

while the Ito integral itself is equal to

(1.8) (W(1;0) — WO0;w)?/2 — 1/2.

In other words, (1.6) does not converge to (1.5), but it does if we add the correction
term (—%). Wong and Zakai [1] showed that if we consider the Ito integral arising
from a stochastic differential equation in the Ito sense, for example,

dx(t; w) = m(x(t; w)) dt + a(x(t; w)) dW(t; w),

then if we take the sequence of solutions obtained by replacing W(t; w) by a
sequence of smooth processes (such as the band-limited process), we do not have
convergence to the solution of the Ito equation but rather to another equation
obtained by adding a correction term

30(x(t; w))o'(x(t; w)) dt,

analagous to (1.8). They do not, however, deal with integrals of the form (1.1)
directly. McShane in his recent work? [2] has examined many approximations to
(1.1), but they are time-domain approximations (extension of the form (1.2)),
and in fact he cites the need for examining band-limited approximations in view
of the negative results of Wong—Zakai. In this paper we study the problem of
approximating integrals of the form (1.1) by functionals on the band-limited
process, one area of application being in the calculation of likelihood functionals.
We show that under a sufficiency condition on the function f(t; w), it is possible
to approximate in the desired manner, and indicate what the precise ‘“‘correction”

! We can generalize this condition, of course, so long as (1.4) holds.
2 See also his Stochastic Equations and Stochastic Models, Holt, Rhinehart and Winston, New York,
to appear 1974.
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terms must be. We begin with a special case first along with a direct application of
it. Our general result is given in § 3.

2. The linear case. We begin first with the notationally simple case, in which
f(t; w) is a linear functional but still exhibits the essential features of the more
general situation. Let W(t; w) denote an n-by-1 standard Wiener process on
(— 00, 00). See [3] for an explicit construction. As therein, we may set W(0; w)
to be zero. Let

(2.1 f(t;w)=ftL(t;s)dW(s;w), 0st=1,
0

where L(t;s) is an n x n matrix function, Lebesgue measurable in s, ¢, and such
that?

1 pt
(2.2) f f I L(t; s)|2 dsdt < oo.
0 Yo

In particular, of course, condition (2.2) implies that

1 1 t
f E(Ilf(t;w)llz)dt=J fliL(t;s)Ilzdsdt<oo.
0 (0] 0

Our first result is the following theorem.

THEOREM 2.1. Let H denote the real Hilbert space of nx 1 square integrable
Sunctions L,((0, 1), E,). With L(t;s) as in (2.2), define the linear transformation L
by

Lf=g; g(t)=J:L(t;s)f(s)ds, 0<t<l,

mapping H into itself. Suppose (L + L*)is trace-class (or, “nuclear”, as it is referred
to in the more recent literature). Then

0

1 t
= L(t;s)dW(s; w), dW(t;
0= U (t39) dW(s; @), AW w)]
(23) L[ ot
=limJ~ [J L(t;s)ym(s;a))ds,ym(t;w)] dt — $tr (L + L*),
0 0

m

where

Yt @) = fw Mt — $)dW(s; o),

M(s) = I,.f e*™iIs df = I (sin 2mms)/ns,
I, = n x n identity matrix,

and the limit may be taken in the L,-mean.
Proof. We begin with a lemma (cf. [4]).

3||B||*> = tr (BB*); [4, B] = tr (AB*).
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LEMMA. Let ¢ -) denote any orthonormal basis of functions in H. Then

24) n= Y L L, — btr (L + L¥),
where
1
G 1ot awies )
0

and the convergence is in the L,-mean.
Proof. See [4]. Here we shall indicate the main steps. Let a;; = [Lo;, ¢;].
Then since we are in a real Hilbert space, + tr (L + L*) = Y a;;, and we note that

(2.5) Y lay| < .
For any finite subdivision of [0, 1] with subdivision points ¢;,

{t}, to=0, t,=1,

p
we note that

p—1
N, = '—zo [f(ti; ), Wty 0) — W(t;; 0)]
= ZZ[Lpd’i’ij]CiCj,

where L, is the operator on H defined by

ti
L(ti;s)f(s)ds7 ti <t < ti+1’

Lf=g #0=

0

and we observe that L, is trace-class with trace zero. Next we can calculate that,
if we assume for the moment that L(t; s) is continuous in 0 =< s <t £ 1,

2
E((ZZ([Lp¢i7 o;) — a;))}{{; + Zaii) )
=2|L, - L|} s~ 0asp— o0,

where H-S stands for the Hilbert-Schmidt norm. Since #, converges in the L,-
mean to 7, we obtain (2.4). Next given an arbitrary (that is, noncontinuous) kernel
L(t;s), we can approximate it by continuous kernels L, such that

IL, — Llfis 0,
tr (L, + L¥) - tr (L + L¥*).

Since (2.4) holds for each L,, we can proceed to take limits on both sides to obtain
the desired result for L.
Remark. In the case that L(t; s) is continuous in s < t, we know that
1
$tr(L+ L* = %j tr L(t; t)dt.

0
On the other hand, even if [} |tr L(z; 1) dt < co, it is not necessary that (L + L*)
be trace-class, and (2.4) need not hold. For example, we know that we can, by a
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classical construction due to Carleman, find a continuous function h(t),0 < t < 1,
such that A(t) has the Fourier series expansion

h(t) =3 ¢, cos 2nkt,
0

where Y % |¢] = + 0. If we now take L(t;s) = h(t — s), we note that L is not
trace-class, and (2.4) does not hold if we take the orthonormal basis of trigonometric
functions.

Let us now return to the proof of the theorem. Let us first assume that L(t; s)
is continuous in s < t. Then because (L + L¥) is trace-class, we know that

1
tr(L + L*) = f tr L(t; t) dt.
0

First we note that by letting (for fixed m)

R(t;s) = E(y,(t; w)y(s; 0)*),

we have
(2.6) R(t;s) = I(sin 2mm(t — s))/n(t — s) = M(t — 5).

Define the transformation, mapping H into itself, by
1
R =g: o) = [ Re:9)f0)ds. o<1,
0

Let ¢; denote the orthonormalized eigenfunctions of R, and it is an easy matter to
see that R is trace-class and that

f[fummmmmwmmﬂm=zz%wm
0 i i

0

where

w=£ummmmmn
ay = (Lo, 6.

Let ¢, be defined as before:
a=ﬂMMJWm@l

The ¢, -) being an orthonormal basis, we have, of course,

Z[L¢ka O = %tr (L + L*).

Next let us note that, because of the circumstance (2.6),

E(L7) = [Réi b1,
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as a ready calculation shows. Next let
= LY a7,
Mo = ;;aijcicj'
Denoting by J; the eigenvalues corresponding to ¢;, we can readily calculate that
E((1m = 10)") = (L ad — 2)* + 23 Y (by*(1 = 44)),
i

where b;; = (a;; + a;;)/2. If we denote by k(¢;s) the kernel corresponding to
(L + L*), we note that

1 1
Ta(l — A) = htr (L + L*)—f f tr k(t; )R(s; 1) ds dt
0 0

1 1 1 ] 2 —
=Jtumom~fftummgiﬂﬁ-ﬂma
0 o Jo n(t — )

Again,
(b Aih; = Z Z [HL + L*)R¢;, ¢;] - [RHL + L*)¢;, ¢}]

= [3(L + LR, R{L + L*)us.

(H-S denoting the inner product in the space of H-S operators). But now it is
standard analysis to show that

1 pt in?2 _ 1
hmfftﬂﬁmELﬂ&ﬂﬂﬁmajtﬂﬁMM
m Jo Jo (t =) 0

lim [3(L + L*)R, RH(L + L¥)]y_s = (L + L*), 5L + L]y = 3, ). b},
m i
Hence (2.3) has been proven for the case where the kernel L(¢;s) is continuous.

If L(t;s) is not continuous, then we can use the approximation (as in [5], for
example)

1 t+h ps+h
L,(t;s) = 4_}7_[ J L(u;v)dudv,
t—h Ys—h

apply the theorem for each sufficiently small 4, then as h goes to zero exploit the
fact that

tr (L + L*) = limtr (L, + Lj),
h
IL, — Llifs— 0.
2.1. An application. We shall now indicate one application of Theorem 2.1,

which was in fact the motivation for the present work. Consider the linear stochastic
differential system

t
2.7) x(t; w) = f Ax(s; w)ds + BW(t; w), 0t1,
0
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t

(2.8) Y(t;w)=f Cx(s; w)ds + DW(t; w), -0 <t< w,
(4]

x(t;w) =0, t=<0, DD* = identity matrix, BD* = 0.

W(t; w) is a standard Wiener process as before, with W(0; w) zero. We know
that the process Y(t; w), 0 < t < 1, induces a probability measure on the Banach
space C(0, 1) which is absolutely continuous with respect to the Wiener measure
induced by W(t; ), 0 < ¢t < 1. Moreover the R-N derivative is given by

1 1 1
(29) exp — E{Jo [Cx(s; w), Cx(s; w)]ds — 2 J;) [Cx(s; w),dY(s; w)]} R

where
Xt 0) = f HOH(E) " P(S)C* dY(s; ),

where ¢(t) is a fundamental matrix solution of

o(1) = (4 — P()C*C)p(1),
and P(t) is the nonnegative definite solution of
P(t) = AP(t) + P(t)A* + BB* — P(t)C*CP(t), P(0) = 0.

Unfortunately, what is observed in practice is not (2.8), but a band-limited version,
albeit of large enough bandwidth to allow the use (in theory) of (2.8). The main
question, then, is the approximation of the Ito integral in (2.9). Here we can use
Theorem 2.1 to state the following.

THEOREM 2.2. Let M(-) be as in Theorem 2.1 and define

y(t;w)=fw M(t — 5)dY(s; w), 0<t=1.

Then the Ito integral in (2.9) can be approximated

1 1 t -
f [Cx(s; w),dY(s; w)] = limJ [J CL(t; s)y(s; w) ds,y(t;w)J dt
0 0 0
(2.10) 1
— f tr CP(¢t)C* dt,

0

where

L(t;s) = ¢p(t)p(s) ™ P(s)C*.
Proof. We note, first of all, that we can write

Wt w) = Cx,(t; w) + z(t; o),

Cx,(t; w) = foo M@t — s)Cx(s; w)ds = Jl M(t — s)Cx(s; w)ds,
— 4]

Z(t; w) = on M(t — s)DdW(s; w).
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We note that using Theorem 2.1 and the fact the operator
t
Lf=g: g0 = | CLt:9f0)ds, 0sis1,
0

is such that (L + L*) is trace-class (see [4] for a proof if necessary), we have

fl [Jq CL(t; s)z(s; w) ds, z(t; w):I dt - Jd [f CL(t;s)D dW(s; w), DdW(t; w)]
o LJo o LJo
- fl tr CP(t)C* dt.
0

The theorem is thus proved if we can show that

fl [jt CL(t; 8)z(s; w) ds, z(t; w):| dt
0 0

(2.11) LT
- f [J CL(t; s)Cx(s; w), DdW(t; w)]
0 0
and that
Jd I:Jq CL(t; s)Cx,(s; w), Cx,,,(t;co)] dt
0
2.12) °

- fl [Jﬂ CL{(t; s)Cx(s; w) ds, Cx(t; w):I dt.
0 0

Because random variables are involved, we shall proceed to prove this in some
detail. Let

W iw) = j Six(s ) ds.

Then

Cxyiti ) = | " e y(f ) df.

Since x(t; w) is continuous in t, omitting a set of measure zero, we note that

1
f | Cxot; ) — Cx(t; )] dt < fl WS s )l df,
0

fi>m

and since

1
f |Cxolt; @) — Cx(t; )? di < f (e )12 df,
0

Lf1>m

it follows that

1
J E(|Cx,(t; w) — Cx(t; w)|*)dt >0 asm— co.
0
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This is clearly enough to establish (2.12). To handle (2.11), it is convenient first
to integrate by parts. Thus,

fl [JI CL(t; s)Cx(s; w), dW(t;w)]
o LJo

= Jl [Jﬂ &d(s) " LP(s)C*Cx(s; w) ds, p(t)*C*D dW(t; w)]
o LJo
1 1
= [f (/)(s)‘lP(s)C*Cx(s;w)ds,f P(s)*C*D dW(s;w)]
0 0
- Jl [d)(t)"P(t)C*Cx(t; ), Jt d(s)*C*D dW(s;w)].
0 0

We perform a similar integration by parts on the left-hand member of (2.11),
and establish the necessary convergence term by term. For 0 < ¢ < 1, let

Nt o) = f () C*o(s; ) ds — f (57 C*D dW(s; )

- f " (hfs) — Hs)D dW(s; ),

where
S¥C*, 0<s<t,
his) = {(p( )0 ot}_l-erw:se,
h,(s) = J: M(s — o)h(o) do.
Then

Bl o)) = [ 1hals) = )12 ds
and the integral on the right goes to zero as m goes to infinity. With this additional
estimate, we can see that (2.11) follows.

3. Generalization. Let us now go on to consider the general case. In order to
avoid notational complication, we shall restrict ourselves to the case, in which
W(t; w), the standard Wiener process, is one-dimensional. The extension to the
multidimensional case can be made using either polynomials as in [6] or tensor-
product Hilbert spaces as in [7].

Suppose, then, we are given an Ito integral of the form j(l) f(t; w)dW(t; w),
where [} E(|f(t; w)|*)dt < oo. Note that n(w) = [ f(t;w) dW(t;w) defines a
measurable, square integrable functional on the Wiener process W(t; ),0 <t < 1,
and as Ito has shown in [8], it can be approximated by sums of the form

n 1 1
ZI J K(ty, -, t,)dW(t ;o) - dW(t,; @),
140 0
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where each term is an Ito multiple integral. For example, the “linear” case of

§2,
1
L
can be expressed using the convention that L(t;s) = 0 for s > ¢:

Vel L(t;s) + L(s;t) ' '
.[o J;) —2—dW(S,w)dW(t,a)).

Hence our main result can be stated as follows.

THEOREM 3.1. Let K(ty,---,t,) be a continuous symmetric (real-valued)
SJunctionon 0 S t, < 1,i=1,---,p. For each integer v, 2v < p, and each fixed
function h(t,,---,t,_,,) continuous in 0 £ t; < 1,i=1,---,p— 2v, define the
operator L, by

Lf=g;
tl,"', v)_j f Ktl,...’ vs St ’”"SV’TZ\H-I’“"Tp)
hryyiys st )dry ey - o dt, f(sy, -, s)ds; - ds,

Jt L(t;s)dW(s; w)) dW(t; w),

0

mapping L,((0, 1)) into itself. Suppose L, is trace-class for each v and each arbitrary
chosen h(- - -). Then the Ito integral

J‘ f Ktl,"' dW(tl, ) "dW(tp;O))
. [p/2] l)v
(3.1 = lim vZO m—‘J j K(0,,61,05,+,0,,0,t5,41, ",

cdoy - doY(tyy ;@) - Yty @) diyy 4y - dt

p°

where

0 3 2 .
Wt o) = f_oo mmtn_(is)s))vdW(s;o)),

the limit being taken in the L,-norm, and [c] denotes the largest integer <c.

Proof. To clarify the notation in (3.1), let us look at (3.1) for the case p = 2.
We have

1 1
ffﬂmmN%mMMw@
0 0

1 1 1
=MIIKWMWMM%®@%—IMMW-
0 0 0

But this is a special case of Theorem 2.1. For, the Ito double integral is given by the
sum of the integrated integrals,

t 1 pt
JII K(t;s)dW(s; w)dW(t; w) +J f K(s; t) dW(s; w)dW(t; w),
0 vJo 0 JO
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which, since the kernel is symmetric, is equal to
1 pt
2J f K(t;s)dW(s;, w)dW(t; w),
0 Yo

and this in turn, by Theorem 2.1,
1 t 1
= lim2f j K(t; s)y(s; w)ds y(t; w)dt —f K(t;t)dt
0 JO 0

1 1 1
= lim L J;) K(t;s)y(s; w)y(t; w)dsdt — J‘O K(t;t)dt.

Illustrating the case when p is odd, let us calculate (3.1) for p = 3:
1
[ ] ke oawe. 0 w0 awie; 0
0 0
1 1 1
~ lim | f [ Kttt 05 05500 drydiy iy
0

1 a1
~3J f K(s;s;t)ds y(t; w)dt
o Jo

The main tool we shall use in the proof is the decomposition formula for
multiple Ito integrals. Let ¢( - ) denote an orthonormal basis in L,(0, 1). Let us use
the notation I(K(t,, - - -, t,)) for the associated Ito multiple integral. Then we have,
using the Ito decomposition formula (cf. [8]),

1(;,(t1)(t5) -+ ¢1,,(tp)) =1, (¢;,(ty) - ¢i,,_ (tp- 1))Ci,,(w)
3.2)

p—

1
- Z I, 5(di,(t1) -+ i (e D)Pi1 - by (Lo D Dis 1,)5

where {(w) = [ ¢(t)dW(t;w). Next let us note that ¢, (t,) - ¢, (t,) is an
orthonormal basis for L,(0,1)"), v < p, and in particular,

(33) K(tla tt ) = Z Zautz 1p¢11 : ¢1p p)’

the series converging in L,((0, 1)?), where the Fourier coefficients are also symmetric
in the variables. Because of the trace-class condition on the operators L,, it is
readily seen that

(34) Z Zlallllllll dyivizy 4+ 1. lpl < ©

11 lv

for each fixed set of indices i,,.,, -, i,, and every v, 2v < p. Because of (3.3),
we have that the Ito integral in (3.1) is the limit in the L,-norm of the series

(35) Z Zalllzl;l, Jdp p¢)11( l) ¢ ( ))
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This series we shall now show is expressible as
[p/2] I(—
P
a;
VZO (p — 2v ’2Vvy Z %,zgl Z l1111212 l2v+1 lp
.giml(w) s L)

We can prove this by induction using (3.2). (The coefficients are obtained by the
same combinatorial argument as in Wiener [9]). Thus, substituting in (3.5) from
(3.2), and assuming the result true for integers less than p, we have

Z e Z i, i (i (8y) - ¢ip(tp))

[(p—1)/2] (p _ 1)|

B Z (P —1- |2vv| Z Z Zalm dyivizy+1e-ip

0
‘C2v+ (@) - Cp(w)
[(p—2)/2]

—2
- (P - 1) Z ( (p 2V |2vv|z Z Z

0 Ji Jp-2

(3.6)

Qisisjrjiomivivize s 1oip 2020+ 1(@) =+ {5 (@).

And combining the two sums, taking the v sum in the first term with the (v — 1)
sum in the second term for v = 1, and noting that

(p— 1! 4 p—1Dp-2)! _ p!
(p—1—20)2% " (p—2—2v— )2 v -1 (p— 202!

we have (3.6). Since we have already proved the result for p = 2, the induction is
complete. Next for each m, let ¢; be the orthonormalized eigenfunctions of the
operator R defined by

Rf =g; g(t) = Ll (sin 27(t — s))/n(t — s)ds

mapping L,(0, 1) into itself, and letting

1
() = f iOV(E; @) dt

we note that

1 1
f ,[ K(tl’tla"'atvatvat2v+17”"tp)
0 0

PR (ZIY ¢ip(tp) dty ---dt,dty, . -+~ dt,

=2 2 ity ivivinn s Loweip?
i iy

by virtue of the trace-class assumption of L,. Hence we can readily see that for
fixed m, the right-hand side of (3.1) is given by :
[p/2] |(_ l)v

(3.7) ; - 2v)|2vv|z Z Z Zaililu-ivivizvn...ip ;';VH( o) - C (Q))

iv B2v+1 ip
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which is the same as (3.6) except for replacing {;(w) by {"(w). It only remains to
show that as m goes to infinity, (3.7) converges to (3.6), to conclude the proof of
(3.1). Here we can again exploit the fact that E({[(w){,(w) = [R¢;, ¢;]. The proof
is similar to the one we used in Theorem 2.1, only more tedious. Let us first note
that the difference of the v = 0 sums in (3.6) and (3.7) is

Z e Zailiz"‘i}’(CilCiz e C — C:’:C:Z e [p)
and we can readily calculate that the expected value of the square of this is given by

p! Z T Z(ail,.‘ip)z(l = Ay o lip)

2
(38) + Z 2v | Z Z (Z Z ailinmivivizv+1~~~ip/1i1}'i2 T liv) A'izn s Ay

ti2v g ip \ix iy
[p/2] py 2
- Z L DIEEEDY Z"‘Zailil...ivivizm...ip .
2v+1 ip \i1 iv

We can now proceed by induction. If we assume the result to be true for
integers less than p, then to prove it for p we only need to show that (3.8) goes to
zero. But this is readily done in a manner which is analogous to the case p = 2.
Thus the first term in (3.8) can be expressed

(3.9) p!([K,, K,] = [R,K,, K,]),

where we denote by R, the operator

sin 2zm(t,; — s
R f=g; glty, .t f f sin 2nm(t; = $1)

m(ty — sy)

sin 2zm(t, — s,)
n(tv - Sv)

Sf(sy ++-s,)dsy - ds,

mapping L,((0, 1)*) into itself. By K, we mean the function K(t,, ---, t,) as an
element of L,((0, 1)?). Clearly (3.9) goes to zero as m goes to infinity. Next let us
look at the second term. Note that we can write

Z Z ailil...i\,iviz\,+1...ip)'i1 o+ A, =tr R L,,
where L, is defined by
Lf=g; glt;---t)

1 1 1 1
=j = f S Y PSR o
0 0 0 0

o ¢ip(ap) do.2v+1 e dapf(sl’ ] Sv) dsl e dsv
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mapping L,((0, 1)*) into itself. And hence

2
Z Z(Z Zalxlx dvivizy+ 1. lp':[’ll U ;Liv) lizvn T )‘ip

i2v+1 p \iy
J‘ f J J‘ sin 2ztm(t, — 1) sin 2zm(t, — s,)
n(t, — s, n(t, — s,)

2
‘K(sl""’sv’tl"”7tv’62v+17”"ap)dsl"'dsv"'dtl”'dtv)

doyy sy c--doy,

which, as m goes to infinity, clearly goes to

2
f J. f f Ktl""7 t17""tv702v+17"',ap)dtl'”dtv)

doyyyy - do,

2
- T B[S Saininn)
i2v+1 ip \i1

Hence (3.8) goes to zero, thus concluding the proof of the theorem.
Finally let us remove the condition of continuity on the kernel.

COROLLARY. Suppose K(t,---,t,) is symmetric and € L,((0,1)"). Suppose

further that the operator L, defined by

va:-_g’ tl"“a j f Ktl""’v’Sl’“'7sv’0-2v+1’"'761;)
'd0.2v+1 ...do'p.f(sl,...,sv)dsl oo ds

v

mapping L,[(0, 1)"] into itself is trace-class a.e., in the variables 6;,2v + 1 < i < p,
and

1 1
J J (ter(0-2v+1""7Gp))2d62v+1'”do'p<w
0 0

for each v, 2v < p. Then the Ito integral

1
JI J‘ K(ty, -, t,)dW(ty, w) - dW(t,, w)
0 0

[p/2] p!

G10)  =lm ¥ L [ Lt e 0)

o (p — 2v)
o y(tp? (0) dt2v+ 170 dtp‘
Proof. For each h, the kernel

tyt+h tp+h
Kh(tl’“"tp)=(1/(2h)p)j J. K(Sl,...’sp)dsl,...,dsp
t

ty—h p—h
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satisfies the conditions of the theorem, and hence we can obtain (3.1) for K,(- - -).
Because of the trace-class conditions imposed on K(: - -), we may proceed to take
limits on both sides and obtain (3.10) as required.
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ON LOCAL AND GLOBAL CONTROLLABILITY*

H. HERMESY

Abstract. Computable sufficient conditions to determine local controllability along a reference
trajectory are developed both by considering controllability of the linear variational equation and by
direct use of differential geometric techniques with special types of control perturbations. The
equivalence of the results obtained by the two methods is shown.

A collection, &, of smooth vector fields on a manifold M is said to be controllable on M if every
pair of points of M can be connected by a solution of & If the set of points attainable by solutions
of & from every point x € M has nonempty interior, ¥ is said to have the accessibility property.
Jurdjevic has posed the problem of whether every family & of analytic vector fields on a connected
analytic manifold M which has the accessibility property is controllable on M. We give a counter-
example on the two-torus. It is next shown that every commuting two-field on the two-torus is con-
trollable. We also show that any n-manifold admits a collection & of 2n smooth (C*®) vector fields
with the accessibility property, but such that & is not controllable on M.

1. Introduction. Let M be a smooth (C®) n-dimensional manifold with
tangent space at x denoted TM,. For each « in an index set A, let X* denote a
smooth tangent vector field on M ;let & = {X*:0€ A} and &, = {X*(x)e TM,:
ae A}. A solution of the collection of vector fields & is an absolutely continuous
map ¢:[0,$] - M, >0, such that de(t)/dte ¥,, almost everywhere. For
simplicity of exposition, we shall assume that solutions exist for all ¢ = 0. Note
that we do not allow t < 0.

We begin with the problem of local controllability along a reference tra-
jectory. Specifically, let ¢(-; p°) denote a solution of ¥ with ¢(0;p°) = pe M.
The system & is locally controllable along ¢ at time t, = 0 if all points in some
n-dimensional neighborhood of ¢(t, ; p°) can be attained at time t, by solutions
of & initiating from p°. The computable sufficient conditions which we obtain
for & to be locally controllable along a reference trajectory are local in nature,
hence there is no loss of generality in assuming M = R". Here we shall consider
the collection of differential equations associated with & to have one of the
following control representations (X, Y, f are C* functions with ranges in R";
X denotes dx/dt):

(L.1) x = X(x) + Y(x)u, —-1=2u=sl,
(1.2) Xx=X(x)+ Y Yixu;, —-1=5u;=1
j=1
(1.3) x = f(x,u), ue U < R*, interior U # .

We shall give sufficient conditions for the system considered to be locally con-
trollable at some time t, along a reference trajectory ¢ generated by a control u
which is piecewise constant and takes values in the interior of its set of admissible
values. Many sufficient conditions can be found throughout the literature of the

* Received by the editors March 22, 1973, and in revised form June 30, 1973. This research was
supported by the National Science Foundation under Grant GP27957.
+ Department of Mathematics, University of Colorado, Boulder, Colorado 80302.
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last several years. One of the goals of this section will be to unify and show the
relations among the various approaches taken on this problem.

For the question of global controllability, we follow Sussmann and Jurdjevic
[1], and define: & is controllable on M if every pair of points of M can be joined
by a solution of & ; & has the accessibility property if the set of points attainable
from each point x € M, by solutions of £, has nonempty interior. In [1], com-
putable criteria are given to determine when a collection of analytic vector fields
on an analytic manifold M has the accessibility property. Jurdjevic [2] shows that
if & is a collection of right-invariant, analytic vector fields, with the accessibility
property, on a compact, connected Lie group M, then & is controllable. The
problem is posed, in [2], as to whether the accessibility property always implies
& is controllable on a compact, connected manifold M. We give a counterexample
with M the two-torus, T2. On the other hand, we show that every pair of linearly
independent, commuting (under the Lie product) vector fields on T? is controllable.
We next show that any n-manifold M carries a collection, %, of 2n tangent vector
fields X!, ---, X?" such that & has the accessibility property (indeed we even
have dim span {X'(x), - -+, X*"(x)} = n for all xe M), yet & is not controllable
on M.

2. Local controllability along a reference trajectory. Let ¢(¢; p°) denote a
reference trajectory for one of the systems (1.1)«(1.3). If t, > t,, the map ¢(t,, - ),
considered as a map of initial data, carries a neighborhood of ¢(t, ; p°) homeo-
morphically onto a neighborhood of ¢(t,: p°). Thus if a system is locally con-
trollable along ¢ at time ¢,, this is also true for any ¢, = ¢,.

2.1. Controllability of the variational equation. Let v = 0 generate the
reference trajectory ¢ of equation (1.1), and let X (x) denote the n x n Jacobian
matrix of partial derivatives of the vector function X. The linear variational
equation along ¢ is

(2.1) H1) = X (o())z(t) + Y(@(t)u(?).

If this equation is controllable at some time ¢, > 0 (see [3, § 19]), it easily follows
from the implicit function theorem that the system (1.1) is locally controllable
along ¢ at time t, . For notational simplicity, let (1) = X (¢(t)) and B(t) = Y(o(t)).
Then A4 and B are smooth matrix-valued functions and [3, Thm. 19.3] can be
applied as follows. Let I' = d/dt — A(t). If there exists a positive integer k and a
t; = 0 such that

rank [B(t,), (TB)(t,), -+, (T“B)(t))] = n,

then the linear system (2.1) is controllable at ¢, .
For the special form of A(t), B(t) as above, we compute

22) ([IB)t,) = [g; Y(o(1)) — Xx(¢(t))Y(<0(t))] = —[X, Y](e(t,)),

t=ty
where [X, Y] denotes the Lie bracket product. Define the operator ad as follows:
@d® X, Y)(p!) = Y(p!), (ad X, Y)(p!) = [X, Y](p') and inductively (ad* X, Y)(p")
=[X,(ad* ' X, Y))(p'). Then, inductively from (2.2), [(I'B)(t,) = (ad? X, Y)(¢(t,)),
etc., and Theorem 19.3 of [3] applied to equation (2.1) yields the following.
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PROPOSITION 1. A sufficient condition that the variational equation (2.1) be
controllable at time t, > 0 is that there exist a t, € (0, t,] and integer k such that

(2.3)  dimspan {Y(¢(t,)), (ad X, Y)(o(t,)), - - - , (ad* X, Y)(e(t,))} = n.

It follows that (2.3) provides a sufficient condition for system (1.1) to be locally
controllable along the solution ¢ generated by u = 0, at time ¢, > 0.

Remark 1. Theorems 19.2 and 19.4 of [3] give necessary and sufficient con-
ditions for controllability of the variational equation (2.1). These do not, how-
ever, yield necessary conditions for controllability of the system (1.1) along .
Indeed the system (1.1) may be locally controllable along ¢ at t,, yet the variational
equation (2.1) is not controllable at t,. For an example of this, see [4, Ex. 2.2].

2.2. Differential geometric methods of Hermann and Krener. For notational
convenience, we shall use either Y(t; p) or S'(p) to denote the solution, at time ¢,
of x = X(x) + Y(x), x(0) = p, and either ¢(t; p) or T'(p) to denote the solution
of X = X(x), x(0) = p. Then y corresponds to u = 1 in(1.1)and ¢ to u = 0. Again,
¢ will be the reference trajectory.

For the moment, assume that we may proceed either forwards or backwards
in time along a trajectory. This will be corrected later. Let t; > Oand ¢(t, ; p°) = p*.

For real g, r in a neighborhood of zero, define
g(r.o) = T°S'T"*~~"(p°).
Then ¢(0:; ¢) = p* for all ¢, and
dq

(2.4) 500 = Do(o:p(—0o,p" )Y(p(—a:ph),

where D denotes the differential. Geometrically, this equation tells how the
variational equation along ¢, which has fundamental solution D¢, carries the
vector field Y forward to time ¢, which is ¢ = 0. Indeed, consider the situation
on a manifold M with tangent space at q denoted TM, rather than on R". Then

Do(o:q): TM, > TM

@(a;9)°
thus
Do(a,p(—0,p"): TM y_ g0y = TM ..
Now
o1
(X, Y1(p') = }Lng ;[Dw(—t, o(t;p")Y(o(t;ph) — Y(p')I,
hence

d
%[Dw(o:<p(—o;p1))Y(<p(~a;p‘))]a=o = —[X,Y](p".

In the terminology of differential geometry, [X, Y](p') is called the Lie derivative
of Y with respect to X at p'.

Another interpretation of the Lie derivative is as follows. Pick a basis for
TM . Then Do(—o; p') carries this basis into a basis for TM

@(—a;p')-
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Express Y(@(—a:p')) in terms of this latter basis, and the Lie derivative of
Y with respect to X at @(—o; p') is just the derivative (with respect to o) of the
components of Y. But for any basis in TM ., Do(c;¢(—0c;p')Y(e(—0c;p')
merely gives the components of Y at ¢(—o;p') in terms of the induced basis for
TM,_,. - Thus, again (d/do)Do(o ; o(—a:p'))Y(p(—0: p')) is the Lie derivative
of Y with respect to X. Also, inductively,

2

d
FW(U:<p(—a:p‘))Y(<p(—a:p‘))la=o = [X,[X, Y]I(ph).

In general, we obtain the Taylor series expansion
Do(a:; o(—a:p")Y(p(—0:p")
(2.5) = Y(p') - olX, Y](p") + (¢?/2)(ad® X, Y)(p') — ---
= (exp(—oad X)) Y(p').
In forming the derivative of g with respect to r in (2.4), we assumed r < 0
was admissible. Since r represents time along a trajectory, this presents a difficulty.
Following ideas of Krener [5], we use the fact that both X + Y are admissible

vector fields. Let Q'(p) denote a solution, at time ¢, of X = X(x) — Y(x), x(0) = p
and define ¢ (r; 6) = T°Q"'T" ~°~"(p°). A simple calculation shows

.0 . 0
lim —q(r;a) = —llmi(r;a),
1290 129 o

hence we may consider g, with r = 0, as having a derivative with respect to r at
r = 0 as given by (2.4).
Suppose, for some positive integer k,

(2.6) rank {Y(p'),(ad X, Y)(p"), ---, (ad* X, Y)(p")} = n.

For any set ¢4, - - -, o, of real numbers in a neighborhood of zero, define
qry, - ri 0y, , 0p) = TS ... T"‘S"T“_z“"‘*"‘)(po),

From (2.4) and (2.5) it easily follows that

0
2.7) %(0, 050y, 0) = Y(p') — ofad X, Y)(p!) + - -
i
Now consider ¢, - - -, o, as fixed parameters and g : R* — R". We have g(0, - - -, 0;
6y, -+, 0, = p', while from (2.6) and (2.7) one can easily conclude that in any
neighborhood of zero, there are values o, -, g, such that Dg(0,---,0;

gy, -+, 0,) has rank n. For such a choice of the values g;, ¢ maps a neighborhood
of zero in R* onto a neighborhood of p' in R".

Remark 2. The conditions (2.3) and (2.6) are the same. Both provide only a
sufficient condition for controllability of the linear variational equation.

We may now use either the methods of § 2.1, or of this section, to immediately
obtain the following local controllability results.

PROPOSITION 2. Let ¢ be a solution of (1.1) corresponding to control u = 0.
A sufficient condition that the system (1.1) is locally controllable along ¢ at time
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t, > 0 is that there exist a t, € (0, t,] and integer k such that

rank {Y(p(4,)), (ad X, Y)(o(t,)), - -, (ad* X, Y)(o(t1))} = n.

PROPOSITION 3. Let ¢ be a solution of system (1.2) corresponding to u; = 0 for
all j. A sufficient condition that system (1.2) be controllable along ¢ at time t, > 0
is that there exist integers ky, - -- , ks and a t, €(0, t,] such that

rank {Yl@l)’ ) Ys(pl),(aan Yl)(Pl)’ Y (ad X’ Ys)(pl)’
Tt (adkl X’ Yl)(Pl), Y (adksXa Ys)(pl)} =n,

where p' = ¢(t,).

PROPOSITION 4. Let u* be an admissible control for system (1.3) which generates
a reference trajectory . A sufficient condition that system (1.3) is controllable along
@ at time t, > 0 is that there exist a t, €(0, t,] such that u*(t,) € interior U, u* is
constant in a neighborhood of t,, and if p' = ¢(t,),

rank {Y'(p'), -+, Y(p!),(ad X, Y))(p'), - - -, (ad* X, Y*)(p!)} = n

for some integers ki, ---, ky, where X(x) = f(x,u*(t,)) and Yi(x) = (0/ou;) f(x,
u*(ty)).

3. Global controllability. Let M be a smooth, n-dimensional manifold. For
X, Yany two C® vector fields on M, we let [ X, Y] denote their Lie bracket product.
Let V(M) denote the set of all C* vector fields on M, which we consider as a Lie
algebra over the reals with product the Lie product. If & is a collection of vector
fields on M, the fact that we required a solution of & to be defined only for t = 0
again creates difficulties. These are eliminated by assuming & is symmetric, i.e.,
X e & implies — X € &, for then we can effectively reverse time by reversing the
vector field.

For the moment, consider & to be C® and symmetric. Let 7 (&) denote the
smallest subalgebra of the Lie algebra V(M) containing & ; i.e., 7 (&) consists of
the linear span of all elements of & together with all products of elements of &,
and products of products, etc. We can now state a case of Chow’s theorem, as
follows.

THEOREM (Chow [6]). Let & be a symmetric set of C* vector fields on M. If
for each x e M, dim I (), = n, then & has the accessibility property on M.

For symmetric &, this theorem has as an immediate consequence a relation
between & having the accessibility property and & being controllable.

COROLLARY. Suppose M is connected, while & is a symmetric set of C* vector
fields with dim I (&), = n for all xe M. Then & is controllable on M.

The verification of this is easy. Indeed, join any two points p!, p> € M by an
arcin M. For each point p on this arc, there is a neighborhood of points accessible
from p, and this neighborhood contains p as an interior point. The arc is compact,
hence we can take a finite subcover from the above neighborhoods. Call these
N(x!), ---, N(x¥), and assume the labeling taken so p! e N(x!), N(x’) N N(x'*!)
# & and p? € N(x*). Then there is a trajectory of & which joins p' to a point
q' € N(x') N N(x?), a trajectory joining ¢! to x? in N(x2), a trajectory joining x>
to g2 € N(x?) N N(x3), etc., until we get to p?. For details, see [7, pp. 664-665],
or [2, Prop. 5] for a different argument.
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If & is not symmetric, matters are not so easy. Sussmann and Jurdjevic
obtain the following result in [1].

THEOREM (Sussmann-Jurdjevic). Let &% be a set of analytic vector fields on the
analytic manifold M. If dim I (&), = n for all xe M, then & has the accessibility
property.

Now, however, it is in general not true that x is an interior point of the
neighborhood of points attainable from x by solutions of &. Thus the relation
between & being controllable and having the accessibility property is no longer
as easy as in the corollary following Chow’s theorem. Some known results are as
follows. Let M = R"and %, = {Ax + bu,i = 1,2, , k, —00 < u < oo} where
A is a given real n x n matrix and b!, -- -, b* e R" are given. Then if % has the
accessibility property, & is controllable. Here one can easily verify that dim 7 (%),
= dim 7 (¥), = dimspan {b', ---, b*, Ab*, .-, Ab*, .-+, A" 'bL, ..., A" BN}
The result now follows from standard controllability theory of linear control
systems. Jurdjevic [2] shows that if & is a set of right-invariant analytic vector
fields with the accessibility property on a compact, connected Lie group M,
then & is controllable on M. This motivates the question, asked by Jurdjevic,
as to whether the accessibility property for an analytic set of vector fields, &, on
a compact, connected, analytic manifold M implies & is controllable on M. We
shall next give an example to show this is not true.

DEFINITION. A tangent k-field on a manifold M is a set of k tangent vector fields
X!, ..., X* which are linearly independent at each point of M.

Remark 3. Clearly, a k-field on a k-dimensional manifold has the accessibility
property. For results on when an n-manifold admits a k-field, see [8].

EXAMPLE 3.1. An analytic two-field on the torus, T?, which is not controllable.

Let 0, ¢ designate coordinates for R?, and define

X0, ¢) = (1/2 + (1/2)cos 0)3/00 + (1/2 — (1/2) cos 0)d/d¢
X0, ¢) = (—1/2 + (1/2) cos 0)8/00 + (1/2 + (1/2) cos 0)d/d¢.

These functions are 2n-periodic in 6 and ¢ and analytic. We consider T2 as the
plane with points whose coordinates differ by integer multiples of 2z identified.
Letting Z denote the integer multiples of 2r, the covering space map from
R? - T? = R?/Z x Z induces a Riemannian metric on T2. We now consider X*
and X? as (induced) vector fields on T2. Relative to the inner product derived from
this metric, we see X' and X? are always orthogonal and neither is zero. Thus
& ={X', X?} is a two-field on T?. (Note for later use, that [X*, X2](0, ¢)
= ((1/2) sin 0, (1/2) sin 0 cos 0), hence & is not a commuting two-field.) We see that
for 0 = n, X! has a periodic solution 6(t) = =, ¢(t) = t. Denote this solution by
y,. For 6 = 0, X? has a periodic solution y,. Also any solution which begins in
the ‘““half-torus” (cylinder) 0 < 6 < n, 0 £ ¢ < 2=, remains there, i.e., this is an
invariant set for the flow of %, hence % is not controllable on T2. (See Fig. 1.)

Remark. The referee has informed me that C. Lobry has also given an ex-
ample of two analytic vector fields on the two-sphere which satisfy the accessibility
property but do not yield a controllable system. His paper, Controllability of non-
linear systems on compact manifolds, appears in this Journal, 12 (1974), pp. 1-4.

DEFINITION. A k-field {X*,---, X*} on M is called a commuting k-field if
(X, X/]=0foralll £i,j < k. We say a manifold M has rank k if k is the largest
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0
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integer such that there exists a commuting k-field on M.

For example (see [8]), rank T2 = 2, while Lima [9] has shown that the rank
of the three-sphere, S3, is one.

THEOREM 3.1. Let & = {X', X?} be a commuting two-field on the two-torus
T?. Then & is controllable on T?.

Proof. (We utilize many ideas from the proof of [9, Thm. 1].) Since X!, X?
are pointwise linearly independent and commute, they determine an action ¢ of
the Lie group R? on T2. Specifically, let &, n:R* x T? — T? denote, respectively,
the flows generated by X! and X% Then for any r = (t,5)e R? and xe T?,
o (x) = ¢mdx) = n&(x). Since for controllability we restrict the time parameter
to values t = 0, what we wish to show is that the image {¢,(x):r = (t,5), t,s = 0}
is all of T? for any x € T?. We shall call this the positive orbit of ¢ through x.

Consider, first, the positive semiorbit &,(x), t = 0. If this is dense in T2, the
linear independent of X! and X? immediately yields the desired result, thus we
assume the positive semiorbits of X! and X? are not dense in T'2. By the theorem
of A. Schwartz for smooth (C? at least) vector fields on two-manifolds, since X'
does not vanish, &,(x) must have a minimal set homeomorphic to S* for some
xo € T2, ie., there exists an x, € T2 such that the é-orbit through x, is periodic
with least period ¢, > 0.

Now let K be the closure of the positive orbit of ¢ through x,. Then K is
compact, nonempty, ¢ positively invariant, hence contains a positive minimal set
M for ¢. The positive @-orbit of x, € M is dense in K, since K is its closure, hence
is dense in M. Thus if x is any point in M, there exists a sequence r, = (t,, S,),
t, = ©, s, = oo, such that ¢, (xo) = x. Then ¢, (x) = lim ¢, - ¢, (xo) = lim @,
o &, (xo) = lim ¢, (xo) = x, where the second equality uses the commutivity of
&, n. This shows that every £-orbit through a point of M is periodic of period ¢,.

Pick any x, e M, and let 7, = {&(t,x,):0 < t < to} be the closed orbit of X!
through x,. Since X' # 0, y, does not bound a disc, hence &(-, x,) represents a
nontrivial element of 7,(T?). Since X' and X? are linearly independent, the full
orbit of ¢ through x, is either a cylinder (the case in which the isotropy subgroup
is Z, the integers), or the full orbit is T2 (the case in which the isotropy subgroup
is Z x Z). In the latter case, it clearly will also be true that the positive orbit of
¢ through x, will be T2 To complete the proof, it suffices to rule out the case
that the full orbit of ¢ through x, is a cylinder. We shall show that the n-orbit
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through some point of M is homeomorphic to S! but that this orbit is not in the
homotopy class of &( -, x;). Then by the above argument, every n-orbit through a
point of M is periodic (with the same period) and the isotropy subgroup of ¢ is
Z x Z,as desired.

Let xevy, and 7, ,(x) be the w-limit set of the y-flow through x. Let
L = &p(h 4 (x)) be the union of all &-orbits through points of 7, (x). Since each
such &-orbit has period 5, L = &g+ o(X)). Now 1, .(x) is compact, so L is
compact. Since L is also nonempty and positively @-invariant, L = M. In par-
ticular, xe L, thus x = £,(y) for some t€[0, t,] and yen, ,(x), so y = &_(x),
ie, yep, Ny, o(x). Since we assumed that neither X' or X? generated a dense
flow, and neither is zero, Schwartz’s theorem again gives that #, (x) is a periodic
orbit of X2, which we denote by y, = {n(s, ):0 < s < s,}, 5o being the minimum
period. We know that ye(y, N 7,) # &&. By linear independence of X' and X2,
y, 1s not identical with v, nor does it bound a disc. If #( -, y) is homotopic to
&(-, x,), the orbits y, and y, must have at least one more intersection, say at a
point y, where the orientations of the two-field {X'(y), X?(y)} and {X'(y,),
X*(y,)} must be reversed. This would contradict the linear independence of the
vector fields on T2, hence 5(-,y), &(-, x,) must not be homotopic. They then
represent generators of Z x Z, and the full orbit of ¢ is diffeomorphic to R?/Z x Z
or T2. The same must be true of the positive orbit of ¢, and the proof is complete.

In general, a manifold M cannot be expected to admit a k-field. Indeed, for
k =1, a 1-field is a nonsingular vector field, and a necessary (and sufficient)
condition for M to admit such is that the Euler characteristic (M) = 0. It is a
well-known result of Whitney [10] that any n-dimensional manifold can be im-
bedded in R?". Let f:M — R?" be such an imbedding. Then relative to a choice
of coordinates for R?", f has the form (f!, ---, f?"), with each f" real-valued. Let
X' be the gradient field of f*. Rank Df(x) = n for all x € M since f'is an imbedding,
hence dim span {X'(x), - -+, X*"(x)} = nforall x € M. Thus we have the following.

PROPOSITION 5. Any smooth n-manifold M admits a collection & = {X*,
--+, X®"} of 2n smooth vector fields such that dim span {X(x), ---, X*"(x)} = n
for all xe M.

Remark 4. All that was required for the above construction was that rank
Df(x) = n for all xe M; thus it would have sufficed to have f an immersion.
Whitney [11] has shown that every smooth n-manifold can be immersed in R?"~?,
for n > 1. One may easily sharpen Proposition 5 by replacing 2n with (2n — 1).
(The case n = 1 provides no difficulty.) An interesting question which arises is:
can one replace 2n by (n + 1) in Proposition 5?

A collection of vector fields, as in Proposition 5, will always possess the
accessibility property. We shall next show (geometrically) how to locally modify
any such collection % so that

(a) the modified collection & still satisfies the condition dim span &, = n
for all xe M, but &' is not controllable on M.

One may conclude, from this, that if & has the accessibility property, in
order to show . is controllable on M, one must impose additional conditions on
the vector fields of & (such as right-invariant with M a connected Lie group as
done by Jurdjevic, or commuting as in Theorem 3.1 above). Controllability of &
on M cannot be accomplished by any conditions on the topology of M alone.
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We next outline, geometrically, the construction to obtain the modified
collection %" as in (a) above. To do this analytically, with all details, would not
serve much purpose, in this author’s opinion.

Let & = {X',---, X"} be as in Proposition 5. Pick x°e M. Our modi-
fication will be local, hence we assume we work in R” rather than M. By a slight
perturbation of the vector fields of &, if necessary, we may assume that

(i) every collection {X",.--, X} of n distinct elements of & satisfies
dim span {X"(x°%), - -+, X*(x°)} = n. This also insures X%(x°) # 0 for
j=1,---, 2n, hence we further assume that

(i) each X’(x°) has unit length, and

(i11) for some ¢ > 0, all of the vector fields of & are constant in a 4¢-neighbor-

hood N of x°.

This allows us to picture each X' as producing a parallel flow in N. We shall
modify each X' to a vector field Y’ in N so that X' and Y’ match on the boundary,
but each Y has exactly two critical points in N. Let p' = x° + eX/(x°), ¢' = x°
+ 3eX'(x°%),i =1, ---, 2n,and choose Y' to have an attractive node at p’, a hyper-
bolic critical point with (n — 1)-dimensional stable manifold at ¢', and no other
critical points in N. Figure 2 shows the flow of the modification Y’ of X"

Xi(x%)

FIG. 2

By assumptions (i), (ii), the points p', ' are distinct for different values of i, hence
the vector fields Y’ do not have common zeros. Thus one can do such a con-
struction so that dimspan {Y'(x), ---, Y?*(x)} = n for all x e N. Also, we may
have Y = X' on the boundary of N, while a 2e-neighborhood of x° becomes an
invariant set for the flow of &’ = {Y!, --., Y2"} in N. Letting Y’ be X" in the
complement of N, we obtain a collection &’ with dim span &', = nfor all xe M,
so & has the accessibility property, yet the 2e-neighborhood of x° is invariant
under the flow of &’; hence %’ is not controllable on M.
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LINEAR DIFFERENTIAL GAMES*

L. S. PONTRYAGINY}

Abstract. A pursuit problem and an evasion problem are formulated and results are obtained for
the case in which the dynamics are governed by linear differential equations and the terminal set is a
linear manifold in the state space. Conditions are given ensuring the existence of an open set in the
phase space such that if the initial state belongs to this set, termination of the pursuit game can be
achieved. Conditions are also given ensuring that for any initial state not in the terminal manifold the
evasion game can be prolonged indefinitely.

This paper is devoted to the study of the pursuit process of one controlled
object by another controlled object. The general nonlinear problem will be
formulated, but the results will only concern a linear case. Even in this simple case
they are nontrivial and interesting. Stronger results than those which will be given
here have already been published [1], [2], [3]. Those given here, however, will be
in a form that is simple and easy to remember.

The problem considered is technological in origin, and the success of the
mathematical investigation depends very much on the idealization which is made.
I consider here only my idealization which leads to a rather simple mathematical
consideration. There are other idealizations of the problem, but I do not intend to
mention them here.

To have a technological example let us imagine that one airplane pursues
another. The objective of the first airplane is to intercept the second one. The
objective of the second airplane is to prevent interception. Each pilot controls his
plane, having in mind his objective and using the information about the situation.
The information consists of two parts. The first part is the complete knowledge of
the performance capabilities of both planes. The second part of the information
concerns the present and the past behavior of the airplanes, but nothing is known
about their future behavior. We must give a mathematical idealization that retains
the essential features of the technological problem.

We denote the phase vector of a controlled object by x and assume that the
motion of this object is described by the ordinary differential equation

(1) X = f(x,u),

where the dot denotes derivative with respect to time ¢ and u is the control. The
variable u may take its values from the given set P; thus u e P. This equation
describes the performance capabilities of the object. Indeed, it gives all the motions
of which the object is capable. To obtain a concrete motion we have to specify
the initial values ?,, x, and we have to prescribe the values of the control u as a
function of time t; u = u(f). It is supposed that u is a measurable function of i.
The possibility of the choice of different functions u(t) just means that the object
is a controlled one. As x is the phase vector, it consists of two parts x = (x,, x,),
where x, is the geometrical position, and x, is the velocity of the object. In the
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case of an airplane, equation (1) gives its performance capabilities and the values
of the control u correspond to the various settings of the plane.

In the pursuit process there are two controlled objects, the pursuer x and
the evader y. The capabilities of the evader are described by the equation

2 Y =gy,v).

Here ve Q is the control, and y consists of two parts, y = (y,, y,), where y, is
the geometrical position and y, is the velocity of the object.
Interception occurs when the objects coincide geometrically, that is,

3) X, =y

If interception occurs, we shall also say that the pursuit is completed.

The first part of the information which I mentioned above is contained in
equations (1) and (2), and it is always assumed to be known. In considering the
second part, different mathematical idealizations of the problem arise. [ am going
to describe one of them.

The pursuit process itself can be considered from two different viewpoints.

In the first point of view we identify ourselves with the pursuer and assume
that the evader moves in an arbitrary manner in accordance with his capabilities.
The control u is in our hands and our aim is to achieve interception, or to complete
the pursuit. Having our aim in mind, we have to calculate the value u(t) at each
instant of time ¢, using the knowledge of the functions

x(s), y(s), v(s)

which are defined on the interval 1t — 8 < s < ¢, where 0 is a suitable positive
number. In symbols,

u(t) = U (x(s), y(s), v(s),t — 0 =5 = 1),

where U, is a functional which we call the pursuit rule.

In the second point of view we identify ourselves with the evader and assume
that the pursuer moves in an arbitrary manner in accordance with his capabilities.
Then the control v is in our hands and our aim is to prevent interception, or
completion of the pursuit. So having our aim in mind, we have to calculate the
value v(t) at each instant of time ¢, using the knowledge of the functions

x(s), ¥(s), u(s)

which are defined on the interval t — 6 < s < 1, where 0 is a suitable positive
number. In symbols,

o(t) = V(x(5), Y(s), u(s),t — 0 = s £ 1),

where V, is a functional which we call the evasion rule.

This is the idealization which I will consider. Here we have two problems:
the pursuit problem and the evasion problem, which are quite different.

To simplify the notations we transform the pursuit process into a differential
game by coupling the phase vectors x and y of the objects into a single vector
z = (x,y). The vector z is the phase vector of the game. It belongs to the phase
vector space R of the game, where R is the direct sum of the phase vector spaces
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of the two objects. We can now rewrite our two differential equations (1) and (2)
into the single differential equation

(4) z2=F(z,u,v).

Condition (3) defines a certain subset M in the space R. Now we can consider the
game independently of the pursuit process. The game is given if its phase vector
space R, differential equation (4), and the subset M on which the game is completed
are given. Here we have ze R and two controls: u—the pursuit control, and
v—the evasion control.

Here we also have two problems: the pursuit game and the evasion game.
The pursuit game is as follows : At each instant of time ¢ find the value u(t) in order
to complete the game. The value u(z) is a functional of the two functions z(s) and
v(s) which are defined for t — 6 < s < ¢, where 0 is a suitable positive number.
In symbols,

u(t) = Ulz(s), v(s), 1 — 0 = s = 1),

where U, is a functional which we call a pursuit rule. In other words, the problem
is to select a function U,, or pursuit rule, that will result in completion of the
game. The evasion game is as follows: At each instant of time ¢ find the value v(¢)
in order to prevent completion of the game. The value u(t) is a functional of the
two functions z(s) and u(s) which are defined for t — 8 < s < t, where 0 is a suitable
positive number. In symbols,

o(t) = Vlz(s), u(s), t — 0 = s = 1),

where V, is a functional which we call an evasion rule. In other words, the problem

is to select a functional V;, or evasion rule, that will prevent completion of the game.
To obtain some concrete results I will restrict myself to linear differential

games. The differential equation of the game is written in the following form:

(5) :=Cz—u+v+a,

where z e R, the phase vector space R is a Euclidean space, C is a given linear
mapping of the phase vector space R of the game into itself, a is a constant vector
in the space R, and the controls u and v are also vectors in the space R. The controls
are not arbitrary vectors, but satisfy the conditions

(6) ueP, veQ,

where P and Q are given compact convex subsets of the space R. These sets are
sets of arbitrary dimension. The set M on which the game is completed is a vector
subspace of the space R. We denote the orthogonal complement of M in R by L,
and its dimension by v. Thus R = M @ L and

(7 dimL =v, v 2.

To obtain a solution of the pursuit game, i.e., to achieve completion, we have
to have superiority of the pursuit control over the evasion control. Similarly, we
have to have superiority of the evasion control over the pursuit control in order to
obtain a solution of the evasion game, i.e., to prevent completion. The capabilities
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of the pursuit control u are defined by the set P, and the capabilities of the evasion
control v are defined by the set Q. Therefore, to express these superiorities we have
to compare the sets and express the fact that one of them is in some sense richer
than the other. This comparison of the sets P and Q must be done by taking into
consideration the linear differential equation of the game and the final set M,
and therefore it must depend on the linear mapping C of the space R into itself
and on the linear subspace M.

Let us denote by = the operation of orthogonal projection of the space R onto
its subspace L. Thus if z is an arbitrary vector of the space R, nz is its orthogonal
projection onto the space L. Since C is a linear mapping of the space R into itself, e,
where 7 is a real number, is a linear mapping of the space R into itself. This mapping
depends analytically on the variable 7. Now we can consider the linear mapping
e of the space R onto the space L. This mapping also depends on the variable .
Let us apply this linear transformation to the sets P and Q. We obtain two compact
convex subsets of the space L:

) P, = neP, Q, = ne* Q.

Now the superiorities which I mentioned above may be expressed essentially as
follows:

©) uQ. < P, for the pursuit game,

uP. < Q. for the evasion game,

where u is a constant > 1.

Now I shall formulate the results: the first for the pursuit game and the second
for the evasion game.

The pursuit control u has superiority over the evasion control v if the following
two conditions hold:

(A) The dimension of the set P, is equal to v for all sufficiently small positive
values of 1, 1.e.,

(10) dimP, =dimL =v.
(B) For all sufficiently small positive values of t the following inclusion holds:

(11) nQ. < P,

where p is a constant, u > 1.

The result for the pursuit game is the following : If conditions (A) and (B) hold,
then there exists a nonempty open set Q in the phase space R of the game such that
if the initial value z, of the game belongs to Q, then the game with this initial value
z, can be completed.

The evasion control v has superiority over the pursuit control u if the following
two conditions (C) and (D) hold. (The statement of these conditions can be obtained
by interchanging the sets P, and Q, in conditions (A) and (B).)

(C) The dimension of the set Q, is equal to v for all sufficiently small positive
values of 1, i.e.,

(12) dimQ, =dimL = v.
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(D) For all sufficiently small positive values of 7 the following inclusion
takes place:

13) uP <= Q.

where p is a constant, u > 1.

The result for the evasion game is the following: If conditions (C) and (D)
hold, then in the evasion game completion can be prevented for arbitrary initial
values z, which do not belong to M. This means that for arbitrary z, ¢ M it is
possible to choose an evasion rule such that the phase vector z(t) of the game never
reaches the set M ; 1.e., for all t < o0, z(t) ¢ M. Moreover, the distance &(t) of the
point z(t) from the set M cannot become too small, and this distance can be
estimated in the following way.

Let us denote by #(#) the distance between z(f) and L. Then there exist positive
constants ¢ and ¢ and a positive integer k, all depending only on the data defining
the game, such that if £(0) < &, then

c£0)

(14) &0 > o+ nF

If £(0) > &, then we wait until £(f) becomes equal to ¢, say at time t,. The estimate
(14) will then hold for ¢ = t,, while for ¢ < t, we have the estimate &(t) > .

To illustrate the results let us consider two examples.

Let E be a geometrical Euclidean vector space of dimensionv = 2. Let xand y
be two points in the space E, x—the pursuer and y—the evader. Here x and y are
not the phase vectors of the objects, but their geometrical positions. Thus the
pursuit process is completed when x = y.

Example 1. The differential equations which describe the motions of x and y
are the following:

(15) X =u, y=nu.

Here the controls u and v are vectors in the space E subject to the following
constraints:

(16) =1, Jof=1.

It turns out that this pursuit process, considered as a game, satisfies conditions
(C)and (D). The evasion can therefore be continued indefinitely provided only that
x(0) # y(0). This result is intuitively clear as the evader y has the maneuvering
superiority over the pursuer x. This is so because the evader’s velocity is controlled
directly while the velocity of the pursuer x is controlled indirectly by controlling
the acceleration. Thus the pursuer’s velocity can only be changed slowly.

Example 2. The differential equations which describe the motions of x and y
are the following:

(17) X+ ax =u, y+ By =v.

Here the controls u and v are vectors in the space E subject to the following
constraints :

(18) ul <p, Pl=o.
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Here o, f8, p, o are positive numbers. The motions of the points x and y, described
by equations (17), are motions under the action of forces u and v with linear
friction.

It turns out that, if

(19) o> p,

then the differential game which corresponds to the pursuit process satisfies
conditions (C) and (D). The evasion process can therefore be continued indefinitely
provided only that x(0) # »(0). If, however, the inequality

(20) p>a

holds, then conditions (A) and (B) are satisfied. Therefore a nonempty open set Q
exists in the phase space such that if the initial state (x(0), x(0), y(0), »(0)) of the
game belongs to €, then the pursuit process will be completed in a finite time.
If besides the inequality (20) the following inequality

(21) p/o > a/p

holds, then the set Q is the whole phase space R of the game. The pursuit process
can then be completed for any arbitrary initial state (x(0), X(0), y(0), (0)) and the
time of the pursuit can be estimated in terms of the initial state of the game.
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AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS AND
DUALITY IN NONCONVEX PROGRAMMING*

R. TYRRELL ROCKAFELLARY

Abstract. If a nonlinear programming problem is analyzed in terms of its ordinary Lagrangian
function, there is usually a duality gap, unless the objective and constraint functions are convex. It is
shown here that the gap can be removed by passing to an augmented Lagrangian which involves
quadratic penalty-like terms. The modified dual problem then consists of maximizing a concave
function of the Lagrange multipliers and an additional variable, which is a penalty parameter. In
contrast to the classical case, the multipliers corresponding to inequality constraints in the primal
are not constrained a priori to be nonnegative in the dual. If the maximum in the dual problem is
attained (and conditions implying this are given), optimal solutions to the primal can be represented
in terms of global saddle points of the augmented Lagrangian. This suggests possible improvements
of existing penalty methods for computing solutions.

1. Introduction. Let f,, f;, - - - f,, be real-valued functions defined on a set
S = R". We shall be concerned with the nonlinear programming problem :

minimize fo(x) over all x € S satisfying

fl(x)éo fO[‘i:l’..,,m'

(P)

The ordinary Lagrangian function associated with problem (P) is

(L1)  Lo(x,y) = fox) + y1 fi(x) + -+ + yufulx) for(x,y)eS x RY,
and this corresponds to the dual problem :

(Do) maximize gq(y) overall ye R, where
0 . oo
go(y) = inf Lo(x, y).

It is well known that the optimal values in these two problems satisfy
(1.2) inf (P) 2 sup (D),

but equality cannot be expected to hold, aside from freakish cases, unless S and
the functions f; are convex. The discrepancy in (1.2) is termed a “‘duality gap”.

In recent years a number of authors have addressed the question of whether
this duality gap in nonconvex programming could be eliminated by changing the
Lagrangian function. Such a change might also be of benefit computationally in
some situations, even in convex programming, where the plurality of useful
Lagrangians and dual problems has been known for some time. Computational
considerations in nonconvex problems with equality constraints have led in par-
ticular to algorithms based on an augmented Lagrangian in which “penalty”
terms of the form rf{(x)?,i = 1, ---, m, are added to L(x, y); cf. Arrow and Solow
[2], Bertsekas [3], Buys [4], Fletcher [6], [7], [8], Haarhoff and Buys [9], Hestenes
[10], Kortand Bertsekas [11], Lill[12], Mieleet al.[14],[15],[16],[17], Poljak [30],
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Tripathi and Narendra [25], and Wierzbicki [27], [28], [29]. For the inequality-
constrained problem (P), the simple terms rf,(x)* are not suitable, and the analogous
augmented Lagrangian (suggested in [21] and investigated by Buys in his thesis [4])
turns out to be

L(x,y,r) = folx) + Z [y; max { f(x), —y;/2r} + r max® { fi(x), —y;/2r}]
(13) “;
= fo(x) + r Y, Y(fix),y;/r) forxeS, (y,reT,
i=1

where T = R™ x (0, + o0) and
Y(a, B) = [max? {0, 2« + B} — B*)/4

(1.4) _{aﬁ+a2 ifo = —p/2,
=4 ifa< —p2.

We have demonstrated in [13] that in the convex case this augmented
Lagrangian is not only a natural choice but has a number of strong properties
not possessed by the ordinary Lagrangian L,. In [14], we have derived some
consequences of these properties for the multiplier method of Hestenes and
Powell. It is the purpose of the present paper to develop general properties of
L in the nonconvex case, especially with regard to duality.

Arrow, Gould and Howe [1, Thm. 2] have already shown that if X is an
isolated local solution to (P) satisfying the standard second order sufficiency
conditions for optimality with strict complementarity, the Lagrange multiplier
vector being j, and if 7 is sufficiently large, then there is a neighborhood N of x
in S such that
(L.5) mi:} L(x,y,7) = L(X,y,7) = max L(x,y, ¥,

Xe yeR™

with the minimum in (1.5) attained uniquely at X. This saddle-point theorem is
strengthened below (Corollary 6.1) in three ways: by extending the maximum in
(1.5) to the maximum of I(X, y,r) over all (y,r) e T (thus in particular removing
the constraint y = 0), by deleting the strict complementarity assumption, and
(under the hypothesis that X is the unique globally optimal solution to (P) ““in
the strong sense’’) by extending the minimum in (1.5) to the minimum over all
x € S. Introducing the ordinary perturbations associated with (P), we also give
necessary and sufficient conditions in terms of stability for the existence of a
global saddle point (X, y,7) of L with respect to S x T and more generally
characterize the case where at least the global “infsup’ and “supinf” of L are
equal.

These results correspond to a detailed study of the following dual problem
in place of (Dy):

maximize g(y,r) overall (y,r)e T, where
(D) .
gly,r) = l‘ig Lix,y,r) < + 0.

Of course, the optimal value in (D) is by definition

(1.6) sup (D) = sup inf L(x, y,r).

(y,r)eT xeS
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On the other hand, the optimal value in (P) satisfies
(L.7) inf(P) = inf sup L(x,y,r),

xeS (y,r)eT

inasmuch as

fo(x) if x is feasible,

1.8 sup, L. y.r) =
(1.8) p L(x,y,r) {+oo if x is not feasible.

(y,r)eT

The latter is immediate from the fact that
0 ifa £0,
+o0 ifo>0.

(1.9) sup Y(a, B) = {
BeR

Thus the relation

(1.10) inf (P) = sup (D)

holds, and minimax theorems for L are equivalent to duality theorems asserting
the equality and attainment of the optimal values in (1.10). (For related work on
duality since this paper was submitted for publication, see Mangasarian [13],
Pollatschek [18] and Rockafellar [24].)

For notational simplicity, only inequality constraints are treated in this
paper. However, the same results apply with only the obvious changes if explicit
equality constraints are also allowed (the corresponding terms ry(fi(x), y;/r) in
(1.3) being replaced by y; f(x) + rfi(x)?). The routine alterations in the proofs are
left to the reader.

Except for Theorem 6, which requires second order differentiability of the
functions f;, the results remain valid if S is a subset of an arbitrary topological
real vector space.

2. The nature of the dual problem. Let p: R™ — [— o0, + o0] be the ordinary
perturbation function (min-value function) associated with (P), that is,

2.1) p(u) = in£ F(x,u),

where for each (x,u)e S x R™:

(2.2) F(x’u)z{fo(x) ifﬁ(x);uifori= 1, m,
+ o0 otherwise.
Then
i Lo(x,y) ifyeR%,
23 lnf Fx,u + Uy = {
- uERm{ bt — 0 ify ¢ R .
if R™ .
2.4) inf {p(u) + y-u} = {go(}’) 1 y €R”
ueRmM — 0 lfy ¢ R':l_ .
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More generally, it is elementary to calculate that

(2.5 L(x,y,r) = inf {F(x,u) + y-u + rju*} forall(y,reT,
ueR™
(2.6) g(y,r) = ir}l{f {p(u) + y-u+ rju?*} forall(y,r)eT.

In order that (2.3) and (2.4) can be regarded as instances of (2.5) and (2.6), we
adopt the convention that

Lo(x,y) ifyeR%,

(2.7 L(x,y,0)={_OO ify¢R".

go(y) ifyeR?Y,
(2.8) g(y,0)={ T
—o0 ify¢R%.

This extends the definition of L(x,-,-)and gtocl T.

THEOREM 1. The functions L(x, y,r) and g(y,r) are concave and upper semi-
continuous in (y,r)ecl T = R™ x RY and nondecreasing in r € R, nowhere + co.
Furthermore, whenever r > s = 0 one has

29 gy, r) 2 max {g(z,s) — |y — zI*/4(r — s)}.

Proof. The first assertion is implied by (2.5) and (2.6), since the pointwise
infimum of a collection of affine functions of (y, r) which are nondecreasing in r is
an upper semicontinuous, concave function which is nondecreasing in r. For any
(y,r) and (z, s) satisfying r > s = 0, we have from (2.6) that

gy, r) = il}gn {pw) + z-u + s> + (y — 2)-u + (r — s)ul*}

2 inf {p(u) + z-u + sju*} + il}(f;" {y —2)-u+ (r— s)u}

ueR™
=g(z,s) — |y — 2*/A(r - 9),

and this yields (2.9). The maximum (instead of supremum) in (2.9) is valid because
g(-,s) is an upper semicontinuous concave function nowhere having the value
+ oo and hence in particular is majorized by at least one affine function. (Thus
the function of z being maximized is upper semicontinuous; its level sets are
bounded because it is majorized by a negative definite quadratic function of z.)

Remark. In the convex case (i.e., where S and the functions f; are all convex),
L(x, y,r) is convex in x and relation (2.9) holds as an equation [13]. Then for
every r > 0 the function g(-,r) has the same maximum and even the same maxi-
mizing set as g( -, 0), since in the formula

g(y,r) = max {g(z,0) — |y — z|*/4r}

the bracketed expression is maximized jointly in y and z if and only if y maximizes
g(-,0)and z = y. In other words, in the convex case a pair (y, 7) with 7 > 0 is an
optimal solution to the dual problem (D) if and only if y is an optimal solution
to the ordinary dual (D). In the nonconvex case this is no longer true, although
the monotonicity of g(y, r) in r still implies that if (, 7) is an optimal solution to
(D) and r > 7, then (J,r) is also an optimal solution to (D).
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COROLLARY 1.1. There is an ry, 0 < ro < + 00, such that g(y,r) is finite for
all ye R™if ry < r < + 00, whereas g(y,r) = —oo for all ye R if 0 S r < ry.

Proof. This is obvious from (2.9), according to which g(y,r) > — oo if there
exists some se [0,r) and ze R™ such that g(z,s) > —co.

In view of the fact that g(y, r) is nondecreasing in r, Corollary 1.1 says there
are no real constraints at all in (D), even implicit ones. This is in contrast to the
situation for (D), where the feasibility condition g(y) > — oo requires the satis-
faction of y = 0, as well as other possible constraints. (It is not always possible
a priori to specify for (D) an r such that r > r,, although, for example, one has
ro = 0 if f, is bounded below on S. In this connection, see the remarks preceding
Theorem 2 in the next section.)

COROLLARY 1.2. For every y € R™, one has

(2.10) lim g(y,r) = sup g = sup (D).
r=+ oo T

Proof. Given any (z,s)e T and ¢ > 0, one has g(y,r) = g(z,s) — ¢ for all r
sufficiently large by (2.9).

The last result brings out the close relationship between the dual (D) and
penalty methods for solving (P). By definition, we have

(2.11) L(x,0,r) = folx) + r i max? {0, fi(x)},
i=1

and consequently

(2.12) g(0,r) = ing{fo(x) +r i max? {O,fi(x)}}.
xe i=1

The limit of the infimum (2.12) as r — + oo is the optimal value sup (D), according
to Corollary 1.2. Thus the relationship between sup (D) and inf (P) is of funda-
mental importance for the penalty method in which (2.12) is calculated for a
sequence of r values tending to + co. Note that if we fix any y € R™ and minimize
L(-,y,r),instead of L(-, 0, r), for a sequence of r values tending to + oo, the limit
of the infima is still sup (D) by Corollary 1.2. This procedure can be regarded as
a modified penalty method. Still more broadly, one can try to solve (P) by mini-
mizing L(-, y,r) for a sequence of vectors (y, r) € T such that g(y,r) — sup (D). If
the sequence can be generated in such a manner that the r values remain bounded,
there is the advantage that the numerical instabilities associated with minimizing
(2.11) for ever-larger values of r could be avoided. The results below demarcate
the region of validity and potential effectiveness of such algorithms, from a
theoretical point of view. Theorem 6 indicates that indeed, penalty methods can
be constructed which are capable of solving “most” problems without r — + co.

3. Solving (P) in the asymptotic sense. We say that (P) satisfies the quadratic
growth condition if there is an r = 0 such that the expression (2.11) is bounded
below as a function of x € S. This certainly holds if f; is bounded below on S,
and in particular if S is compact and f;, lower semicontinuous. In general, since
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by (2.6) and the definition of g we have
(3.1 ingL(x,O,r) = g(0,r) = inf {p(u) + rjul*},
X€ ueR™

the quadratic growth condition holds if and only if there exist real numbers
r 2 0 and q such that

(3.2 p(u) = q — rju)> forallue R™.
The condition is therefore equivalent also to the relation

llilm inf pw)/|u)> > — 0.

Observe that the ry in Corollary 1.1 is the infimum of all the numbers r = 0
for which the quadratic growth condition holds, since it is the infimum of all the
numbers r = such that g(0, ) > — co. Thus (P) satisfies the condition if and only
if g is not identically — co on T, or, in other words, if and only if (D) has ““feasible
solutions”. This also shows that the quadratic growth condition is equivalent to
the seemingly more general condition that for some y € R™ (not necessarily y = 0)
and some r = 0, the infimum of L(x, y, r) over all xe S is not — co.

THEOREM 2. If (P) satisfies the quadratic growth condition, one has

—o00 < sup (D) = lim inf p(u)
(3.3) u=0
< p(0) = inf(P).

If (P) does not satisfy the quadratic growth condition, one has sup (D) = — co.
Proof. The preceding remark makes clear that sup (D) = —oc if and only

if the quadratic growth condition fails to be satisfied. Assume henceforth that the

condition is satisfied ; thus (3.2) holds for a certain g and 7. From (3.1) we see that

2(0,r) = liminf pu) forallr = 0.

u—0
Taking the limit as r - + oo and invoking Corollary 1.2, we obtain
sup (D) £ lim gnf p(u).
To establish the opposite inequality, and thereby complete the proof of the
theorem, consider now an arbitrary real number ¢ such that

(3.4) q < lim inf p(u).

u—0

Choose ¢ sufficiently small that p(u) = g whenever |u| < ¢. For r sufficiently large,
we have

q—rlu? =g —Fu?® ifluze
(with g and 7 as above), and therefore
q — rlul* £ p(u) for all u.
But then
q = inf {pw) + rju*} = g(0, ) < sup (D).
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Since g was any real number satisfying (3.4), this shows that
sup (D) = lim inf p(u),
u—0

and we are done.
The quantity
(3.5) lim inf p(u)
u—0
in Theorem 2 is the asymptotic optimal value in (P). It can also be described as the
minimum of

(3.6) lir{l sup fo(x¥)

over all asymptotically feasible sequences (x*)°., for (P): that is, sequences in S
satisfying

3.7) lir’? sup filx <0 fori=1,---,m.

Indeed, according to the definition of p, (3.5) is the lowest possible limit achievable
by any sequence () ; such that there exist u*e R™ and x*e S with u* — 0,
filx¥) S ukfori=1,---, mand fo(x*) < .

Let us call a sequence (x¥)- , asymptotically minimizing for (P) if it is asymp-
totically feasible and yields the minimum possible value for (3.6). We can then
obtain from Theorem 2 a result which shows how any procedure for solving (D)
can be used to solve (P) in the sense of constructing an asymptotically minimizing
sequence. (A similar result involving more detailed estimates in the convex case
has been demonstrated in [22].)

THEOREM 3. Let (y*, r)i%, be a sequence such that for some & > 0 one has
O*r, — ) e Tand
(3.8) lim g(y*,r, — ) = sup(D) < + 0.

k—
Let x* € S satisfy
(3.9) L(x*, y*, r) = inf L(x, y*, 1) + o,
xeS
where o, — 0. Then (x*) | is asymptotically feasible and
(3.10) lim inf y¥/r, 20 fori=1,---,m.
k— oo

If in addition (y*)-, is bounded, then (x*)i=, is an asymptotically minimizing
sequence for (P).
Proof. From (3.9) and (3.8) we have

(3.11) L(x*, y*, 1) < g%, r) + o S sup(D) + o < +00.

In particular, sup (D) is finite. On the other hand, (2.5) and (2.2) imply
(3.12) L, y%, ) = fo(x¥) + yF-uk + rluk?,

where

(3.13) uf = max { fi(x*), —y¥2r} fori=1,---, m.
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Therefore, using (2.1) and (2.6),
L(x*, ¥, 1) Z pu¥) + y*-u* + (r, — Ou® + olu?
Z g0, r — ) + o'
We combine (3.14) with (3.11) to obtain
(3.15) dlu¥? < sup (D) — g(y*,r, — 8) + o, — 0.

Thus u* — 0, and this establishes in view of (3.13) that (3.7) and (3.10) hold. Next
we argue from (3.11) and (3.14) that

(3.16) ,}Lm L(x*, y*, r) = sup (D).

(3.14)

If the y* sequence is bounded, then (3.12) and the fact that u¥ — 0 give us
lim fo(x*) = sup (D).
k=0

But sup (D), since it is finite, is the asymptotic optimal value in (P) by Theorem 2.
This completes the proof.

The need for the boundedness of (y¥)i; in Theorem 3, even in the convex
case, is illustrated by the following counterexample.

Example 1. Define fy, f;, f> for x = (x,, x5, X3) € R® by fo(x) = x3,f1(x) = x,,
S2(x) = x,. Let

S = {xeR%x;y + x,y, — x3 < 0 forall (y,, y,)e C},

where
C = {yeR¥y, £0,y} + 2y, < 0}.

Note that S is a closed convex cone which can also be expressed as
S = {xeR%x; = ¢(x;,x,)},
where ¢ is the support function of C:
P(xy, x;) = sup {x1yy + X2¥,l(y1,y2) € C}
x3/2x, ifx; £0and x, > 0,
=<0 ifx; 20,x, 20,
+ 0 otherwise.
The function ¢ is nonincreasing in x; and x,, so obviously
pluy,uy) = Pp(u,,u,) foralluy,u,.

It can be shown, incidentally, from this fact and formula (2.6) by means of ele-
mentary results about conjugate functions, that

g(y,r) = —(1/4r)dist? (—y, C).

All we really need to know at the moment, however, is that g(y,r) < 0 everywhere
and

(3.17) gy, r)=/gly,1) forr>0.
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These relations follow from (2.6) because p(0) = 0 and p(u/r) = p(u)/r. Let
uk=(_k—1,k—3), xk=(_k_1ak_3ak)a
=1, Y= —Vpu) — 2uF = (K* + 2k~ 1, (1/2)k* — 2k73).

Then if y* and r, are substituted into (2.6), the minimum is attained uniquely at
u¥, indicating that

g%, r) = —uk* > 0 = sup (D).

Hence also g(y*, r, — ) = sup (D) by (3.17), if 0 < § < 1. On the other hand, the
minimum in (2.1) for u = u* is attained uniquely at x*. Thus x* uniquely minimizes
L(-,y* r,) over S (cf. (2.5)), and all the assumptions in Theorem 3 are satisfied
except for the boundedness of (y*)&- ;. But fo(x¥) = k - + o0, so that (x¥), is
certainly not an asymptotically minimizing sequence for (P).

Two corollaries of Theorem 3 may now be stated.

COROLLARY 3.1. Assume the asymptotic optimal value in (P) is not + 0. Fix
any y € R™. Let x* satisfy

(318) L(xk’yark) é lnf L(xay’rk) + OCky
xeS

where r, > + o0 and oy = 0. Then (x*)- | is an asymptotically minimizing sequence
for (P).

Proof. With y* = y, we have (3.8) by Corollary 1.2 so that the conclusions
of Theorem 3 are justified.

COROLLARY 3.2. Let (y,7) be such that for some 6 > 0 one has (y,7 — 6)e T
and

(3.19) —o < gy, 7 — 0) = sup (D).

Let (x*{_ | be a minimizing sequence in S for the function L(-,y, 7). Then y = 0,
and (x*)- | is an asymptotically minimizing sequence for (P). Moreover, if X is a
point at which the minimum of L(-,y,7) over S is attained, then X is actually an
optimal solution to (P).

Proof. Take (y*,r*) = (y,7) in Theorem 3. For the final assertion of the
corollary, take x* = x.

Theorem 3 makes clear the computational relevance of the questions of
when sup (D) equals inf (P) and when sup (D) is attained. These questions are
answered in the next section in terms of the stability of (P).

4. Duality theorems and stability. Problem (P) will be called (lower) stable
of degree k (where k is a nonnegative integer) if there is an open neighborhood U
of the origin in R™ and a function n: U — R of class C* such that

4.1 pu) = n(u) forallue U, with p(0) = =(0).

This implies of course that inf (P) is finite.
Stability of degree 0 is equivalent to the property that

(4.2) p(0) = lin(l) inf p(u) (finite).
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The necessity of (4.2) is evident. On the other hand, if (4.2) holds, then the non-
increasing function
0(s) = |3|n<fs pw), sz0,

satisfies 6(s) - 6(0) as s —» 0. Choose ¢ > 0 small enough that 6(¢) > — o0, and
define the function 6, on [0, ¢/2] as follows: 684(0) = 6(0), By(e/(j + 1)) = 0O(¢/))
for positive integers j, 0, interpolated linearly over the intervals [e/(j + 1), &/j].
Then 6, is continuous and 6, < 6. The definition of stability of degree 0 is therefore
satisfied by n(u) = 04(|ul).

Theorem 2 therefore gives us the following.

THEOREM 4. Suppose that (P) satisfies the quadratic growth condition. In order
that the duality relation

4.3) inf (P) = sup (D)
hold, or equivalently

4.4) inf sup L(x, y,r) = supinf L(x, y, r),
s T T S

it is necessary and sufficient that (P) be stable of degree 0.

Various conditions are known which guarantee stability of degree 0, ie.,
(4.2). The most basic perhaps is the following: S is closed, the functions f; are all
lower semicontinuous, and for some u € int R and « > inf (P) the set

(45) {XES|fo(X) é O(’fl(x) é Up, - 7fm(x) é um}

is compact. (This is evident from the characterization of (3.5) in terms of asymp-
totically minimizing sequences.) In the convex case, the Slater condition and its
variants suffice [20], [24].

Stability of degree 1 is a generalization of the stability condition in convex
programming that p be subdifferentiable at u = 0. As a matter of fact, in the
convex case stability of degree 1 implies stability of all higher orders. In the
absence of convexity, however, stability of degree 2 plays an essential role.

THEOREM 5. Suppose that (P) satisfies the quadratic growth condition. In order
that the duality relation

(4.6) inf (P) = max (D)
hold, or equivalently,
4.7) infsup L(x, y,r) = max inf L(x, y, r),
s T T S
it is necessary and sufficient that (P) be stable of degree 2. Indeed, (3, ¥) is an optimal
solution to (D) for some ¥ > 0 if and only if y = —Vn(0) for some function n as

in the definition of stability of degree 2.
Proof. Clearly (4.6) is equivalent to the existence of (, 7) € T such that

(4.8) inf (P) < g(y,7) > — o0,

since inf(P) = sup (D) in general, while sup (D) > — oo by Theorem 2. Using
(2.6), we can write (4.8) in the form

4.9) —o0 < p0) £ pu) + y-u+ Fu?> forallue R™.
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If this is fulfilled, then p(0) is finite and the condition for (P) to be stable of degree
2 is satisfied with
m(u) = p(0) — y-u — Flul?, U = R™

Here y = —Vn(0).

Assume now conversely that the stability condition is satisfied for a certain
7 and U. Then n(0) = p(0) (finite). Define y = —V=(0), and choose ¢ > 0 small
enough that |u| < ¢ implies ue U. Since n is of class C?, there is an r; > 0 such
that

(4.10) z-V*r(u)z = —2r,|z|> forallze R™if |u| < e.
Then
4.11) mu) = p0) — y-u —ru? iflu <.

This follows from the fact that for h(t) = n(tu), 0 < t £ 1, one has

1 t
h(1) = h(0) + J [h’(O) + J h"(7) dt:l dt,
0

0
where
h'(z) = u- Vr(tuu.

Since (P) satisfies the quadratic growth condition, there exist numbers g and r
such that (3.2) holds. We can choose r, > 0 so that

(4.12) q—rlul> Z p0) — j-u —roful® iflul 2 e.
Then (4.12) and (3.2) imply
pw) 2 p0) — -u — roful® iful Z ¢,
while (4.11) and (4.1) imply
pw) Z p(0) — y-u —rifu® if ful < e
Taking 7 = max {r,,r,}, we have (4.9), and hence equivalently (4.6) as already
noted.

COROLLARY 5.1. Suppose (P) satisfies the quadratic growth condition and is
stable of degree 0. Then (D) has an optimal solution if and only if (P) is stable of
degree 2.

Proof. This is obtained by combining Theorem 5 with Theorem 2.

COROLLARY 5.2. Suppose (P) satisfies the quadratic growth condition and is

stable of degree 2. In order that X € S be an optimal solution to (P), it is necessary
and sufficient that there exist (y, 7)€ T such that

(4.13) L(x,y,7) = (X, y,7F) = L(X,y,r) forallxeS, (y,r)eT.

Moreover, this condition is satisfied by (y, 7) if and only if (¥, 7) is an optimal solution
to (D).

Proof. The saddle-point condition (4.13) is equivalent by virtue of (1.8) and
(1.10) to X being a feasible solution to (P) such that
(4.14) fo(X) = min (P) = max (D) = g(y, ),

in which case the common value in (4.14) is L(X, j, 7).
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Remark. 1If there exist X€ S and (y,7) e T satisfying (4.13), and therefore
(4.14), then (P) must satisfy the quadratic growth condition (cf. remark preceding
Theorem 2) and hence be stable of degree 2 (Theorem 5). Compare also with
Corollary 3.2.

Corollary 5.2 may be regarded as a generalization of the Kuhn-Tucker
theorem in convex programming. Qualitatively, we may expect that most prob-
lems encountered in practice will be stable of degree 2, so that the result will be
applicable. But, as in the case of “‘constraint qualifications” and other familiar
conditions in the theory of nonlinear programming, it is hard to give verifiable
criteria directly in terms of the constraint functions (rather than an unknown
optimal solution) which imply such stability. Of course, convexity plus some
form of the Slater condition is sufficient. In the next section we investigate the
nonconvex case further in terms of the local conditions which are usually satisfied
by optimal solutions to (P).

It should be emphasized that the saddle-point relation (4.13) does yield the
usual differential Kuhn-Tucker conditions if Xxeint S and the functions f; are
differentiable at X. Indeed, (4.13) implies

@15 0= SUR..0) = max (R, ~52} fori= 1, m

0= VL(X, 7,7 = Vfo(X) + i max {0, ; + 2rf(D)} V(%)
(4.16) =l

= VA + 3 [ + 2 max (1), — 527 VAR,

11

or in other words,
(4.17) M0, 520, 5f®=0 fori=1,,m,
(4.18) VIo(%) + 31 VA(X) + - + JnVu(X) = 0.

At all events, the vectors y involved in Theorem 5 and its corollaries can be
interpreted in terms of “‘equilibrium prices” for perturbations of (P). As seen at
the beginning of the proof of Theorem 5, a pair (J, 7) € T satisfies

inf (P) = sup (D) = g(¥, )
if and only if
(4.19) p(u) + y-u + Flu)?

is minimized in ¥ when u = 0. Let us imagine an ‘‘economic” situation where we
are allowed to perturb (P) by replacing the constraint functions f; by f; — u;, so
as to obtain perhaps a lower minimum “‘cost” value p(u), but the cost associated
with the perturbation vector u = (uy, -+, u,) is y- u + 7lu|>. The expression in
(4.19) gives the resulting total cost associated with the perturbed problem. Thus
(4.19) describes the “equilibrium’ where the costs are such that no advantage is
to be gained from perturbation, and we are ‘‘content with (P)asitis.” In particular,
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we would have (assuming p(0) finite):

(4.20) ~J-u < lim infw for all u.
Al

As is well known, such a global *“equilibrium” cannot be achieved with 7 = 0
unless, at the very least, p coincides at 0 with its convexification, a property which
is very unlikely in nonconvex programming.

5. Local criterion for stability of degree 2. We consider now an X which is
an optimal solution to (P) and show that, if certain conditions slightly stronger
then those usually necessary for optimality are satisfied at X, (P) must be stable
of degree 2. In doing this, we extend a result of Arrow, Gould and Howe [1], as
described in the Introduction.

The point X is said to be the unique optimal solution to (P) in the strong sense
if every asymptotically minimizing sequence for (P) converges to x. This con-
dition is milder than it might seem. For example, assuming the functions f; are
lower semicontinuous, it is satisfied if S is replaced by any compact subset in
which X is the only locally optimal solution to (P).

The following conditions are well known to be sufficient (and “almost
necessary’’) for X to be an isolated locally optimal solution to (P) (cf. [5, p. 30]):

(a) S contains an open neighborhood N, of X on which the functions f; are
all of class C?;

(b) there is a vector y € R™ such that the Kuhn-Tucker conditions (4.17) and
(4.18) hold ;

(c) for the Hessian matrix

(.1 H = V2fo(3) + 3,V fi(X) + -+ + Ju V(%) = VILo(X, 7)
and the index sets

(52) o ={i # 0/f(x) =0,y > 0}, I, = {i # 0 f(x) = 0,3; = 0},
one has z- Hz > 0 for every nonzero z € R™ such that

(53)  z-Vf(x)=0 foralliel, and z-Vf(¥) <0 foralliel,.

These will be referred to as the standard (second order) sufficiency conditions.
THEOREM 6. Suppose (P) satisfies the quadratic growth condition. Let X be the
unique optimal solution to (P) in the strong sense, and assume that X satisfies the
standard sufficiency conditions with y as the vector of multipliers. Then (P) is stable
of degree 2, and for all 7 sufficiently large the pair (y, ¥) is an optimal solution to (D).
Proof. Let N = S denote a neighborhood of X, the nature of which will be
specified later, and define

(5.4) p°(u) = inf { fo(x)lx e N and fi(x) < w;,i =1,---, m}.

Since X is the unique optimal solution to (P) in the strong sense, there exists
¢ > 0 such that xe N whenever x€8S, f(x) < ¢ fori=1,---,m, and fy(x) < fo(X)
+ ¢ Then

(5.5) pu) = p°(u) forallueU,,
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where
(5.6) Up={ueR"uy; S efori=1,---, mand p(u) < p(0) + &}.

Suppose we can construct a function n of class C? on an open neighborhood U,
of the origin in R™ such that

(5.7) p°(u) = n(u) forallue U,, with p°0) = n(0).
We will then have
(5.8) pu) = n(u) forallue U, N U; with p(0) = =(0),

so that the definition of stability of degree 2 will be satisfied with
(5.9) U={ueUn(u) < n0) +cand y; < efori=1,---, mj.

(If ueU but u¢ Uy, we have p(u) = p(0) + ¢ = n(0) + ¢ and hence p(u) > n(u).)
If also Vn(0) = —3J, then (y,7) is an optimal solution to (D) for all 7 sufficiently
large by Theorem 5 and the monotonicity of g(y,r) in r. Thus the proof of the
theorem is reduced to the construction of N, U, and = satisfying (5.7), such that
nis of class C? on U, and Vr(0) = — .

It will be enough actually to show the existence of N such that, for some
F>0,

(5.10) Lix,y,7) = L(x,y,7) = fo(x) forall xe N.
Indeed, this will imply from (2.5) that
fo(%) = inf L(x, y,7) = inf inf {F(x,u) + y-u + #lul*}
xeN

xeN ueR™

i

(5.11) inf inf {F(x,u) + §-u + Flul*}

ueR™ xeN
= ir}zf {p°(u) + y-u + Flul?}.
Since p°(0) = f,(X), we will then have
(5.12) p°(u) = p°%0) — y-u — Flu|*> for all ue R™.

In other words, the desired properties will hold for n(u) = p°0) — y - u — Flu|?
and Ul = Rm.

Let I, and I, be the index sets in (5.2), and let
(5.13) I, = {i # 0| f(X) < 0}.

Let N, be the neighborhood of X in the standard sufficiency conditions. For all
r > 0, define

(5.14) N,(r) = N, .'Qo{xlfi(x) > —y;/2r} igz {x] fi(x) < 0}.

Then N,(r) is an open neighborhood of X, and for all x € N,(r) we have

(5.15) Lix,7,1) = folx) + Y [Bifilx) + rfi(x)?] + r Y 0(fi(x)?,
ielo iely

where

(5.16) 0() = max {a,0}.
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Observe that L(X, y,r) = fo(X), and by the Kuhn-Tucker conditions

(5.17) V.L(X, 7,7) = Vfo(X) + le y:Vfix) = 0.
We shall show next that in fact 0
(5.18) L(x,7,7) = fo(X) + h(x — X) + rk(x — X) + o(]x — X|?),
where h(z) = z- Hz and
(5.19) Ka) = ¥ (2 VAR + 3 0z VAR 2 0.
Since by (5.17) h -
(5.20) Jolx) + F Fufi0) = o) + hix = ) + offx — 1),
and since (for f(X) = 0')E 0
(3.21) fi)? = ((x = %)- VAR + ollx — XI%),
we need only prove that the expansion
(522) 0(fi(x))* = 0((x — %)- VA(R)? + ollx — XI?)

is valid when f;(x) = 0. This amounts to establishing that
X 2 —_ . (X 2

10 12

uniformly in z € B, where
= {zeR"|7| = 1}.

But the latter is obvious from the continuity of 6 and the fact that the difference
quotient in (5.23) can be rewritten as

O(fix + tz)/t)* — 0(z - Vf(X)* = 0(z- VF(X) + w(t2))* — 0(z- V(X))?,

where w(tz) —» 0 uniformly inze Bast | 0.
We now demonstrate the existence of 7 > 0 and 6 > 0 with

(5.24) h(z) + 7k(z) =z 26 for all ze B.

Let B, = {ze€ B|h(z) < 0}. According to part (c) of the sufficiency conditions, if
k(z) = 0, i.e., (5.3) holds, we have h(z) > 0. Thus k(z) > 0 for all ze B,, implying
that the quotient — h(z)/k(z) is well-defined and bounded above as a function of
z€ By. Choose any 7 > 0 such that

F > —h(z)/k(z) forall ze B,.

Then h(z) + 7k(z) > 0 for all ze€ B, ; the same inequality also holds trivially for
z€ B\ By, because there h(z) > 0 and k(z) = 0. Thus h + 7k is a positive, con-
tinuous function on the compact set B, and (5.24) is valid for some § > 0 as
claimed. Of course (5.24) implies

(5.25) h(z) + Fk(z) = 26|z|*> for all ze R™,

because h and k are both positively homogeneous of degree 2.
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It remains only to combine (5.25) with (5.18). There exists by (5.18) a neigh-
borhood N of X, N = N,(F), such that

(5.26) L(x,¥,7) 2 fo(X) + h(x — X) + Fk(x — X) — é|x — x|
for all x e N. Using (5.25), we obtain
(5.27) L(x,7,7) 2 fo(X) + 8(x — X)> forall xe N.

Thus (5.10) holds for N and 7, and the proof of Theorem 6 is complete.

COROLLARY 6.1. Under the assumptions in Theorem 6, the global saddle-point
condition (4.13) holds for all ¥ sufficiently large.

Proof. The proof is immediate from Corollary 5.2.

We conclude this section with a counterexample demonstrating the need for
the second order condition in the hypothesis of Theorem 6.

Example 2. Here all the assumptions in Theorem 6 are satisfied, except for a
slight weakening of part (c) of the sufficiency conditions, and (P) is stable of
degree 1. But (P) is not stable of degree 2. The problem consists of minimizing

Jolxy,x3) = dx,(x; — 1) + x}t
over S = {x = (x;,x,)€ R} —1 < x; < 1} subject to

0= fi(xy,x,) = xy.

The minimum of fy(x,, x,) in x, for fixed x, is —4x, — 3x}/?, attained only
at x, = —x1/3, and this minimum is a strictly decreasing function of x, as long

as x; = —1. Thus x = (0,0) is the unique optimal solution to (P) in the strong
sense. The quadratic growth condition is satisfied, because f,, is bounded below
on S. Furthermore, the Kuhn-Tucker conditions hold at X with y, = 4 and with
the gradients Vf,(X) and Vf;(X) nonzero (thus one has ‘“‘strict complementarity’
in (4.17), and moreover “the gradients of the active constraints at X form a linearly
independent set”’). Although the Hessian matrix H of the function I(x) = fu(x)
+ 7,fi(x) at X does not have the positive definiteness property required in (c)
of the sufficiency conditions, it is true at least that I(Xx + z) > I(X) for every nonzero
z such that (5.3) holds (i.e., z- Vf;(X) = 0). However,

pluy) = —4u;, —3uf® foru,e[—1,1].

The function p is continuously differentiable around u; = 0, but it does not
majorize near 0 any function = of class C? such that n(0) = p(0) = 0. Thus (P) is
stable of degree 1 but not of degree 2.

Remark. We have already noted towards the end of § 4 that, if (X, y,7) is a
saddle point of L and the functions f; are differentiable at X (and X e int S), then
X and y satisfy the Kuhn-Tucker conditions. In fact, if every f; is twice-differentiable
at X, then the standard second order necessary conditions [5, p. 25] are satisfied,
i.e., besides the Kuhn-Tucker conditions one has condition (c) at the beginning
of this section, but with the inequality z- Hz > 0 weakened to z- Hz = 0. This is
true because (5.15) holds (with 7 in place of r) for all x in some neighborhood of
X, so that the right side of (5.15) must have a local minimum at x = X. From (5.21)
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and (5.22), it is clear that the latter implies

2
(528 05 A+ )+ ¥ A+ o

ielo

for all z satisfying (5.3), and this derivative equals z- Hz.

Thus for twice-differentiable functions f; and S open, the situation can be
summarized as follows. If (X, y,7) is a saddle point of L for some 7 = 0, then X
and ¥ satisfy the standard second order necessary conditions for optimality, and X
is (globally) optimal. On the other hand, if X and y satisfy the standard second order
sufficient conditions and X is the unique (globally) optimal solution in the strong
sense, and the quadratic growth condition is satisfied, then (X, y, 7) is a saddle point
of L for some i = 0.
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OPTIMAL CONTROLS WITH PSEUDODELAYS*

J. WARGAfY

Abstract. This paper investigates questions of existence and necessary conditions for ordinary,
relaxed, and approximate solutions of optimal control problems defined by functional-integral
equations of the form

o0 = [ i) [110.2.5. €00 9. brtoyas)

and subject to unilateral restrictions. Here t,7€ T, s€ S, T and S are compact metric spaces, u:S — R
and b are the control function and parameter, k and v(t) are given positive Radon measures, and ¢ is
a given functional transformation. These equations generalize differential and integral equations with
delays that are characterized by the additive coupling of the delays of the control functions. The paper
also includes a brief discussion of the ways of extending these results to conflicting control problems
defined by similar equations containing the additional arguments up(s), b, that refer to adverse con-
trols. The methods, concepts and arguments used here strongly rely on the author’s previous work
on similar problems in which the controls were not subject to pseudodelays.

1. Introduction. There is a fairly large and growing literature concerning
optimal control problems involving delays or, more generally, functional-integral
equations (see, e.g., [1]-[2], [4]-[6], [8]-[12]). Two types of such problems have
attracted particular attention. The first type involves equations such as

(1.1) dy(n/dt = f(t, y(hy(1), -+, y(0), u(®)) ae.in [to,1,],

or, more generally,

(1.2) W) = f flt ooy u@ud (e ),

where, for each t, f(1, 7, y, u(r)) may depend on the function y and not only on
y(7), and thus the state function y may be subject to delays or more general trans-
formations. The second, more general, type involves equations such as

(13)  dy(@y/dt = f(t, y(hy(0), - -+ (0, u(hy (1), -+~ u(h(1)) ae.in [1o, 1],

or, more generally,

(L4) y 1) = f flt o ywud) (e T),

where both the state function y and the control function u may undergo trans-
formations.

For a large class of problems of the first type there exists a reasonably com-
plete theory, including existence theorems for various kinds of optimal solutions
(relaxed, ordinary, and approximate), statements about the interrelationship of
these solutions, and necessary conditions for both relaxed and ordinary minima;
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research was supported in part by the National Science Foundation under Grant GP-34189.

286



OPTIMAL CONTROLS WITH PSEUDODELAYS 287

and this theory encompasses functional restrictions such as, for example, the
“unilateral” restrictions of the form y(f)e A(t) (te T), or, more generally,
g(»)(p) € A(p) (p € P), where P may, but need not, coincide with T. This theory is
worked out in detail in [14, Chaps. VII, VIII] for equations of the form

(L.5) fftré O.u(0). buldr) (1€ T),

where T is a compact metric space, u a nonatomic positive Radon measure in
T, uis a control function subject to a restriction of the form u(t)e R*(t) y-a.e., bis a
control parameter, the state function y is an element of either C(T, R") or L?(u, R"),
and ¢ is a differentiable transformation between appropriate Banach spaces.
Moreover, as we shall see below, the same methods can be applied with relatively
small modifications to the general problem defined by equation (1.2).

The situation appears to be quite different for nonlinear problems of the
second type. With one exception, all of the published results in this area are con-
cerned with either necessary or sufficient conditions for ordinary minima. The
one exception concerns problems defined by equation (1.3) for which it is assumed
that each h; or h; is either the identity, or an iterate of some function h, or of its
inverse h™'. Subject to this special assumption, there exist results [13, pp. 119-120],
[14, pp. 402-406] similar to those previously mentioned for problems of the first
type, as well as results of Sabbagh [12] applicable to certain special variational
problems.

Our present purpose is to derive an analogous theory for a class of problems
of the second type, in which the delays or their analogues are additively coupled.
Specifically, we consider functional-integral equations of the form

(1.6) ﬂn=jMwUQMnaawmﬂ®wmmM) (teT),
T

where Tand S are compact metric spaces and « (resp. v(t) (t € T)) is a given positive
Radon measure in T (resp. S). In its general form, equation (1.6) provides an
example of an optimal control problem with state functions y and control functions
u defined on different domains, namely T and S. In the special case where S = T
= [to.t;] = R, 6, denotes the Dirac measure at f8,  is the Borel measure in T,

1
)= yohy, - yohy, V(1) = Z 55;(:)
j=1

and

ft,o,0), Tt

f(l,T,‘,°,~,~)={

0, T>t,

equation (1.6) reduces to the functional-differential equation
dy(r d - .
(1.7) Z f(z, hfz), ylhy (@), -, (7)), u(h(7)), b) ae inT
=1

In particular, if ﬁj(r) S<t(j=12,---,1 teT), then it is proper to say that the

control function in (1.7) is subjected to delays. By analogy, we refer to the control
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function as it appears in (1.6) as a control with pseudodelays. Thus a pseudodelay
is a transformation which, in special cases, may involve discrete or continuous
delays and advances but which can also be defined in situations where there is
no past or future.

We shall limit our present investigations to the case where the state functions
y are continuous. However, entirely parallel arguments can be applied, on the
pattern of [14, Chap. VIII], in the case where y is chosen from L? or even Orlicz
spaces.

Our approach to equation (1.6) is conceptually quite simple. A relatively
simple assumption about k and v (Assumption 2.1(i)) ensures that there exist a
nonatomic Radon measure p in S and Radon measures A(s) (s € S) in T such that

fx(dr) fh(r, s)(t)(ds) = f w(ds) Jh(r, s)A(s)(dz)
for appropriate functions h, and thus equation (1.6) can be rewritten in the form

(1.8) W) = f S5, y.uls). bulds)  (1eT),
where

Pt.s,y.u(s),b) = Jf(t,f,s’ <)@, uls), b)A(s)(d).
We then study equation (1.8) in much the same way as we studied the equation

i) = f £, &) @) u0). bu(dr) (1€ T),

in [14, Chap. VII].

Existence theorems for optimal solutions (ordinary, relaxed, and approx-
imate) are presented in §2. In § 3 we discuss necessary conditions for ordinary
and relaxed optimal solutions, as well as necessary conditions for the existence
of a strict %-solution, that is, an optimal ordinary solution that is not optimal
among relaxed solutions. In §4 we discuss, without going into detail, ways of
extending these results to conflicting control problems with ‘‘simultaneous”
pseudodelays. Finally, the proofs appear in § 5.

2. Definitions and existence theorems. We shall use, with slight modifications,
the notation of [14], and we briefly summarize the pertinent portions of it here.
If X is a compact metric space, we denote by C(X, R") the Banach space of con-
tinuous functions on X to R" with the sup norm |- |,, by Zg,(X) the o-field
of Borel subsets of X, and by frm (X) the set of all Radon measures in X identified
with C(X)* (the topological dual of C(X) = C(X, R)) and endowed with the weak
star topology; then frm™ (X) (resp. rpm (X)) represents the subsets of frm (X)
whose elements are positive (resp. probability) measures. We denote by C(X, W)
the set of all he C(X, R" such that h(X) = W < R". For given Aefrm™ (X),
pe[l,0] and me{1,2,---}, we represent by L?(1, R™) the usual space LP(X,
Tporel(X), A, R™), by LP(4, V) the set of all he LP(4, R™) such that h(x)e V A-a.e.,
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and we write L?(A) for L?(A, R). We denote by A° the interior and by 4 the closure
of a set 4, by #'(Z) (resp. A (Z)) the space of all nonempty (resp. compact and
nonempty) subsets of a metric space Z (with the topology of the Hausdorff semi-
metric (resp. metric)), and by d[x, 4] the distance from a point x to a set 4. We
also write £ for “equal by definition” or “‘is defined as”.

We assume given compact metric spaces P, R, S and T, a set B of ““‘control
parameters” which is a convex subset of a real vector space with a sequentially
compact topology in B, closed sets W < R" and V = R™, a nonzero measure
ke frm™ (T), and functions

E:C(T, W) > L®(k,V), v:T—frm*(S), A:P— H(R™),
fiTxTxSxVxRxB->R" g=1(g0.21.82):CT,V)xB
- R x R" x C(P,R™).

We now state our first set of assumptions.
ASSUMPTION 2.1.
(i) v:T - frm™ (S) is k-measurable [or, equivalently, T — [c(s)v(t)(ds) is k-
measurable for each ¢ € C(S)], 0 < x-ess sup v(1)(S) < o, fv(@)({s})x(dr) = 0 for
each seS;

(i) f(-,-,-,v,r,b) is Borel measurable on T x T x S for each (v,r,b)
eV x R x Bj; f(t,1,s,-,-,+) is continuous on V x R x B for each (t,7,5)e T
x T xS,

sup [(d0) [ 170,75, upp(2)d) < o0

lim [do) [1f(0, 25,000 = F(0 050 g @A) =0 (1€ T:

(iii) g and ¢ are continuous.
We can deduce from Assumption 2.1(i) that the relation

WE) 2 fv(r)(E)x(dr) [E € Spora(S)].

defines a nonzero nonatomic measure pefrm™ (S). (The proof of this assertion
follows from [14, X.1.1, p. 482] and the observation that a measure in frm™* (S) is
atomic only if it has point atoms.) We assume given a (set-valued) mapping
R*:S —» #Z'(R) and an “abundant set” % of “original control functions” as
defined in [14, IV.3, pp. 279-281] (with T replaced by S), but suggest that the
reader who is unfamiliar with these definitions restrict himself to the important
special case! where R* is a y-measurable mapping on S to #'(R) and % is the set
of all u-measurable selections of R* (that is, functions u:S — R such that u(s)
€ R*(s) p-a.e.). We define & * as the set of all y-measurable :S — rpm (R) such
that o\R*(s)) = 1 p-a.e. The original control functions are imbedded in % * by
identifying each u:S — R with the function s — J,, (where, as before, §, is the

! In other special cases, an “‘abundant set” % of original control functions may be restricted to

include only u-simple or u-piecewise continuous selections of R % and under certain conditions [14,
Remark, p. 287] we may even choose % as the set of all continuous u: T — R.
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Dirac measure at r). The set & * is, in turn, embedded in L*(y, C(R))* and endowed
with its relative weak star topology [14, Chap. IV]; the embedding is accomplished
by identifying each ¢ € & * with the linear functional h — fu@dOfh(t, ryo(r)(dr).

The optimal control problem that we consider is specified, in its “‘original”
form, by setting

Fly,u.b)(1) & j (dv) f (7. 5. E0)(). uls). bWe)(ds)

(ye(T,W),ue%U,beB,te T),
if this relation defines F(y, u, b) as an element of C(T, W) and, otherwise, setting

F(y,u.b)(t) 2 y(t) + (1,0, -, 0) e R";
and by letting
H(U) = {(y,u,b)e C(T, W) x U x Bly = F(y,u, b)}

and
AU) £ {(y.u.b)e #(U)lg,(y.b) = 0,£,(y. b)(p) € A(p)(pe P)}.
A triplet (3, @i, b) € A (¥) is a minimizing % -solution if
go(y, b) = inf {go(y. b)I(y.u,b)e L(U)}.

A sequence ((y;,u;, b)) in H#(%) is an approximate U-solution if
li;n (Ig:(y;- byl + sup d[g2(y;. b)(p). A(p)]) = 0.
An approximate %-solution ((y;, i;, b,)) is a minimizing approximate %-solution if
li?] &o(y;s Ej) = limjinfgo(yj’ b))

for every approximate %-solution ((y;, u;, b;)).
We introduce the relaxed optimal control problem by setting

fltt.s.v.0(s).b) 2 ff(z,r,s,v,r,bws)(dr)

((t,7,5,0,0)eTx TxSxVx B,ogesS?),

and defining F(y,a,b), #(¥ %), o(¥*) and a minimizing ¥ *-solution just as
before but with %, u replaced by & *, g, respectively. We refer to a minimizing
& *-solution as a minimizing relaxed solution.

We can now state our first existence theorem.

THEOREM 2.2. Let Assumption 2.1 be satisfied and /(¥ *) be nonempty. Then
there exists a minimizing relaxed solution (3, &, b).

If, furthermore, y is the unique solution in C(T, W) of the equation y = F(y, G, b)
and there exists a neighborhood G of G in &7 such that the equation y = F(y, u, b)
has a (not necessarily unique) solution y for allue % N G, then there exists a mini-
mizing approximate 9-solution ((y;, u;, b)) such that lim;(y;, u;) = (,6) in C(T,
W) x &¥*.
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The applicability of the second part of Theorem 2.2 is contingent on our
ability to determine whether the equation y = F(y,o,b) has a solution y for
fixed o and b, and whether such a solution is unique. The uniqueness question
also comes up in the necessary conditions that we discuss in § 3. We refer the
reader to Hale’s book [7] for results pertaining to functional-differential equations,
and to [14, I1.5.A-C, pp. 200-210], where questions of existence are discussed for
fairly general functional-integral equations and uniqueness criteria are estab-
lished for ‘‘hereditary” functional-integral equations over an arbitrary compact
metric space T. (These equations are generalizations of Volterra-type integral
equations over an interval.)

The next theorem describes certain convexity conditions that ensure the
existence of a minimizing %-solution, and it generalizes the well-known existence
theorem of Filippov [3, Thm. 1, p. 76], as well as [14, Thm. VII.1.4, p. 410] that
applies to problems defined by equation (1.5). Before stating this theorem, we
observe that it follows from Assumption 2.1(i) (see, e.g., [14, X.1.1-X.1.3, pp. 482~
487]) that there exist yefrm* (T x S) and a p-measurable A:S — rpm (T) such
that

fh(t,s)y(d(t, 5)) = fx(dt)fh(t, s)v(t)(ds)
(2.3)

- fu(ds) f Wi A (he L'G).

THEOREM 2.4. Let Assumption 2.1 be verified, R* :S — A'(R) be a u-measurable
(set-valued) mapping, U the set of all u-measurable selections of R*, and &% the
set of all p-measurable ¢:S — rpm (R) with o(s)(R*(s)) = 1 p-a.e. Let

Blt.s.y.r.b) 2 ff(m,s,é(y)(r),r,b)z(s)(dr)
(¢,s,r,b)e T x S x R x B,ye C(T,W)],

and assume that o/ (¥ *) is nonempty and there exists f € frm™ (T) such that B(E) > 0
for every open E = T and, for y-a.a. s€ S and all be B and ye C(T, W), the set

{(b(‘,s,y,r,b)lreR#(S)}

is a convex subset of the vector space of all (equivalence classes of ) f-measurable
functions on T to R".

Then for every choice of a minimizing relaxed solution (3, G, b) (of which at
least one must exist by Theorem 2.2), there exists i € % such that (y, 4, b) is a mini-
mizing relaxed solution (and, a fortiori, a minimizing %-solution).

Remark. 1t is easily verified that the assumption about the existence of f8
can be replaced by the assumption that there exists a dense subset T’ of T such
that, for y-a.a. se S and all be B and y e C(T, W), the set of functions

{¢(-,s,y,r,b)lpIre R*(s)}

is convex, where ¢(-,s, y,r, b)|y is the restriction to T'. Indeed, given such a set
T', we may choose a dense denumerable subset {t,,7,, ---} and let

ﬁ(E) é Z 2—j [E € EBorel(T):l'

tjek
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3. Necessary conditions for relaxed and original minimum. In order to discuss
necessary conditions for a minimum, we shall require some additional definitions
and assumptions. We shall apply, in particular, the concept of a (Fréchet) derivative
relative to a set [14, p. 167]. Specifically, if 2 and % are Banach spaces, A4 a con-
vex subset of 2 with a nonempty interior, a€ A, and h: A — %, then we say that
h'(a) is the derivative of h at a whenever h'(a) € B(Z', %) (the Banach space of con-
tinuous linear operators on 2" to %) and

lim |Ax| ™ Yh(a + Ax) — h(a) — W(a)Ax]| =0 as Ax —>0,AxeA —a,Ax # 0.

We define partial derivatives accordingly, and write h,a,b) or 2, h(a, b) and
hy(a, b) or D,h(a, b) for the derivatives of h(-,b) at a and of h(a,-) at b. If A is a
convex subset of a vector space, % a Banach space, a,ae A, and h: 4 - ¥, then
we denote by

Dh(a;a — a) & 111330 o~ '[h@ + a(a — a)) — h@)]

the directional derivative of h at @ in the direction of a. We write D, h(@, b; a — a)
and D,h(a,b;b — b) for the partial directional derivatives of a function h(-,-).
Finally, we denote by 7, ; the simplex

{(00’ ,9"’)6Rm+1|9i 20’ Z 0,‘ é 1}’
Jj=0

and define s - A(s):S —» rpm (T) as in (2.3).
THEOREM 3.1. Let (¥, 6, b) be a minimizing relaxed solution, and assume that
(1) & has a continuous derivative ;
(i1) v satisfies Assumption 2.1(i);
(i) A(p) is a convex body (i.e., a closed convex set with a honempty interior)
for each p € P and the set

G(4°) 2 {(p.v)e P x R™|ve A(p)°}

is an open subset of P x R™?;

(iv) for each choice of L 2 (by, -+, b,)e B"*! there exist a closed convex
neighborhood V' < V and a closed convex neighborhood I of 0 in Z,,, , such that
&) is in the interior of L®(x, V) and the functions

(t,r,s,v,r,@)—»fL(t,t,s,v,r,O)éf(t,r,s,v,r,l_)+ Y. 6ib; — b)):
j=o
TxTxSxVEXRxITLSR

and

(.0 > g"(y,0) = g(y»B + f 0/(b; —13)) TNk, VE) x TR

j=0
- R x R" x C(P,R™)
have the following properties

(@ fXt t,s,-,r,-) has a derivative foolt.t.s,0,0,0) for all (t,t,s,0,7,0)
€T x TxSx VxR xJ*" and both f* and f{,,, satisfy the same conditions
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as fin Assumptzon 2.1(ii) (with b replaced by 0); and
(b) g“(-,-) is continuous and has a derivative at (3, 0).
We assume furthermore that

(c) the equation Ay = F Ay has Ay = 0 as its only solution in C(T, R"), where
F is defined by

(FAy)(1) £ fk(dt) ff.,(t .7, 8, ED)(@), 6(s), B)(E'(9) Ay)(2)v(z)(ds)
(Aye C(T,R",teT).
Then I — F has a continuous inverse, (I — F)~' — I is a compact operator

in C(T,R"), and there exist [, = 0,1, e R", { e frm* (T), e LY({, R"), w € frm* (P)
and @ € LY(w, R™) such that

Ll =1 (eT), 160 =1 (eP), lo+ |l +o(T) >0,
1
f 20 - x(00d) = 3 12hg5. BT — F)"'x
i=0
4 f op)- [2,2:5, BT — #)~'x](p)oo(dp)
(xe (T, R";

f () f 80 - £t 75, E3)(2). 5(s). BYs)(do)

@) ~ min_ f () j 20 - £(t. 7.5, EG)). . BYAS)(de)
reR #(s)
for p-a.a.se S;
j () f ulds) f 20 Def(t.7.5.E0)(x). 3(5). B: b — Bi(s)(dv)
3 1 _ _
Y R heDu.5b - B+ [0 Dagar.3b — Bpetdn) 2 0
(be B);
(4) @(p)- g2(7,b)(p) = ar?,ﬁ};) a(p)-a for w-aa. peP.

THEOREM 3.2. Let % be an abundant set (or consider the special case where U
is the set of all u-measurable selections of a u-measurable R* :S — A#'(R)), and let
all the assumptions of Theorem 3.1 be satisfied except that (3, G, b) is assumed to be
a minimizing %-solution and not necessarzl ya mzmmizing relaxed solution. Assume,
furthermore, that for each choice of L 2 (b,, -+, b,)eB"* !, 6 %* and e TL,
the equation

y=Fly,o,b+ Y 6b; — b)

j=0
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has a unique solution y = yHo,0) in E~YL®(T,V*)). Then the conclusions of
Theorem 3.1 remain valid.

The next theorem refers to strict %-solutions, that is, minimizing %-solutions
that are not at the same time minimizing relaxed solutions. We shall refer to a
point (3,3, b)e C(T, W) x &* x B as admissible if it belongs to.o/(¥*); we shall
call it extremal if there exist corresponding . I, , w, {, @ and , as described in the
statement of Theorem 3.1, and that satisfy together with (¥, &, b) the relations
(1)-(4) of that theorem. Thus Theorems 3.1 and 3.2 assert that, under appro-
priate conditions, every minimizing relaxed or %-solution is admissible and
extremal (but, as it is well known, the converse is generally not true). We refer to
an extremal point as abnormal if there exists an appropriate choice of corres-
ponding l,, ;. 1,, w,, @,  with lo =0.

THEOREM 3.3. Let % be an abundant set, (j, i, b)e oA (U),

M A {(y,0,b) et ()| go(y. b) < 2o(F, B},

and assume that every point (y,o,b)e M satisfies all the assumptions made in
Theorems 3.1 and 3.2 about (¥, &, b) except that it need not be a minimizing (%- or
relaxed) solution. Then (J, 4, b) is a strict U-solution only if it is extremal, the set

M= E(y,0,b)e (P *)goy, b) < golF, b))

is nonempty, and every element of M =~ is extremal and abnormal. (It follows there-
fore, under these conditions, that the problem can have a strict U-solution only if
every minimizing relaxed solution is abnormal.)

4. Conflicting controls with pseudodelays. We observe that the results of
[14, Chaps. IX and X] are applicable in the case of conflicting control problems
with both controls subject to “‘simultaneous” pseudodelays. Let R, and Bp be
compact metric spaces, R} :S — #'(R,) defined similarly to R* but with Rp
replacing R, and let %, be an abundant set of “adverse” original control functions
up:S — Rp. Let the “‘original” conflicting control problem be defined by the
equations

(1) ) = ffc(df) ff(m,S,é(y)(f),u(S),b)V(T)(dS) (teT),

) ) = J'?(dr) ff (t.7.5. &9)(0), u(s). b, upls) . bp)ia)(ds) (1€ T),

We assume that these equations have unique solutions y(u, b) and H(u, b, up, bp),
and that the problem consists in choosing (u,b)e % x B to minimize x(u, b)
2 ho(y(u, b)) subject to the restrictions

x,(u,b) 2 h,(y(u, b)) = 0 R™,
x,(, b)(up, bp) 2 hy(Pu, b, up,bp))e A = R™ for all (up, bp)€ Up x Bp.

We may assume that x = £ and v = 7, otherwise determining the Radon—
Nikodym derivatives of x and & with respect to k¥ + & and of v(r) and ¥(z) with
respect to v(t) + 9(z), and modifying f and f accordingly. With this accomplished,
we determine the corresponding u e frm™* (S) and “relax” the problem, replacing
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u by a p-measurable ¢:S — rpm (R) and up by the corresponding hyperrelaxed
control function [14, Chap. X]. We can verify (by arguments analogous to those
of Theorem 2.2) that the conditions of the existence theorem [14, X.1.8, p. 493]
for optimal relaxed and approximate solutions are satisfied when f satisfies
Assumption 2.1(ii) and f its analogue. It appears that the necessary conditions of
(14, X.2.4, p. 499] can be applied by methods analogous to those used for
autonomous ordinary differential equations in [14, X.3.5]; but we have not
carried out the details of these derivations or determined the exact form of con-
ditions that must be imposed on f, f, & and h;.

5. Proofs.

5.1. Proof of Theorem 2.2. Let y and A be defined as in (2.3) and ¢ as in the
statement of Theorem 2.4. By Assumption 2.1, (2.3), and Fubini’s theorem, for
each (y,0,b)e (¥ *) and te T the function (t,s) — f(t, 1,5, &)(t), a(s), b) is
y-integrable and

310 = [ o) 1. 7.5. )0, o15). (o))
= (s [y {1025, €001 . rtsyan
= [ wtas) [ otsran [16e.2.5. @) by
= [t [ot0.5.3.7. Brots)a

= f¢(z, s, y,a(s), bu(ds),
where, as.we did for f, we write

o(t,s,y,o(s),b) for jd)(t, s, y,r, bya(s)(dr).

Furthermore, we have

(@)l éf K(df)f 1/ (t,7,5,E0)(x). a(s), b)v(r)(ds)

< sup j (d) j\f(r',r,s, gt (ds) < 0
and

0 = A1 S D) [17(0 7050 00) = ST M) (ds) 2, 0.

Thus the set Y 2 {y|(y, o, b) € (¥ *)} is bounded and equicontinuous and there-
fore conditionally compact in C(T, R"). Since & * is sequentially compact [14,
IV.3.11, p. 287] and so is, by assumption, the set B, it follows that every sequence
in o/(*) has a convergent subsequence.
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Now let (y;,0;,b)e (F*) (j=1,2,--+) and lim;(y;,6;,b)) = (3,6, b) in
C(T,R") x ¥* x B. Since V and W are closed, it follows that ¥ T) < W and
() (t)e V k-a.e. Thus, for all (1,s,r)e T x S x Rand xk-a.a.teT,

lljn'lf([, 7,8, é(y,)(‘f)« r, b}) = f(t, 7,8, é(}_})(r)» r, B)a

and, since f(t,7,s,-,-,-) is continuous and R is compact, the convergence is
uniform for all r € R. It follows, by a variant of the dominated convergence theorem
[14, 1.4.36, p. 87], that

lim [(t, s, yj.r. b)) — (t,s.3.7.D)]
J

= tim [[L£0. 5.5, €007, b) = 0. 7.5. €. 7. BN )
=0 forall(t,s)eT x S, uniformly forreR;
hence
lim [0, 9/9): b) = $(t.5. 7,045 =0 [(1.)€ T x 5],
and, again by the dominated convergence theorem,
@ lim 1000530/ b) = 910,55, BIuds) =0 (1€ )

Next we observe that, for each (t,y,b)e T x C(T, W) x B, the function
(s,7) = &(t, s, y, r, b) belongs to L'(u, C(R)). It follows [14, IV.1.11, p. 272] that

lim f (1.5, 5.0,(5). Bu(ds) = f $(1.5.5.5(). Byuds) (1€ T).

We combine this relation with (1) and (2) and conclude that

30 = lim y,0) = lim [ 9t 5.3;. (9. buds)

- J B(t. 5. 7. 5(s). Byuds)
= F(ﬁ&»B)(t) (IGT),

and

(81(7.5).£2(9. b)(p)) = li§n (819 b)), &2(v;. b)(P) € {0} x A(p)  (peP).

Thus (3, 6, b) € /(& *),showing that .o/ (¥ *) is sequentially compact and F|.o¢(¥ *)
sequentially continuous. The existence of a minimizing relaxed solution now
follows from [14, V.1.1, p. 296].

To prove the second part of the theorem, we observe that the same argument
as above shows that #(¥ *) is sequentially compact and F|#(¥ *) sequentially
continuous. Then our conclusion follows from [14, V.1.2, p. 297]. Q.E.D.
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5.2. Proof of Theorem 2.3. Let (7, &, b) be a minimizing relaxed solution,
and

h(t,s,r) 2 ¢(t,s,5,r,b).

Then the arguments of Theorems 1V.3.14 and VII.1.4 of [14, p. 291 and p. 410]
apply directly, with (¢,7), T x T, v x u replaced by (t,s), T x S, B x u, res-
pectively ; our conclusion follows from [14, Thm. VII.1.4], as modified. Q.E.D.

5.3. Proof of Theorem 3.1. Let K 2 ((o, by), -+, (0, b)) € (% x BY" 1,
L é (b07 T, bm)7 YK é ﬁ_l(LOO(K? VL))7

aK(O)é&+i9f(aj—a), b¥(0) £ b + i 6'(b; — b).

=0

Xt t.0,0) 2 Jf(t, 7,5, v, 7%(0)(s), bXO))v(t)(ds)

JfL(t, 7,5, 0, 7%(0)(s), O)v(1)(ds)

(t,te T,ve Vi, 0 =(6°,---,0MeTh),
and
FX(y,0) £ F(y,a0),b%0)  (ye Yx.0€7H).

Then we verify (essentially as in [14, p. 415, Step 2]) that

Fo(y. 0)(1) = f X1, E0) (@), Okldr)  (ve Ye,0e T teT),

and FX has a continuous derivative such that

DFX(y, 0)(Ay, AO)(1) = Jf wolts T, EW)(D), O)(E'(y) Ay)(r), Ab)x(dr)

(Aye C(T,R"),AGe R"*).
It follows that F,(j, &, b) =

D,F(y.,(5.b):(a.b) — (6. D)(1) = fk(dr)f[f(t,r,s, ED)(x). als) — a(s). b)

(5) + D f(t, 7,5, E() (1), (s). b

b — b)Iv(t)(ds)
(o,b)e ¥* x B,teT),

and, by [14, IL.5.5, p. 207], & is a compact operator, I — % has a continuous
inverse,and (I — %)~ ! — I is compact. We may therefore apply [14, V.2.3, p. 303]
to conclude that there exists [ = (I, 1;,1;) € [0, o0) x R™ x C(P, R™)* such that
I #0,

1[2,8(7.b)o (I = #) 'D,F(3,(5.b): (6,b) — (5.D)) + D2g(y.b;b — b)] 2 0

(6)
((c,b)e ¥* x B),
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and

() L(g2(7,0) 2 Io(c)  (ce C(P,R™),c(p)e A(p), pe P).

We can represent [, (e.g, [14, 1.59(2), p. 117])) by wefrm™ (P) and
@® e L*(w, R™) such that

Id(p)l =1 (peP) and Lx = JGJ(P) -x(p)(dp)  (xe€C(P,R™)).

We may similarly represent [o 2,g(y,b)o(I — %)~ ' by (efrm® (T) and
Ce LY({.R"). and these two combined representations and [ # 0 yield statement
(1) of the theorem. Statement (4) of the theorem follows from (7) and [14, V.2.5,
p. 307]. When we apply these representations and (5) to relation (6), we obtain

f () f (de) f 20 - Lf (1.7 5. E5)0). ols) — 6(5). B)
@) + Dg f(t.t.5.&())(1). 6(s),.b:b — b)]v(1)(ds)
1
Z iD2gi(y.b:b —b) + fcb(p) -D,g,(y.b:b — b)(p)w(dp)

=0 (o.b)e S* x B).

For o = &, this relation and (2.3) yield statement (3) of the theorem.
It remains, therefore, to prove statement (2) of the theorem. We set b = b
in (8), and apply (2.3) and Fubini’s theorem to obtain

9) f u(ds)fC(dc)fZ(t)-f(z,r,s,é(y)(r),a(s)—6(s>,5)z(s)(dr);o (ces)

Because of our choice of R* (see [14, 1V.3.1, IV.3.2, pp. 280-281]; in particular,
by a theorem of Castaing [14, 1.7.8, p. 152] if R*(s) is closed p-a.e.), there exists an
at most denumerable set {u,,u,, - --} of u-measurable selections of R* such that
{u,(s), uy(s), - - -} is dense in R*(s) for p-a.a. s€ S. For each j = 1,2, --- and each
u- measurable set E, we set

{uj(s) (seE),
o(s) =9 _
a(s) (S¢E).
Then (9) yields

f () fat (7.5, EF) @), 1y(5). BAs) ()

10 N
(10) > j ) j 20 -1t 7. 5. E3)(x). 3(s). BYls)(do)

(j=1,2,--+, paases).

Since the function r — f{(dt)ff(t)- f(t, 1,8, &) (t). r, B)A(s)(dT) is continuous for
u-a.a. se S (as a consequence of the Lebesgue dominated convergence theorem)
and {u,(s), u,(s), - - -} is dense in R*(s) for y-a.a. s € S, statement (2) of the theorem
follows from (10). Q.E.D.
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5.4. Proof of Theorem 3.2. We shall continue to use the notation introduced
in the proof of Theorem 3.1. We shall also write

FX(y,0,0) £ F(y, 0,b%0)
and

fXt.t,v,0,0) 2 Jf(t,r,s, v, o(s), bXO)V(T)(ds).

If we replace B, f by Jx, f¥ in the proof of Theorem 2.2, then this argument
effectively shows that FX|Y, x &% x J; is continuous. (This argument remains
unchanged if we choose the convergent sequence ((y;,g;,0)) in Yy x &% x g,
its limit remaining in the same set because Yy x & * x 7} isclosed.) Furthermore,
the same argument shows that the set j%(&¥* x J%) is conditionally compact in
C(T, R"). These observations and the properties of FX derived in the proof of
Theorem 3.1 show that [14, V.3.2, p. 310] is applicable and there exists, therefore,
a nonzero | = (ly,[;,1,)€ [0, 0) x R™ x C(P, R™)* satisfying relations (6) and
(7) in the proof of Theorem 3.1. From this point on, our arguments proceed as
in that proof except that the set {u;,u,, -} (with {u(s), uy(s), ---} dense in
R*(s) pu-a.e.) is chosen out of . Q.E.D.

5.5. Proof of Theorem 3.3. By [14, V.34, p. 314], 4 ~ is nonempty and
every element (7, G, b) of it is extremal and abnormal in the sense of [14, Def.
V.20, p. 298]; that is, there exists a corresponding nonzero [ = (I,,1,, ;) € [0, o)
x R™ x C(P,R™)* such that relations (6) and (7) in the proof of Theorem 3.1
are satisfied and I/, = 0. It follows then, as in the proof of Theorem 3.1, that
(¥, G, b) is extremal and abnormal in the sense defined here. Q.E.D.
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ON THE PROBLEM OF EVADING THE ENCOUNTER IN
DIFFERENTIAL GAMES*

E. F. MISHCHENKO

Abstract. In this paper is given a sufficient condition for evading the encounter in a differential
game with nonlinear controls.

Introduction. At present, several works are well known which advanced the
solution of the problem on evading the encounter in differential games quite far
(see, e.g., [1], [2] and [3]). However, the result of [1] remains simplified and, at the
same time, made sufficiently broad for applications. In this paper, a generalization
of this result is given to the case of games with nonlinear controls. This generaliza-
tion has been obtained by me together with N. Satimov.

1. Statement of the problem and formulation of the result. We shall consider
the differential game given by the equation

(1) z2=Cz+ f(u,v),

where z is a vector of an n-dimensional Euclidean space R", C is a constant square
matrix, u and v are the control parameters with ue P and ve Q, P and Q are
given nonempty compact subsets of p- and g-dimensional Euclidean spaces R
and RY, respectively, and f(u, v) is an arbitrary function, continuous in both of its
arguments, defined on R x R4 We shall assume that the set of game terminations
M is a linear subspace of the space R".

We shall say that it is possible to avoid the encounter in the game (1) (or that
it is possible to flee) if the following is true: for any initial value z, € R" with
zo ¢ M of the vector z, and for any measurable function u(t) according to which
the parameter u changes, there exists a measurable change v(t) of the parameter v
such that the point z(t), which is the solution of the equation

(2) z2=Cz+ f(ur),vr),  zo = z(0),

does not enter M for any value of the time ¢, 0 < ¢ < co. In this connection, in
order to find the value v(t) of the parameter v at every instant of time t = 0, one
is allowed to make use only of the values u(s) and z(s) of the parameter u and
vector z for s < t, and one is not allowed to utilize these values for s > t.

We now pass to the formulation of the result. We denote by L the orthogonal
complement of the subspace M in R", and let dim L = v. Further, let W be a
linear, so far arbitrary, subspace of the space L. We denote by n the operation of
the orthogonal projection from R" onto W.

We shall say that the evasion condition is satisfied in the game (1) if there
exist a two-dimensional subspace W of the space L and a positive integer k such
that:

(a) each of the sets

nf(Pa Q),ﬂ:Cf(P, Q), nsz(P, Q), R} nck—Zf(P, Q)

* Received by the editors May 29, 1973. This translation into English was prepared by K.
Makowski.
+ Steklov Mathematical Institute, Academy of Sciences of the USSR, Moscow B-333, USSR.
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consists of a single point, and
(b) the set

R = MDPnC"“‘f(u,Q)

contains an interior (with respect to W) point.

Henceforth, we shall denote by ¢ the distance from the point z to M, and by
n the distance from the point z to W. We shall denote by M, the orthogonal
complement of W in R", and by ¢, the distance from the point z to M, .

THEOREM (The theorem on evading the encounter). If the conditions (a) and
(b) are satisfied in the game (1), then the evasion is possible. Moreover, by an ap-
propriate choice of the evasion control v = v(t), one can guarantee the following
estimate of the distance &(t) from the point z(t) to M :

&) z ZiOpyne)]  forallt 20 and 0<&,(0) <e,
&) =z é’;(ﬁ)y[’l(t)] forallt = T, and &,(0) =0,

where y[n] is a monotonically nonincreasing function of its argument, ¢ is a positive
number which depends only on the game (1) and does not depend either on the initial
point of the game or on its progress, and 1, is a positive number which depends only
on the initial point of the game but not on its progress.

©)]

2. The proof of the theorem on evading the encounter. In this section, ¢, c,
Cos €y, €5, ¢3 and ¢, denote positive constants which depend only on the game
(1) but neither on its initial point nor on the controls u(t) and v(t). We shall denote
by { the orthogonal projection of the point z onto W: nz = {. We shall assume
that an orthogonal coordinate system has been chosen in W and denote the co-
ordinates of the point { in this system by (! and 2.

ASSERTION A. Since the set R contains an interior (with respect to W) point,
there exist a vector l€ R and a constant ¢, such that if a vector w, € W satisfies
the condition

4 lwy| <,
and u(s) € P is a measurable control, the equation
®) nC*  f (uls), v) = | + wy,

given on the interval 0 < s < 1, has a measurable solution v(s) € Q, defined on the
interval 0 < s £ 1.

Proof. Let | be an arbitrary interior point of the set R. If the constant c, is
sufficiently small, then, obviously, all the points | + w, belong to R for |w,| < ¢,.
Therefore, for an arbitrary u € P, we have

(6) I+ w,enC*f(u,Q).

In particular, | + w, e nC*~ ' f(u(s), Q).
We consider the equation

(7 nC* 1 f(u(s),v) = | + wy, 0<s<t.

By virtue of (6), there exist one or many solutions of (7). We shall show that a
measurable one can be chosen among them. For this purpose, we shall make use
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of the procedure which was employed in [4]. Namely, of all the values v(s) which
satisfy (7), we shall always choose v(s) = (v'(s), - - -, v¥(s)) whose component v(s)
is smallest ; from these, we shall always choose the ones whose component v?(s)
is smallest, and so on. (Smallest values do exist since, due to the continuity of the
function f, the set of v(s) which satisfy (7) is closed.) We denote the solution thus
obtained by v(s).

We shall prove by induction that the function vy(s), 0 < s £ 1, is measurable.
We assume that the components vi(s), v3(s), - -+, v’y !(s) of the vector-valued
function v, (s) are measurable on the interval 0 < s < 7 (there is nothing to assume
for r = 1) and prove that the component v}(s) is also measurable on this interval.
According to the well-known theorem of N. N. Luzin, there exists, for an ar-
bitrarily small number é > 0, a closed subset F of the interval [0, ] such that
meas F > t — & and the functions u(s), vj(s), - - -, vy '(s) are continuous on F.
We shall show that for any number a, the set of s € F for which vj(s) < a is closed.
If this is not true, then there exists a sequence s,€ F,n = 1,2, ---, such that

(8) s, — 8, vo(s,) £ vp(8) — 6,, J, > 0.

Since |vi(s)] < const. for all i = 1,2, ---, q and s, a subsequence can be chosen
from the sequence s, on which the values of all the functions vi(s) converge to
some limit values 3, i = 1,2, - -+, g. Obviously, (3}, - - -, 4) € Q. It follows from
the continuity of the functions vi(s), i = 1,2, ---,r — 1, on the set F and from

formula (8) that
o= 0vh(), i=1,2,---,r—1,
By < 0h(8) - 3.

©)

Passing to the limit in the identity
rC* 1 f (ul(s), vg(s), -+ -, v&(s) = 1 + w,

along the subsequence chosen, and making use of the continuity of the function
f, we obtain

(10) nck‘lf(u(g), v(l)(g)a B UZ)_ 1(3)9 569 ) 5%) = l + Wy.

By virtue of (9) and (10), v{(8) is not a smallest value of vf, which satisfies the
equation

nck—lf(u(g)’v(l)(g)’ Y U;)— 1(3)’06 s T v‘(l)) = l + Wla

which contradicts the definition of the function vf(s). Thus, the function vi(s) is
measurable on F and, since meas F > t — 9, where § is arbitrarily small, v{(s)
is measurable for 0 < s < 7.

Substituting the control v,(s) chosen into (7), multiplying the identity thus
obtained by (t — s)*"!/(k — 1)!, t <1, and carrying out the integration, we
obtain

(11) (k_—ll—)'J: (t — )" 'mC* 1 f (u(s), vo(s)) ds = wek + I(¢),

where
w=wl/k!,  It) = t"l/k!.
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Thus, in the game (1), there exists a constant ¢ such that if any vector w e L satis-
fies the constraint |w| < ¢, and u(s) is any measurable control given on the interval
0 < s < 1, then there always exists a special control vy(s) for which the relation
(11) holds. In this connection, the vector-valued function I(¢) does not depend on
u(s) and v(s).

ASSERTION B. Let the game (1) start at t = O fromthe point zy, |nzo| = & o < 1,
and let it develop, for a given vector w which satisfies the constraint |w| < c, under
the influence of the control vy(s) chosen in accordance with Assertion A. Then the
projection of the game trajectory onto W can be written down for t < 7 in the form

(12) C=Ut) =+ at + - + ag* + wi* + h(t),

where a,,a,, -, a, are constant vectors which depend on the point z, but not on
the controls u(s) and vy(s), and h(t) is a vector-valued function which, although it
depends on the choice of the controls, satisfies the constraint

(13) lh(®)] < ca(1 + n0)),

where ¢, is a constant. Moreover, the constant ¢, can be chosen such that the
following inequalities hold :

|ai|<c2(1 +i’](0)), i=1, 2"",1(,
In(e) — n(O) < cp(1 + n(0)).

Proof. According to the Cauchy formula, we have

(14)

11

(15) {t) = meCzy + nf eI (u(s), vo(s)) ds

0
Expanding the first term into series in powers of t, the integrand into series in
powers of t — s, and taking into account the condition (a) of § 1 and relation (11),
we obtain formula (12). The estimates (13) and (14) are obvious.

Assertions A and B reduce the problem of evading the encounter on the time
interval 0 < t £ 7 to the problem of choosing a vector w = w(z,) = w, constant
on this interval and such that inequality (3) holds for the curve (12).

The following three assertions C, D and E show that such a choice of a vector
w is possible if the length of the interval [0, t] is reasonably limited. In order to
prove this, we choose in the space W a coordinate system such that the point ¢,
has the coordinates ({,,0), and let, in this coordinate system, a; = (a!, a?),
w = (w', w?) and h(t) = (h'(t), h*(t)). Then the equation of the curve (12) can be
rewritten in the form

6 O =00=28 +ait+ -+ a7+ (g +w! RO,
1o =) =a*+ - +ai_ "+ (@F + w + R
ASSERTION C. There exist constants ¢ < 1, ¢, and w}, such that, for

(17) o = ol e/(1 + 1(0)]

and w' = w}, the following inequality holds for the first component of the curve
(16):

(18) I (zo)l 2 &/[1 + n(to)).
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Proof. We choose

(19) co=6lc, &= 1/lcow/eocs).

Further, we set
(20) Wl = { Lo if (& + altg + - + alth) = 0,
L=

—dc if (&g + ajto + - + aitk) < 0.
It can be verified directly that the following inequality holds for w! = w}:

21 Il (zo)l 2 2¢/1 + n(0))".

Therefore in order to prove Assertion C, it is sufficient to prove that decreasing,
if necessary, the number ¢, we obtain the inequality

(22) 2¢/(1 + n(0) = &/(1 + n(zo)),
or, equivalently, the inequality

Y2

1+n0) 1+ 'I(To)

(23)
e —— 2 |
e J41+mm—mm-—
1 + 7(0)
By virtue of (14), we have
(24) (70)7_’7 < cpe0d/e.

1 + n(0)

Therefore (23) holds for a sufficiently small ¢, and Assertion C has been proved.

We first fix the value of ¢ chosen and then, by the end of the proof of
Assertion D, decrease it again if needed.

Remark. We choose w}, in an entirely determined way: wy = 3c or wy = —4¢
(see (20)). However, it is not difficult to see that any w} chosen, e.g., on the interval
[4c, 3¢] or, correspondingly, on [ —3c, —4c], is suitable.

The following assertion is most essential in the proof of the theorem on
evading the encounter.

ASSERTION D. Let the initial point {, of the curve (16) satisfy the condition

0 # éx,o = [{ol = &0l = &

Then there exist a vector w = wy = (wj, wd) and a monotonically nonincreasing
function y such that the following inequality holds on the interval 0 £t < 1,

(25) 1@l z &3 .ovIn(®)]-

In this connection, the first component wj, of the vector w, can be chosen in such a
way that inequality (18) holds simultaneously.
Proof. We denote the polar coordinates of the point {(t) of the curve (16)
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by p(t), ¢(t). Further, we set

o =al +w' + hit),
(26)

B = at + w* + h*(1).
Then we obtain

pt)cos (t) = &y + alt + -+ + aj_ 7' + at®,

(27)
p(t)sin (t) = a?t + - + af_t*" ' + B~
Multiplying the relations (27) successively by 1, t, t2, ---, t* 71, we obtain
pt)cos o(t) = &g + alt + -+ +al_t* 7 + k-,
tp(t)ycos o(t) = 0 + &gt + -+ + aj_,t* ' +al_tF + at*t
(28) pt)ysing(t) =0+ ajt + -+ + af_ ;"1 + Btk

tp(t)sin o(t) = 0 + a?t? + --- + a2_t" + pt**'...,

We shall consider these relations as a system of 2k linear algebraic equations in

the unknowns 1, ¢, t2, ---, t**~!. Solving it formally with respect to the unknown
1, we find
(29) 1 =D,/D,

where D is the determinant of the system (28), and D, is the determinant obtained
from D by replacing the first column by the column of the free terms of system
(28). We take out the common factor p(t) from the first column and set

(30) D, = p(t)D.
Then we obtain
(31) p(t)D = D.

Therefore, in order to obtain an estimate for p(t), one must estimate the deter-
minants D and D.

The determinant D is a function of the parameters « and . We denote this
dependence by the subscripts o, f: D = D, ;. Moreover, this determinant depends
on &y, al, -+, at_;, a},---,af_,, which in turn depend on z,. We shall not
explicitly denote this dependence. We shall prove that given any fixed rectangle
IT determined by the inequalities

(32) o S o= a, By S BB,

there always exist a point (o, f§,) € IT and positive numbers r and §, which depend
only on the size of the rectangle IT and on the number k but not on &, al, -+,
a;_,,---,ag_,,such that

(33) IDao+Aa,ﬂ0+AB| g réliO’
if only
(34) |Ao| < 6, |ABl < 6.
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Indeed, one can see directly that D, ; is a polynomial in parameters o and f8
of the following form:

k=1
(35) D,,= 6B + Z Pij“i5’~

i,j=0
Let p be the coefficient of the polynomial (35) with the largest absolute value. Then
(36) Da,ﬂ = pdaﬁa Ipl g 61109

where d,; belongs to the set {d} of polynomials of bounded degree, in each of
which there is at least one coefficient equal to one and all the remaining co-
efficients are not larger than one. This set is compact. Hence it follows easily that
there exists a positive constant which bounds from below the maximum values
of the modules of all polynomials of the set. Since the derivatives with respect to
o and B of a polynomial belonging to the set {d} are uniformly bounded from
above, the existence of numbers r and d, which provide inequality (33), has been
proved.

We shall now choose an entirely defined rectangle Il. Namely, we shall
choose numbers «; and o, such that, if the inequality

(37 o S o+ w0

holds, then the number w! guarantees that (18) holds (see Assumption C). Then
we choose numbers ff; and f, such that, if the following inequality holds:

(38) By < ai + w? £ By,

then the inequality

(39) W+ W) sc

holds. Let (2, ,) be a maximum point of polynomial (35) on this rectangle.
We set

(40) wo = 0y — ay, wo = Bo — ai.

Then, obviously, we have
41) D = Da,B = Dao+h‘(t),ﬂo+h2(t)‘

Finally, we choose ¢ so small that the following inequalities hold on the entire
interval 0 < t < 1 (see Assumption C):

(42) |h(@) < 8, |h*(t)| < 6.

Then the following estimate from below for the determinant D follows at once
from (33):

(43) ID| = &} o.

We shall now estimate from above the module of the determinant D. It follows
from inequality (14) that there exists a constant ¢ such that the following in-
equality holds for 0 < ¢t < 7,:

(44) 1D < es(1 + n(0)** .
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Comparing the inequalities (43) and (44) and setting
@5) 0] = —+
Y1lMol = o [+ O

we obtain from (31)
(46) p(e) Z 71 [m0)1¢o

for any t in the interval [0, 7,]. Obviously, y,[#] is a monotonically decreasing
function of its argument, which depends only on the game.
We now define the function y,[#] by the following formula:

47) voln] = y1ln + coc,]-

Obviously, we have then for 0 <t < 1,

(48)  yoln(®)] = y,[n(t) + cyc0] = y1[n(0) + n(t) — n(0) + cco] = v, (0N,

since |#(t) — n(0)] < c,co. Hence (25) follows from this and from (46). Assertion D
has been proved.

ASSERTION E. Let zy€ M, \M. There exists a positive constant T, such that,
for all t€[0,7,] and for arbitrary controls u(s) and v(s) given on the interval
0 < s < 14, the point z(t)—which is the solution of (2)—does not enter M. Further,
there exists a constant w} such that, for w' = wj}, the following inequality holds for
the first component of the curve (12):

(49) 1@l = (/4

Proof. The first part of this assertion is an obvious consequence of the com-
pactness of the sets P and Q, and of the continuity of the function f(u, v).
One can always assume that

Ty S ¢/(4cy[1 + n(0)]).
Further, we set

if & + alt, + -+ + aith 20,

NS RN

(50) wl =

if &g + ajr, + -+ + aith < 0.
Then (see (13))

(001 2 Be — It eh 2 Be — el + eI 2 4ok

Assertion E has been proved. We note that, since 1, can be decreased as needed,
one can assume that |nz(t,)| < ¢ (because |nz(0)] = 0).

2.1. Proof of the theorem on evading the encounter. Let the evasion conditions
of § 1 be satisfied for the game (1). We choose a number ¢ in accordance with the
assertions C and D, and denote by S the (n — 1)-dimensional surface in the space
R" determined by the equation

(51) &= ¢/l + ).



308 E. F. MISHCHENKO

This surface subdivides the space R" into two nonintersecting domains: the in-
terior one S _, which contains the subspace M, and the exterior one S, . There
are only three possibilities for the initial point z, of the game (1):
(1) Zp€ N +

(i) zg¢M,,zpeS_,

(i) zge M, \M,z,€S_.

If the initial point of the game belongs to the domain S, then a control
v(t) can be chosen arbitrarily during some period of time. Let ¢, be the first instant
of time at which the point z(¢) hits the surface S. We take this time ¢, as the new
beginning of time count, and the point z(t,) as the initial point of the game. Ob-
viously, £, o < e Therefore, according to the rule in the discussions of Assertions
B, C and D, the vector w, = (w}, w3) can be assigned to this point, and then,
according to Assertion A, also the special control v,(t) determined on the interval
0 <t £ 1. This control will provide the following inequality for the trajectory
of the game on this interval :

y[n()]
(A + @)

For t = 14, the point z(t,) will again appear in the domain S, . After this, the
process can be repeated.

Now, let the initial point z, of the game belong to the domain S_, but let
zo ¢ M. Then the control vy(t) can be activated at once, which will provide, by
virtue of Assertion D, the following inequality for 0 < ¢t < 7,:

(53) lmz() = Eioyln(e)],

and, for t = 7,, the point z(t,) will again be in the domain S, .

Now, let the initial point z, satisfy the condition zoe M, \M, z,eS_. In
this case, we choose the constants 7, and w;i (w? can be chosen in an arbitrary
way). Then the point z(¢) will not enter M up to and including the time 7, (see
(49)). By virtue of the remark made at the end of the proof of Assertion E, we have
|nz(t,)] < & We take the point z(t,) as the initial one. Obviously, z(t,)¢ M,
z(t,) € S_. Therefore, the following inequality holds for ¢t = 7, :

(54) &4(0) 2 e, yn(@)].

The theorem has been proved.

(32) 2] = &,() Z &

3. Examples.
3.1. A control example. The motion laws of the pursuing and evading objects
are given by the respective equations

(55) X 4+ ax = pu,
(56) y+ By = ov.

Here, x, y, u and v are vectors of a Euclidean space E of dimension y > 2, x is
the geometric position of the pursuing point, y is the geometric position of the
evading point, u and v are control parameters with |u] < 1, |0 £ 1, and o, f, ¢
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and p are positive numbers, where
(57 o> p.

The pursuit is assumed to be terminated at the time when x = y. The problem is
posed whether the object (56) can evade the object (55).
We pass over to the corresponding differential game. To this end, we set

(58) Z=(ZI’ZZ’Z3)=(x_y’an})-

Thus, z is a vector of the three-dimensional Euclidean space R=E x E x E, and
the game is given by the following system of differential equations:

(59) Zy=12y— 23, Z,= —0z,+ pu, 3= —fz3+ ov.

The set P consists of all vectors (0, —pu, 0), the set Q consists of all vectors
(0,0, 0v), and the set M of game termination is given by the equation z, = 0.
Any two-dimensional subspace of the space L can be taken as W. It can be verified
directly that 7P = nQ = 0. The set nCQ is a two-dimensional ball of radius o,
the set tCP is a two-dimensional ball of radius p. Therefore, the evasion conditions
are satisfied for ¢ > p with k = 2.

In view of the presence of friction « > 0 and f > 0, the velocities x(t) and
y(t) of the motions of objects (55) and (56) which start from the rest state (x = 0
and y = 0) are bounded:

X0 = p/a, 1y = a/B,

and the projection of the point z(t) onto M remains within a compact subset of
M for any t. Therefore, inequality (3) has a particularly simple form for the game
(58), namely,

(60) [nz(t) = calmzol?,
where ¢, is a constant which depends only on the game.

3.2. The problem of a “boy” and an “alligator”.! The motion laws of the
pursuing and evading objects are given by the equations

(61) X =u, y=uv,

where x, y, u and v are vectors of a Euclidean vector space E, v > 2, u and v are
the control parameters with |u| <1 and |v] < 1, x is the geometric position of
the pursuing object—the ‘“‘alligator”— and y is the geometric position of the
evading object—the ‘“boy””. The pursuit is assumed to be terminated when x = y.

Setting z = (z,, z,, z3) = (X, X, y), we obtain the differential game with the
matrix

010
c={0 0 0f,
0 00

! Translator’s note. I translated the Russian “crocodile” as “alligator”, because this problem was
named after Prof. L. W. Neustadt’s famous pet alligator, Cookie. [K.M.]



310 E. F. MISHCHENKO

the termination set M = {z; = 0} and the sets P = {(0, 4, 0)} and Q = {(0, 0, v)}.
It can be verified directly that the assumptions of the theorem on evasion are
satisfied also in this game, with k = 1, and that, therefore, the inequality

(62) [mz(e)l 2 |mzoly[n(t)]
holds for any t.
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THE CHARACTERIZATION OF THE WEAK* CLOSURE OF
CERTAIN SETS OF INTEGRABLE FUNCTIONS+t

CZESLAW OLECH{

Abstract. Let K be a set of integrable functions from a Hausdorff metrizable topological compact
space T with a given regular Borel measure on it into an Euclidean space E. We assume that K has
the following property (P): for each measurable subset A of T and any two functions u,, u, from K,
the function

Xaty + xr\at2 €K,

where y, is the characteristic function of the set A4.

In this paper we give the characterization of the closure K of set K having property (P) in the
weak topology of the conjugate space C* of the space C of continuous functions from T into E. In
particular, we also obtain conditions under which the set K is closed in the weak topology w(L,, C).

Introduction. The motivation to study the weak* closure of sets of L, having
property (P) comes from the theory of optimal control, in particular from the
existence theory of optimal solutions to some optimal control problems. In this
theory one needs to know whenever a set K, which is the set of integrable selections
of a given set-valued function, is closed in a weak topology. We refer the reader
to the author’s papers [4], [5] and [6] for examples. The result we present here
is in fact a generalization of the lemma from [4] and [5] which the author has
used to obtain some existence theorems for optimal solutions. This paper can
also be considered to be a continuation of the work of A. Lasota and the author
[1], [2], where the problem of closedness of the set of solutions to differential
equations with multivalued right-hand sides were considered.

In a recent paper, R. T. Rockafellar [7] has given a characterization of the
closure in question in a special case. This he obtains by deriving a formula for
conjugate functionals to a given integral functional on C(T, E), hence by a rather
different method.

Finally, the result given here was applied by the author to obtain a necessary
and sufficient condition for lower semicontinuity of integral functional on L,
of the form

I = Lf(t, u(e) dt.

again with respect to the weak topology w(L,, C) on L, (cf. [6]).
We will not discuss those applications in more detail. We hope that the
problem itself may be of some interest to the reader.

1. Notations and assumptions. By 7'we denote a metrizable compact Hausdorff
topological space. Let us fix a regular nonnegative Borel measure u on T. We
shall refer to this measure as dt and assume that it is complete nonatomic and

1 Received by the editors October 18, 1973, and in final revised form January 29, 1974.
1 Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland.
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that the support of it is the whole space T'; that is, any open subset of T has positive
measure. The latter assumption does not restrict the generality of our considera-
tions. All terms like measurability, integrability and absolute continuity will always
be meant with respect to this fixed measure unless an opposite is specifically stated.

E will stand for an Euclidean n-space and {-, -) will denote the scalar product
in E. Let L (T, E) and C(T, E), or simply L, and C, be the spaces of integrable
and continuous functions from T'into E, respectively, with the usual norm. By C*,
as is customary, we denote the space of linear continuous functionals on C,
that is, the space of E-valued regular Borel measures on T. Frequently we shall
identify L, with a subspace of C*, identifying an integrable function ue L, with
the functional u(p) = [, u(t), (t) dt on C or with a regular absolutely continuous
measure given by m(4) = [, u(t) dt for each measurable 4 = T.

Let K < L, be nonempty and have the property

(P) Xauy + X a, €K ifu ,u,e K and A c T is measurable.
For each ¢ € C we put

(1) Yo = esssup (u, @).
That is, for each u e K we have the inequality

u(®), p(t)) = Y, (1) ae.inT

and vice versa : if for some measurable v: T — R U {+ oo} we have the inequality
<u(®), p(t)) =< v(t) ae. in T, for each ue K, then ¢ (t) < v(t) a.e. in T.

The function y, can assume + oo values, is defined uniquely up to a set of
measure zero, and is measurable in t.

For each fixed t, we put

2 D(t) = {¢(t)lp € C and y,, is integrable on a neighborhood of ¢}.

PROPOSITION 1. D(t) is a convex cone.

Proof. If ,, is locally integrable at ¢, then so is ¥,, for each 4 > 0, hen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>